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Introduction

In recent years, a considerable interest has developed
in the problems of flow aad heat transfer in annuli, both
concentric and eccentric. In addition to its inherent useful=~
ness as a flow geometry, flow in an annulus has proved useful
as a model for longitudinal flow in a tube bundle (5). The
interest in the eccentric annulus arises because of the prob-
lem of tube misalignment which frequently occurs in a closew
packed tubular heat exchanger. A considerable amount of work
has been dome on the problem of furbulent flow in an eccentric

annulus (4), but to the author’s knowledge no results have
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been reported for the laminar fiow frict
eccentric annulus, The present investigation attempts to fill
this gap in our knowledge of annulus flows,

In a recent paper (1), the senior author considered the
problem of slug flow heat transfer in an eccentric annulus.
The governing equation for both slug flow heat transfer and
fully developed laminar flow in an eccentric annulus is
Poissonts equation with a constant non homogencous term. Thus
the governing equation for the present investigation is the
same as that employed in reference (1) with different boundary

conditions. The basic mathematical technique applicable to
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both problems is the bipolsa
centric annulus cross section in the physical plane into a
rectangle in the complex plane.

An analysis of the laminar fiow problem by Heyda (2) was

recently called to the author®s attention. Heyda's main interest

transformation which maps the con-
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was in establishing the locus of maximum velocity for fully
developed laminar flow in an eccentric annulus. The assump-
tion was then made that the locus of maximum velocity would be
the same for both laminar and turbulent flow, an assumption
which has been recently verified over a limited range of radius
ratios by Wolffe and Clump (3). The expression for the shear
stress was not obtained by Heyda and no numerical results were
presented.

In the present analysis, a solution is obtained for the
fully developed laminar flow velocity distribution in an
eccentric annulus. PFrom this solution, expressions are obtained
for the variation of local shear stress around the inner and
outer surfaces of the annulus. Friction factors are defined
for each surface as well as a total friction factor based on
the total shear at both surfaces. Numerical results are

presented covering a range of eccentricities and radius ratios.

The Analysis

The geometry considered in the present analysis is shown
in Figure 1. The equation of motion for fully developed

laminar flow may be written as

} AP _ D™ + Qq‘u.

N —

3z T D x* 9&@" (1)

where the pressure gradient is constant because of the assump-
tion of fully developed flow. The viscosity will be assumed

constant., The boundary conditions are the non slip conditions
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expressed by W.=0 at the inner and outer surfaces.
Because of the asymmetry of the geometry, cylindrical

coordinates cannot be used, and bipolar coordinates (6) must
be used. Equation (1) is transformed to the bipolar coordi-
nate system and a solution obtained in this system. The de-
tails of the transformation and solution technique are similar
to those employed in reference (1) and in a paper by El-Saden
(7) in which the problem of heat conduction in an eccentrically
hollow cylinder was solved. The bipolar coordinates ('Q ’ % )

are defined by the transformation

‘ : ‘5+WL\
Forla T e cmt( ~ (25
where C. is a constant and Cs &—\ . .EBquating real and

imaginary parts of Equation (2) gives relations between the

physical and bipolar coordinates in the form

= T Sinl M (3a)
COS\\Q-—COSS

\3}: coswn (3b)
c,oS\\r\"z-QoS%

2 .
e = Ux’)\"r(‘f\-\"C—\ (3¢)
\,X?“\' (7\' C—-\l

Jtcmgz 2wy & (34d)
7&7\3\6’}‘-—@7\
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Equation (3e) shows that lines of constant 7 represent
circles in the physical plane with center at (& coth?m 4 O )
and radius Tﬁfﬁr?? . The inner and outer surfaces of the
annulus are thus represented by lines of constant 7 which

will be designated as ol and @ respectively., With this

notation, it may be shown from geometrical considerations that

the constants & , ol , and Qé are given by the expressions
C= V\$mMOL= T;SUW\@ (4a)
QosVux =\ %(\\+ éz\ + (\- ¢z\ (4b)

¥ A ¢

cosh ©= X (- gbl\ + (t+¢1\ (4c)
, T

where
¥ = r, (4d)
T
(i)::. R (de)
=0y

Transforming Equation (1) into bipolar coordinates gives

P o Pa \

Ky 37> (ceswm oot (52)
where
A= — W (5b)
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is the dimensionless velocity. The general solution to
Equation (5a) is given in reference (7). Applying the bound-
ary conditions /\r(qzsz\z o= N—(ﬁz = g)\ gives the

particular solution in the form

N E?z-—&t?_v:_\l__?z + Z%Amemq?ﬁ-(\?)m* c*n\ﬂz\@jmbgcosmg (6a)

where

F = | ol CAYY\\\QQ - @\m’\v\\\o( (6b)
A=)

E = Q‘\'n\r\o( - Q*m\\&g : (6c)
2(o = Q)

A= cloha = etah G (6>

lec& _ e‘?«m% )

)‘E) = G?‘MOKQJY(\\\Q—‘Q_QMP\) QAT«\\‘\OL_ (6e)

m
Q’Mr\ot _ Q”\/'\ Q

For a given geometry, ¥ and (#) , defined by Equations (4d)
and (4e) would be specified. These values then determine
and % y given by Equations (4b) and\ (4c) respectively. With
o  and @ determined, the constants appearing in Equation

(6a), defined by Equations (6b)-(6e) are then fixed.

