
STATE UNIVERSITY OF NEW YORK AT

STONY BROOK

CEAS TECHNICAL REPOR~\

A Multi-Job Load Sharing strategy

for Divisible Jobs on Bus Networks

J. Sohn & T.G. Robertazzi

April 16, 1993

~,

A Multi-Job Load Sharing Strategy
for Divisible Jobs on Bus Networks

Jeeho Sohn and Thomas G. Robertazzi, Senior iHember. IEEE

Dept. of Electrical Engineering,

SUNY at Stony Brook.

Stony Brook, N.Y. 11794

Abstract

In this paper, a load sharing problem involving the optimal load allocation of a

linear data file over N processors interconnected in a bus-oriented network is investi-

gated. Three distinct types of bus networks are examined in the case when there is

more than one outstanding divisible job in the network. These are a network with a

control processor for load distribution, a network without control processor but whose

processors are equipped with front-end processors for communications off-loading, and

finally a network without control processor and with processors without front-end pro-

cessors. It is found that a multi-job scheme outperforms a single-job scheme in terms

of the total solution finish time. Closed form solutions and simple recursive algorithms

for the determination of the optimal load allocation are also presented.

1

I. INTRODUCTION

In recent years. there has been of great deal of interest in distributed sensor networks

[1]. In distributed sensor networks. measurements are made by spatially distinct sensors.

The data is. then. broadcast to a site where the spatially disparate readings are fused so

that meaningful decisions can be made regarding these measurements. One major issue for

distributed sensor networks is the trade-off between communication and computation [2].

That is. the decision of how much time should be spent to communicate and how much time

should be spent to process (compute) the measurements becomes an important problem.

Related to the distributed sensor network problem are a number of papers which deal

with scheduling and load sharing in multiprocessors [:3, 4]. However most work assumes

that a job can be assigned to a single processor. Only recently has there been interest in

multiprocessor scheduling with jobs that need to be assigned to more than one processor

[5,6,7].

Recently there has been work on a load sharing problem involving a divisible job. A

divisible job is a job that can be arbitrarily partitioned in a linear fashion among a number

of processors. Applications include the processing of very long linear data files as in signal

and image processing and Kalman filtering.

In [8], recursive expressions for calculating the optimal load allocation for linear daisy

chains of processors were presented. This is based on the simplifying premise that for an

optimal allocation of load, all processors must stop processing at the same time. Intu-

itively, this is because otherwise some processors would be idle while others were still busy.

Analogous solutions have been developed for tree networks [9] and bus networks [10, 11].

Asymptotic solutions for systems with large or even an infinite number of processors and

limitations in performance when adding processors appear in [12, 19]. Closed form solutions

were presented in (1:3]for bus and tree architectures where processor and link speeds are

homogeneous. In [14], the concept of an equivalent processor that behaves identically to

2

a collection of procpssors in the context of a linear daisy chain of processors and a proof

that. for a linear daisy chain of processors load sharing a divisible job, the optima! solution

involves all processors stopping at the same time are introduced. An analytic proof for bus

networks that for a minimal time solution all processors must stop computing at the same

time is shown in [15, 16]. Previous proofs were heuristic. The equivalence of first distributing

load either to the left or to the right from a point in the interior of a linear daisy chain is

demonstrated in [18]. Optima! sequences of load distribution in trpe networks are d.escribed

in [17. ~O]. A new load distribution strategy for tree networks [21] and linear daisy chains

[22] is also discussed.

All of the previous work concentrated on investigating more efficient ways of distributing

load to minimize the total solution time under the premise that there is only one job present

in the network. Most practical computer systems operate in an environment where multiple

jobs may be submitted. An intriguing question is how to efficiently handle the submission

of multiple jobs in a distributed network. Under a naive, single-job scheme, a distributed

network sequentially processes one job at a time. In this paper we propose a more sophist i-

cated multi-job scheme for bus networks that exploits the special structure of a divisible job

on a bus network to yield a smaller finish (solution) time than the single-job scheme.

This paper is organized as follow: Closed form solutions and simple recursive algorithms

for the determination of the optimal load allocation for three types of bus networks - a net-

work with a control processor, a network without control processor but with processors that

are equipped with front-end processors, and a network without control processor and with

. processors without front-end processors - are presented in section II, III and IV, respectively.

In section V, a performance evaluation is presented which compares the single-job scheme

with the multi-job scheme. Finally the conclusion appears in section VI.

:3

II. ARCHITECTURE 1:

Bus NETWORK WITH A CONTROL PROCESSOR

Consider first the case where the network model consists of a queueing system for incum-

ing jobs. a control processor for distributing the processing load. and ~ processors attached

to a linear bus as in Fig. 1. New arriving jobs enter the queueing system and wait there for

sprvice. In this paper, the queueing system is assumed to be of an infinite size so that there

are no tllrned away, lost or blocked jobs. There is also no restriction of service discipline.

i.e.. it can be first-in first-out (FIFO), last-in first-out (LIFO), etc. l.7nder the supervision of

the control processor, one of the waiting jobs in the queue can be deli vered to the processor.

The control processor distributes the processing load among the N processors interconnected

through a bus type communication medium in order to obtain the benefits of parallel pro-

cessmg. The control processor does no processing itself. It does not matter whether the

processors are equipped with front-end processors or not because the load distribution is

performed by the control processor. Each processor may have a different computing speed.

The following notations will be used throughout this paper:

ai, Iii: The fraction of the entire processing load of the first job and the second

job, respectively, that is assigned to the ith processor in the single-job

scheme.

(Yi fJ. ., ,. The fraction of the entire processing load of the first job and the second

job, respectively, that is assigned to the ith processor in the multi-job

scheme.

z: A constant that is inversely proportional to the channel speed of bus.

Wi: A constant that is inversely proportional to the computing speed of the

ith processor.

4

Tcmm: The time that it takes to transmit tlw entire set of measurement data

of the rnth job over the channel when Z = 1.

TcPm' The time that it takes for theith processor to process (compute) the

t'ntire !oad of themth job when Wi = 1.

Tim' The finish time of the entire processing load of the mth job.

The timing diagram for the bus network with a control processor in the single-job scheme

and the multi-job scheme are depicted in Fig. :2 and Fig. :3, respectively. In the single-job

sclwme, the load distribution (transmission or communication) of the second job is started

after the completion of the first job's computation (Tit). Therefore, the time that each

processor waits for its processing load to be received - the transmission time during which

the control processor transmits the processing load to each processor - is wasted. That is, the

durations fi1ZTcm2' (fi1 + f3.2)ZT"n2' . . . , (#1 + fi2 + . . . + fiN)ZTcm2 are wasted in processor 1,

processor 2, . . . ,processor N, respectively.

On the other hand, since the load distribution of the second job can be started right

after the control processor finishes the transmission of first job's load, those processors which

received their processing load prior to the completion of the first job's computation (Tit)

can start their computation immediately after Tit in the multi-job scheme. Hence, in the

multi-job scheme one can significantly reduce the overall processing time for the second

job compared to the single-job scheme since the processing load is transmitted immediately

following the completion of the previous job's transmission.

Now, the closed-form solutions for finding ai (or /ii) for the optimal load allocation for

each processor in the single-job scheme which appears in [15][16] will be reviewed. Following

this, the recursive algorithm to find /3i for the optimal load allocation in the multi-job scheme

will be examined in the following subsections.

5

A. Closed-Form SoZ,ution to Find O:i in the Single-Job Scheme

Since distributing the processing load is done in the same fashion for every job in the single-
I .
I

job scheme and for the first job in the multi-job scheme, the closed-form solutions to find

6i.3i and O:iare the same in both cases as well. Tlw case of finding ai for the first job in

the single-job scheme will thus solely be reviewed.

As proved in [1:)][16], the minimum time solution occurs when all processors finish their

computation at the same time. Based on that fact, one can set up the following set of equa-

tions (Fig. :2). These equate the computation time of the ith processor to the transmission

plus computation time of the i + 1st processor.

61 W1 T~Pl - 62ZTC1/!j + 62w2TcPl (1)

a2W2TcPl - 6;3ZTC1/!j + 6.1w;3TcPl (2)

a3W3TcPl - a4ZTc71!j + a4W4TcPl (:3)

6N-l WN-1TcPl = aN ZTC1/!j+ aNwNTcPl (4)

In these timing diagrams communication time appears above the axis and computation time

appears below the axis. These equations can be solved as follows:

0:2 -
W1 TCPl A

Z T 0:1 - k 6
cm l + w.,T - 1 1.. CPl

w2TCPl A

ZT + T 0:2= k.,6" - k k A

cm l W., - 2 10:1.> CPI

w;3TCPl A

ZTcml + W 4 T 0::3 = k:3a:3 = k:3k2k1a1
CPI

(5)

0:3 - (6)

0:4 (7)

O:N
WN-1TCPl A

+ T O:N-l = kN I aN
- k k k A

C1/!j WN CPI - -1 - N-1 N-2'" '1' 0:1
(8)

where

k. = O:i+1 = wiTCPl

~ 6i ZTcml +Wi+1TcPI
l:Si:SN-l (9)

6

Herf' ki can be directly computed from the system parameters (Wi- Z. Ten'!, Tc'pl)' Since

the fractions of thf' total procf'ssing load should sum to onf'. Ocl can be obtainf'd by tl1f'

normalization equation.