Local Wall Shear Stress

The local wall stress may be determined by evaluating the

velocity gradient at the wall. Thus
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where © is the radial coordinate measured from the center of

wa

the surface on which T .|| is being calculated. The alge~
braic sign is chosen to make T‘wk\\ a positive quantity.
Since %%)w“\ﬁ © on the inner wall and %%)wk\ﬁo on
the outer wall, choosing the plus sign for the inner wall and
the minus sign for the outer wall will give positive values
for T,\| in both cases.

The velocity' gradient in the r-direction must be expressed
in terms of the ( 3 ,72 ) bipolar coordinates. This transforma-
tion involves a straightforward application of the chain rule

of partial differentiation. The details are presented in the

Appendix and the final results may be written as

'\\.UMW = ’T\ = ( \ Tcos\'\ok QOS%\ _D_\._):\ (8a)
wall Posiahol cos e I Iysa
oute o = Tg\: —'/(&( \ - COS\\QD Qbﬁa\ Q_\s:_» (ep)
wall ‘\1 S\\w\\\%cose 37& ”Z=%

where © and 3 are related along the walls by the expressions

siah o Sin & (9a)
cosha eosy—\

j!

tan %\

Lene e
wall

e stah © sin g (9b)
wa\l Qos\'\QCoig— \

£ omne)
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The average values of the wall shear stresses are given

by
-
T\\av"zs': :F\ = fﬁ: go"-\ 3o (102)
v
— € _
T\ :’i"l = o1 SQT). de (10b)

by exvc\&

where the integration is performed only over the range O%@ 57T
because of symmetry about the x-axis. From Equations (8a)-
(10b), wvalues of T, /—’F\ and T, /:Fz may be calculated which

give the variation of local shear stress around the walls in

dimensionless form.

Inner and Quter Wall Friction Factors

A friction factor may be defined relative to both the

inner wall and outer wall average shear stresses by the relations

‘C'\ = 7‘-‘ (11a)
=
2
'91: -, (11b)
—h
iT

where A is the mean velocity defined as

—_t N\
W= wled-e ) Sguar\ (12)

The differential element of area QM= dx A‘Y may be

shown (1) to be related to the ( g ,72 ) coordinates through
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the expression

A= AMY = & 14N (13)
(coshm - cosg\k
Equation (12) may then be rewritten as
©
2 ™M N
o= (‘_1 SS w Q\gc\'rz = — 2C 1 __A__?_ (14a)
TT(?,\‘V:‘\ s O(Qos\\'/l-cos,%\?\ TT/A(\":\\‘}\ A'L
where
R

I

1= SS e 3 A'rz (14b)

5 CCos\\'rz - co&%\l

The overall force balance equation for the annulus may

be written as

. K
7\'\'?‘(0‘:\\—l +\‘{’F1\‘Z=. -~ (pz-c\?‘\ dz (15a)
£y 4 °
- T2 —_— ,
7~‘\\"'\(\+ ) "?%\= —(vi—rf\ L (15b)
N 1
A Ol PO (C S ey (150

Combining Equations (1la), (11b), (14a), (15b), (15¢c) and

introducing the Reynolds number defined as

Re = _7\__€\_§‘_ (vl-\*‘\ (16)
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X |
fFRe= w (% k“ 1 SLLL "1\ (17a)

I S\‘\\\QL +(‘1 —.,L
Y‘\ "‘-"

£ Re = TTSI"' \gg\ \1 (17b)
T sial’ QSL\ ¥ 0,

fx *z

Total Rriction Factor

In reference (8), the average friction factor for the

concentric annulus is defined as
£ == (02‘--9\ At (18)
i”‘ Az

This same definition will be used for the average friction

factor for the eccentric annulus. The pressure gradient may

be related to Q\ and Ql by an overall force balance

AT
1TT<0 —T_\ +¢17\\1\=—'T\'(01\—0\2\ a1 (19a)

A%
or Qﬁl(r\g\ ng,\\: - (vf-— (‘T\ 1 (19b)

Combining Equations (18) and (19b) gives

fFRe = %Q\Re + H.Re (20a)
R




where N = oo (20b)

Using the values of i‘RQ_ and QIRQ_ calculated from
Equations (17a) and (17b) in Equation (20a) determines the

average friction factor-Reynolds number product.

Numerical Results

Numerical results for a range of radius ratios and
eccentricities is shown in Figures 2 through 8. The distri-
bution of local shear stress on the inner and outer surfaces
is shown in Figures 2 through 5. The data are presented with
the ratio of local to average wall stress plotted against
angular position with eccentricity as parameter. As one would
expect, the wall stress is largest in the region of smallest
separation between the surfaces, corresponding to ©=0 .