- Ocl+ Oc2+ a:3+ ... + aN

(1 + k1 + k1k2 + . . . + k1k2 . . . kN - da1 (10)

Oncf' (~1is found. onf' can easi ly calculate the rest of the load allocat ion fract ions (a2, a3, . . . , (~N),

that the originating processor (the control processor) should calculate in order to achievf'

the minimal solution time when distributing load, as all those fractions are function of a1

as seen in Eq.(5) to Eq.(8). Note that the single-job scheme is optimal if only a single job is

to be solved. When multiple jobs are involved it is not optimal, as the following section will

demonstrate.

B. Algorithm to Find f3i in the Multi-Job Scheme

Case 1: When TJi 2:: ZTC1nl + ZTC1n2

Let us first consider the easiest case that the transmission of the second job's processing

load is started immediately after the control processor finishes the transmission of the first

job's processing load and is finished before the completion of the first job's computation

(TJi) as shown in Fig. 4. In other words, the location of TJi is placed after the time that

the transmission of the second job's processing load is finished. In this case, the algorithm

to find the fJi's is very simple.

Since all the processors have received their processing load prior to the finish time of the

previous job (TJi) they can simultaneously start their computation right after TJi and finish

their computation at the same time for a minimal solution time. Therefore, the processing

7

time in each processor is the same. That is.

31 WITCP2= 32w2TcP2 = d:3W:3TcP2= . . . = :3NWj\" T:P2 (11)

and t hose equations can be further expressed as a function of 131:

"h -

WI
-::11
W2

Wl.':1
-.J1
W:3

W10
-U1
lC4

(1:2)32 -

(1:3)

d4 - (14)

, WI
/3N = -(31

WN
(15)

As the normalization equation states that the sum of the fractions of the total processing

load is one, /31 can be obtained.

NNW
LJ3i = 2:: ~(31 = 1
i=l i=l Wi

(16)

Therefore, one can derive a simple closed-form solution:

N

(31 = (2:: WI t1
i=l Wi

/3i = WI (31
W.!

l:S;i:S;N (17)

(18)

Note that since there is no wasted time between the consecutive jobs in every processor,

the total required processing time for the second job (Tf2 - Tf1) is minimized compared to

any other cases.

Case 2: When Tf1 < ZTcn'! + ZTcm2

This subsection will consider the case that Tf1 is located somewhere in the transmission

period of the second job's load. That is, some of the processors which have received their

processing load before Tf1 can start their computation immediately after Tf, while the other

8

processors which did not receive their processing load yet have to wait some period of time

for their processing load to be delivered. In Fig. C).tilt' processing finish time of the first job's

load (Tit) is in the transmission of the nth fraction of the second job's load. Let I, denote

the time interval lwtween Tit and the time that the ith processor receives its processing

load. Thus processor I to processor n-l can start their computation immediately after Tit

while processor n. processor n+l,processor N have to wait I,,, In+l"'" IN amounts

of time. respectively, to receive their processing load and start their computation at time

Tit + In, Tit + In+l"'" Tit + IN. respectively.

Now let us derive the algorithm to find /3;'s which minimizes the total solution time.

We will assume that all processors must stop at the same time. Intuitively this is because

otherwise the solution could be improved by transferring load from one processor to another.

The processing time of processor 1 to processor n-l is the same since they simultaneously

start their computation and finish it at the same time.

(31WI TCP2= (32w2TCP2= . . . = (3n-l Wn-l TCP2 (19)

Therefore

WI
(3i = -/31

Wi
l:Si:Sn-l (20)

The next step is to find an expression for Ii, which is the time interval between Tit and

the time ith processor receives its processing load.

Ii = ((31+ (32+ . . . + (3dZTcm2- CtNWNTcPl n:Si:SN (21)

The processing time of the ith processor to compute its processing load is then

/3(Wi TCP2 - (31 WI TCP2 - Ii
I

- (31WI TCP2 - (2:: (h)ZTcm2 + CtNWNTcPl
k=1

n:Si:SN (22)

9

:\low consider the processing time taken by the nth processor to compute its processing

load. i.e.. the processing time when i = n.

d"w"TcP2 = /31WITCP2- ((31 + /32 + ... + /3"-1 + ,d,,)ZTc1n2 + C(VWVT"PI

Here:3n can be expressed as a function of /31:

'Wl WI
(ZTC1n2 + tV"TCP2),!3"= [wITcP2- (1 + - +... + -)ZTc1n2](31+ O'NwvT'PI

W'2 Wn-1

or

13"
w1TcP2 - (L~:~ ~)ZTcm2 p O'NWNTcPl

1)1 +
ZTW'2 + W"TCP2 ZTC1n2 + W"TCP2

p,,131 + q"

(2:3)

(24)

(25)

and O'N 1.

where p" and q" are constants which are functions of system parameters (Z, Wi, TCP1'TCP2'TW'2)

p"
wITcP2 - (Lk:i :)ZTC1n2

ZTcm2 + W"TCP2

O'NWNTcPl

ZTW'2 + WnTcP2
qn

Let us consider now one more case when i = n + 1.

/3n+1W,,+lTcP2 = 131WITcP2- (/31 + 132 +... + (3n-1+ (3n+ (3n+dZTcm2+ O'NWNTcPl

Here /3n+1can also be expressed as a function of (31'

(Z TC1n2 + Wn+ 1TCP2) /3n+ 1

WI WI
(31WITcP2- [(1 + - + ... + -)(31+ (P,J31+ qn)]ZTC1n2+ O'NWNTcPl

'W2 W,,-l
,,-1
""' WI

[w1TcP2 - (L..., - + p,,)ZTC1n2](31+ O'NWNTcPl- qnZTC1n2

k=l Wk

(26)

(27)

(28)

(29)

1Here CtN is assumed to be a known value because this is the fraction found when the first job is distributed.

10

Hence

3"+1 lL'IT-P2 - (2:~:: : + Pn)ZTcm2 31 + CtNWNT"PI- qnZTcm2
ZTL,m2 + Wn+lTCP2 ZTc'7>t2+ Wn+l T:P2

- Pn+l.:i1 + qn+1 (:30)

where Pn+1 and qn+l ar(> also constants since Pn and qn have been found previously-

On(> can s(>e that this procedure can be continued up to the case where i = S. Then

(>very fraction (/3i's) that the originating processor should calculate to achieve the minimum

solution time and which is a function of 31 is found.

Once all ;3i'Shave been found, (J1can then be calculated from the normalization equation.

1 ((31+ (32+... + (3n-l) + ((3n+ (3n+l+... + (3N)

WI WI
(1 + - + ... + -)(31 + (Pn(31+ qn)+ (Pn+dJl+ qn+d+ ... + (PN{31 + qN)

W2 Wn-l
n-l N N

(L WI + LPk)/Jl + L qk
k=1 Wk k=n k=n

(:31)

As a summary of this section, let us rephrase the algorithm to find {3;'s when

Tf1 < ZTCl1q + ZTcm2'

WITcP2-(2:::: ~)ZTcm2

ZTcm2 +Wn TCP2
l=n

(i) Pi (:32)

"n-I WI "i-I ZT
wITcP2-(Uk=1 W;+uk=nPd cm2

ZTcm2 +Wi TCP2
n+l:Si:SN

CY.NWNTcPl

ZTcm2 +Wn TCP2
z=n

qi - (;3:3)

CY.NWNTcPI-(L~:~ qdZTcm2
ZTcm2 +Wi TCP2

n+l:Si:SN

(ii) (31
1 - L~=n qk

"n-l !£J..+ "N
uk=1 Wk uk=n Pk

(;34)

(iii) {3i -

{

!!!"UJ
Wi I- 1

Pi/Jl + qi

l:Si:Sn-l
(;35)

n:Si:SN

11

Case 3: When the position of Tfl is changed due to the new values of 3i's

Reading along so far, one should understand that an unrealizable situation has been

described as one can ask how can one determine in which fraction of translliission Tfl is

located even before the actual values of Hi's are calculated. Actually it may seem impossible

to determine the location of Tfl because to do that. all values of 3;'s should be calculated

first and to calculate the values of 3i's. the location of Tfl should be decided. and so on.

But this dilemma can Iw resolved in the following recursive fashion: First. identify the

location of Tfl by using the values of 3i calculated in the single-job scheme. Since only the

values of the system parameters are required to calculate (3;'s, one can easily compute /3;'s by

the closed-form solution described in section II.A. Next the location of Tfl can be decided.

Once the location of Tfl is known, te.ntative. (ii'S can be computed by the algorithm described

in the previous section.