It is interesting to note that the local wall stress may vary
by as much as a factor of 20 over the range of eccentricities
and radius ratios considered,

The friction factors for the inner and outer surfaces,
defined by Equations (17a) and (17b) are shown in Figures 6
and 7 for two radius ratios. The friction factor for the outer
wall is less tham the corresponding quantity for the inner
wall, the difference between the two quantities decreasing
with increasing eccentricity. Also the difference between

inner and outer wall friction factors appears to decrease as
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the ratio of inner tube diameter to outer tube diameter
increases, This trend appears to be valid for all values of
eccentricity.

The final data to be presented, shown in Figure 8, give
the variation of total friction factor, defined by Equation
(18), with eccentricity for fixed radius ratio. Two values
of radius ratio, namely }= [/Z and X:f‘f/ & , are
shown. As seen in Figure 8, the total friction factor is
only slightly sensitive to radius ratio over the range covered
but changes significantly with eccentricity. There is a
change by a factor of approximately 2 over the range of eccen-

tricity from 0.1 to 0.9.
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Aggendix

Derivation of Wall Shear Stress Expression

The expression for the local wall shear stress is

= I A-1

wm.\\ /\& D ( )
MQ_\\

where ¢ is the radial coordinate measured from the center

of the circle on which T \\ is being calculated. The

velocity gradient at the wall can be evaluated from the chain

rule as
%) - Slez.x_a\ a__\ ?..:,x\ @.:M (a-2)
Or L\ % X 0 e 3“‘5)& O g )Ll
where
Dx} = Cod @
or /g
8; = Sin @
or I
du _D,_x:\
Expressing  Ox N and Duﬁ N in terms of the

( % ,? ) coordinates gives

Bl AL HAL,

) Slf\éii\;\q 3y /x \2 o) \ Ew.

Since W=0 at the wall and since the wall surfaces corres-
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pond to lines of?? = constant, we have 5‘%" = O at the

wall. With this simplification, Equation (A-3) becomes

Q&_\ s 9..\3:.) zcos ® _3_15 > stna‘g_lz) K (A-4)
ALY\ 37 lgal % “ Du\& X Jwal

From Equation (3c), we may write

.D.Z’L\ =\ = cosices\y (4-5)
> o

1

@.l} ~»$‘u\§ %\1\\'\77 (A-6)
g lx <

Combining Equations (A-4), (A=5), (A-6) gives

D__u\ = —%(congos\(\T[v\\ _D__x_x_i (A-7)
\\ \Q‘\\\

BANNN Ccas® D"Z

A relation between g and © along the wall surfaces is
required and may be obtained by considering the geometry
shown in PFigure 1. If S is the x-coordinate of the center
of the circle involved, :vve may write

Lan & = % (A-8)
K=3S '
Substituting for x and y from Equations (3a) and (3b) into
Equation (A-8) and using the relations S:=9,=C cot\ o
and S = %7\: C_c.o‘\‘\\% for the inner and outer circles

respectively gives
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Tan e\.\“m = slahal 8ing (4-9)
wall cothd cosy —\

JT.QA\ %\ outen = S‘\\'\\!\%\ sia % (A-10)
wal\ c.as\\%c.os% -\

Using the plus sign for the inner wall and the minus

sign for the outer wall in Equation (A-1) gives

T - N = /‘J<\"' cos\\oL Qtﬁ%\ Ju. (A-11)
wa °\ sinhd cos g 372 ,,2:&

~

wal\ ™, s\«\% Cos ® IN ,,Zz%

where © and % along the walls are related through

Toudee = T, = “‘/LL(\— cosw ch_osg\ 3\»\\ (A-12)

Equations (A-9) and (A-10). The average shear on each wall

is given by -

_ ¢S
T o= T T e (A-13)

QWN = \ o \

]

™)

A\
T+ R S P (A-14)
where the integration is performed over the range Q% © £
because of symmetry about the x-axis. From Equations (A-11)-

(A-14), values of the ratio of local to average shear stress
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on each wall, namely ﬁ\/EF

, and ’Tzlﬁa , may be calcu-

lated.
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Notation

A, B, E, B - constants defined by Equations (6)

n, n?

¢ - constant defined by Equation (4a)
e - eccentricity = (r2~rl)

f,, f,, f - friction factors defined by Equations (11) and (18)

10 tor
I - integral defined by Equation (14b)
P - pressure

Iis Ty - inner and outer radii respectively

Re - Reynolds number defined by Equation (16)

u - velocity

u - average velocity

v - dimensionless velocity defined by Equation (3b)

X, V, 2 - space coordinates defined in Figure 1.

a, B - constants defined by Equations (4b) and (4c)

. . rq
y - radius ratio = —=
2

n, € =~ bipolar coordinates defined by Equations (3c¢c) and (3d)
e

r2~r1

n - eccentricity ratio =

Tye To = inner and outer wall local shear stresses
?1, ?2 - inner and outer wall average shear stresses

w - viscosity
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Figure Captions

Eccentric annulus geometry
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