In the next step, one investigates the location of Tfl as in Fig. 6. If the location of Tfl

is changed from {3n to {3n+1or even to {in+2,{in+:3,. . ., then one simply increases the value

of n to the corresponding new value, n + 1,n + 2, . .., and calculates the values of the {3;'s

again. The process is repeated until the location of Tfl is not changed when comparing the

location of Tfl with the previous values of {ii and with the new values of {ii at the time of

each iteration.

Note that when it is said that the position or location of Tfl is changed it means that the

fraction in which Tit is located is changed. Actually, Tit itself is not changed and depends

only on the previous job's load.

Let us give an example. Suppose that there is a bus network with 5 processors. For

the second job, first calculate {ii'S by the closed-form solution with the single-job scheme

({31,{32,(3:3,~4' ~s). If Tfl is located in the transmission of the second fraction ({32), set

n = :2 and calculate the new values of {ii'S by the algorithm of the multi-job scheme

({i1, {-J2,{-J3,{i4,(is). Now if Tfl is located in the transmission of the fourth fraction ({i4) when

12

reidentifying the location. reset n = 4 and recalculate di's. If the location of Tit is still in the

transmission of 34 after recalculation and reidentification. then stop. In practice. however.

tilt" case such that the location of Tit is changed after the second iteration is rare.

:'Jote that the value of n never decreases in each iteration. It always increases. This is

because the earlier parts of the fractions become smaller (e.g.. ;11./h) and the latter parts of

the fractions become larger (e.g.. :IN-1.d,v) with each iteration.

III. ARCHITECTURE 2: No CONTROL PROCESSOR,

PROCESSORS WITH FRONT-END PROCESSORS

The bus network to be examined in this section is one without control processor as in

Fig. 7. As with the case of the network with a control processor, arriving jobs first enter

a queuing system and wait for service. One of the waiting jobs in the queuing system is

delivered directly to one of the N processors. Without loss of generality, we will assume

that is processor 1. Processor 1 distributes the processing load of the received job among

the other processors for parallel processing. Each processor is equipped with a front-end

processor for communications off-loading. That is, the processors can communicate and

compute at the same time. It is also assumed here that each processor may have a different

computing speed.

As one might guess, the solution procedure to find the best fractions for optimal load

allocation is very similar to the case where the network has a control processor. In particular,

the closed-form solutions to find Cti, /3i (single-job scheme) and ai are exactly the same. So

the closed-form solutions will not be discussed again. The algorithm to find INs for optimal

load allocation will be examined in the next subsection.

1:3

A. Algorithm to Find :Ji in the M'ulti-Job Scheme

Case 1: When Tit 2: (1 - oIJZTcnq + (1 - BIJZTcm2

('onsider the case where the transmission of the second job's load starts right after the

completion of the first job's load and finishes before the completion of computation for the

first job's load as in Fig. 8. This is the sault' situation as in case 1. section 11.8. Since all the

processors receive their processing load for the second job before they finish their computation

of the first job's load. they can start and finish their computation simultaneously to achieve

the minimal solution time. Therefore. the processing time of the second job's load in each

processor is the same and this yields the same result for {3i's as in case 1, section II.B. That

IS,

/31

N
'W

= (L~)-l
i=l 'Wi

- 'WI fj
'W' 1- 1~

1~i~N (:36)

/3i (:37)

However, there is one major difference from the case where the network has a control

processor. In the case where the network has a control processor, the total amount of the

transmission time for one job was independent of how the control processor assigns the

fractions ((3/s) or where TJi is located. That is, the total amount of the transmission time

for the second job was a fixed value (ZTcmJ.

But in the case where there is no control processor, it is a different story. Since the

total amount of the transmission time where there is no control processor is ({32+ {3:3+ . . . +

!3N)ZTcm2 = (1 - !3dZTcu'2' there is a strong dependency on the value of /31, In other words,

the smaller the value of /31, the larger the total amount of the transmission time, and vice

versa.

Therefore, it is possible for the following case to exist: when first determining the

location of TJi by using the values of the load allocation fractions in the single-job scheme

(/32,/33,. . . , /3N), Tit is located after the time that processor 1 finishes the transmission of the

14

second job's load. So one might calculate the new values of the fractions (di 's) simply by

using Eq.(:36) and Eq.(:ri). But when identifying the location of Tf1 again after calculation.

it is possible that the new location of Tf1 is placed before the end of the transmission as in

Fig. 9. This is because. as mentioned before. the early part of the fractions becomes smaller

and the latter part of the fractions becomes larger in the multi-job scheme compared to the

single-job scheme. If this happens. the situation becomes the case that TiI < (1-0'1)ZT"'1 +

(1 - 31)ZTcm2' This case is discussed in the next subsection.

One more thing that must lw pointed out is that one might think that it takes less

time to transmit the second job's load in the single-job scheme than in the multi-job scheme

because the multi-job's total transmission time is longer than the single-job's. It does.

But the total processing time (Th - TiI) to compute the second job's load in the single-

job scheme takes longer than that in the multi-job scheme because for the load allocation

fractions calculated in the single-job scheme, for jobs after the first job, each processor does

not finish its computation at the same time. This is because the load fractions are based on

the assumption that there is waiting time. In fact if all the processors have already received

their load when computation starts, there is no waiting time and processors will not stop at

the same time.

Case 2: When TiI < (1 - O'l)ZTcml + (1 - /3dZTcm2

Again the case where the network does not have a control processor and where processors

are equipped with front-end processors is very similar to the case where the network has

a control processor as in section II. The only difference is that the originating processor

(processor 1) in the network without control processor and with front-end processors does not

need to transmit its own fraction (0'1, /31) of the load. The timing diagram for a bus network

with no control processor and where processors are equipped with front-end processors when

TfI < (1 - 0'1)ZTcnL!+ (1 - (31)ZTC1II2 is depicted in Fig. 10.

15

Since processor 1 to processor n-1 received their processing load before they finish their

computation of the first job's load. they can start and finish their computation of the second

job's load at the same time.

31 WI TeP2 = ;J2W2TeP2 = . . . = tJn-l Wn-l TCP2 (:38)

Hence

WI
:3i = -;31

Wi
1:Si:Sn-1 (:39)

which is exactly the same result as in case 2. section 11.B.

The time interval Ii, the time between Tfl and the time ith processor receives its pro-

cessing load, is defined in the same fashion as before.

Ii = ((32 + {33 + . . . + {3;)ZTc7n2 - Cl:NWNTcPI (40)

The processing time the ith processor needs to compute its own processing load is then

{3iwi TCP2 - {31WI TCP2 - Ii

- (31 WI TCP2 - (2: {h)ZTc7n2+ Cl:NWNTcPI
k=2

n:S i:S N (41)

Now, {3n,{3n+l,. . . ,(3N can be expressed as a function of {31as was done previously.

Consider the first case when i = n.

(3nwnTcp2= {31wITcP2- ((32 + {33 +... + (3n-l + {3n)ZTc7n2+ Cl:NWNTcPl (42)

so

WI WI WI
(ZTcm2 + wnTcpJ{3n = [wITcP2- (- + - + ... + -)ZTcn!2J{31 + Cl:NWNTcPI

W2 W:3 Wn-l
(4:3)

or

{3n - wITcP2 - (L~:i ~)ZTcm2 {31+ Cl:NWNTcPl
ZTcn!2 + WnTcp2 ZTC7n2+ WnTcP2

- Pn{31+ qn (44)

16

where Pn and qn are constants

p"
T (,\,,,-l2!!J..)ZT1V1 CP2 - i..J!.;=2 Wk . cm2

ZTcm2 + WnTcP2

(''-:V WN TCPl

ZTcm2 + W"TCP2

(45)

qn - (~(j)

Next. consider the case when i = n + 1.

.J,,+lW,,+lTcP2- dlwITcP2 - (/32+ 33 +... + 3"-1 + dn + B,,+r)ZTcm2 + Ct./VW./VTCPl(47)

or

(ZT''1n2 + 'W,,+ 1 TCP2) J3,,+ 1

'W 'W 'W

- 131'WITcP2 - [(2 + 2 + ... + ~)/31 + (p,.(31+ qn)]ZTcm2+ CtN'WNTcPl
'W2 'W3 'Wn-l

n-l
~ 'WI

['WITcP2 - (L..,.. - + Pn)ZTcm2]/31+ CtN'WNTcPl- qnZTcm2
k=2 'Wk

(48)

Hence

/3n+l 'WITT2 - (L~:i ~ + p,,)ZTcm2 p CtN'WNTcPl - q"ZTcm2
1}1+ TZTWI2 + 'Wn+lTcP2 ZTWI2 + 'Wn+l CP2

- Pn+d31+ qn+1 (49)

And this procedure can be continued up to the case when i = N. Then 131can be

computed by the normalization equation.

1 (/31+ /32+ ... + 13n-l)+ ((3n+ /3n+l+ ... + /3N)

'WI 'WI
(1 + - + . . . + -)/31+ (p,J31 + qn) + (Pn+1/31+ qn+1) + . . . + (pN131+ qN)

'W2 'Wn-l

n-l 'W N N

(2: 2 + 2: Pt.;)/31 + 2: qk
k=l 'Wk k=n k=n

(50)

As one can see, the algorithm to find 13/s is the same as in case 2, section II.B. The only

difference is that the summation term in the numerator of Pi is the sum of 2!!J..from k = 2 to
Wk

n - 1 (L~:i~) in the case where the network has no control processor and where processors

17

are equipped with front-end processors while the summation term in the numerator of Pi is

the sum of ~ from k = 1 to n - 1 (LZ=I ~) in the case where the network has a control
!Uk - Wk

processor.

As a conclusion to this section. the algorithm to find the IJi's is summarized below:

T "n-l WI ZT
Wl CP2-(L...,k=2 W;) cm2

ZTcm2 +Wn TCP2
~=n

(i) Pi (;) 1)
"n-I ~ ",-I

WjTCP2-(L...,k=2 Wk +L...,k=nPdZTcm2

ZTcm2 +Wi TCP2
n+lSiSN

c, NWN Tcp!

ZTcm2 +Wn TCP2
~ = n

qi (52)

C>:NWNTC/Jl-(L~-;;'~ qdZTcm2

ZTcm2 +Wi TCP2
n+lSiSN

(ii) (31
1 - L~=n qK

",n-1 ~ + "N
L...,k=lWk L...,k=n Pk

(5:3)

(iii) (3i -

{

~ (31

p;(31 + qi

ISiSn-l
(54)

nSiSN

Case 3: When the position of Tit is changed due to the new values of (3i's

Again, it is possible for the case such that the position of Tit is changed due to the new

values of the (3i's to exist. If this happens, as discussed before, we can solve this problem by

(1) identifying the location of Tit by comparing the values of (3i's calculated in the single-job

scheme and (3;'s calculated in the multi-job scheme (2) if the location of Tit is changed,

assign the value of n to the corresponding new value (:3) calculate the values of (3;'s again

and compare the location of Tit associated with the old (3;'s and the new value associated

with the new (3i's until the location of Tit is not changed.

18

IV. ARCHITECTURE 3: No CONTROL PROCESSOR,

PROCESSORS WITHOUT FRONT-END PROCESSORS

The network configuration to be discussed in this section is similar to the prevIOus

section in that it involves a bus network with no control processor. But in this section. the

processors are not equipped with front-end processors. Let's take a look Fig. 11. the timing

diagram where there is no control processor and where processors are not equipped with front-

end processors. For convenience, the originating processor which distributes the processing

load to the other processors to achieve the benefits of parallel processing is assigned to be

processor N.

However, there is a problem when one tries to find the best values of the fractions for

optimal load allocation that occurs at processor N. In Fig. 11, it seems that processor N

can start its computation when it finishes the transmission of the second job's load. But

imagine what happens if there is a third job waiting in the queue. The processor N then has

to transmit the third job's load when it finishes the transmission of the second job's load

instead of computing the last fraction of the second job's load. So the last fraction of the

second job's load is dependent on the presence of the next or future job. That is, if there is

no job available after the second job, processor N has to assign some nonzero value to (3N.

On the other hand, if there is a next job, the value of (iN will be zero. Therefore, we cannot

determine the value of (iN because we are dealing with a purely deterministic system.

One simple solution would be if processor N is used only for transmitting the processing

load no matter whether there is a next job or not, i.e., processor N acts as a control processor.

Then the network configuration becomes a bus network with a control processor and N-l

processors.

19

v. PERFORMANCE EVALUATION

Based on the previous results. some performance evaluation results were simulated in

various cases - in the single-job scheme and in the multi-job scheme for the network with

a control processor and the network with no control processor but where processors are

equipped with front-end processors. In each plot. the total solution finish time is drawn

against the number of jobs. In this section. it is simulated when the total number of presented

jobs is 10 and there are five processors in the network, and it is assumed that the values of

the channel speed, the computing speed of each processor and communication load for every

job are assigned to unity (Z, all wi's, all Ton's = 1).

. In Fig. 12, the total solution finish time is plotted against the number of jobs when the

computational load of every job is 6 (all Tcp's = 6) which is a relatively medium load

in comparison with communication load which is set to one and with five processors.

Since the computational load for every job is the same, the total solution finish time

is linear in the single-job scheme. Clearly, the the multi-job scheme is superior to the

single-job scheme in terms of the total solution finish time. Even in the case where

processors are not equipped with front-end processors for the multi-job scheme, the

total solution time is significantly reduced compared to the case where the processors

are equipped with front-end processors in the single-job scheme.

. Fig. 1:3and Fig. 14 plots the solution time when the computational load of the first

half of 10 jobs is 10 (TCP1,2,3,4".,= 10, heavy computational load) and that of the second

half of 10 jobs is ;3 (TCP6,7,S,9,lO= :3, light computational load), and vice versa for the

single-job scheme and for the multi-job scheme for the network with a control processor

and for the network without control processor but where processors are equipped with

front-end processors. Naturally, the total solution finish time of the last job in the

single-job scheme is the same no matter what order the computational load is assigned

20

although there is some difference in the total solution finish time in the middle of

the procpssing of the given jobs. However. for the multi-job scheme assigning the job

with heavy computational load first and the one with light computational load last

causes reduction of the total solution finish time at the end of procpssing. This is

because serving the heavy computational load first results in a timing diagram like

Fig. 4 or Fig. 8 rather than Fig. .s or Fig. 10. If this is repeated several times. tilt" load

distribution will be done much ahead of tIlt" time of its computation and this mpans

there is no wasting time or lpss waiting tinlt" lwtwppn the conspcutive jobs. Tllt"rpfore.

if it is possible to assign the order of service at one's convenience, i.e., the service

discipline is not restricted to FIFO or LIFO, assigning heavy computational load first

can reduce the overall solution finish time.

VI. CONCLUSION

In this paper, a recursive algorithm to find an efficient strategy for optimal load allocation

for three types of bus network with multiple jobs is discussed. It is found that the multi-job

scheme is superior in terms of the total solution finish time over a single-job scheme. A

problem left open by this research is the case where the network has no control processor

and where processors are without front-end processors.

21

References

[1] R.R. Tenney and ~.R. Sandell..Jr.. "Df'tection with distributed sensors."' IEEE Trans-

action on Aerospace and Electronic Systems. vol. A£S-17, pp. 501-510. .July 1981.

[2] C.Y. Chong, £. Tse. and S. Mori, "Distributf'd estimation in networks."' prf'sented at

the American Control Conference, San Franciso. 198:3.

[:3] S.H. Bokhari. Assignrnent Problems in Parallel and Distributed Computing. Boston:

Kluwer Academic Publishers. 1987.

[4] H.S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms," IEEE

Transaction on Software Engineering, vol. SE-:3, no. 1, pp. 85-9:3, Jan. 1977.

[5] .1. Du and J.Y.T. Leung, "Complexity of scheduling parallel task systems," SIAM Jour-

nal on Discrete Mathematics, pp. 47:3-487, Nov. 1989.

[6] J. Blazewicz, M. Drabowski, and J. Weglarz, "Scheduling multiprocessor tasks to mini-

mize schedule length," IEEE Transactions on C:omputers, vol. C-:35, pp. :389-:398, May

1986.

[7] W. Zhao, K. Ramamritham, and .1.A. Stankovic, "Preemptive scheduling under time

and resource constraints," IEEE Transactions on Computers, vol. C-:36, pp. 949-960,

Aug. 1987.

[8] Y.C. Cheng and T.G. Robertazzi, "Distributed computation with communication de-

lays," IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 6, pp.

700-712, Nov. 1988.

[9] Y.C. Cheng and T.G. Robertazzi, "Distributed computation for tree network with com-

munication delays," IEEE Transactions on Aerospace and Systems, vol. 26, no. :3, pp.

511-516, May 1990.

22

[10] S. Bataineh and T.G. Robertazzi. "Distributed computation for a bus networks with

cummunication delays'" Proceedings of the 1.9.91Conference on Information Sciences

and Systems, The Johns Hopkins University, Baltimore. pp. 709-714. ~larch 1991.

[11] S. Bataineh and T.G. Robertazzi. nBus oriented load sharing for a network of sensor

driven processors'" IEEE Transactions on Systems. !\lfan and Cybernetics. vol. 21. no.

C).Sept. 1991.

[12] S. Bataineh and T.G. Robertazzi. "Ultimate performance limits for networks of load

sharing processors," Proceedings of the 1.9.92Conference on Information Sciences and

Systems, Princeton, NJ, pp. 794-799, March 1992.

[1:3] S. Bataineh and T.G. Robertazzi, "Closed form solutions for bus and tree networks of

processors load sharing a divisible job," SUNY at Stony Brook College of Enginf.f.ring

and Applied Science Technical Report, no. 627, May 1992. (Available from T. Rober-

tazzi) .

[14] T.G. Robertazzi, "Processor equivalence for load sharing processor daisy chains," ac-

cepted by the IEEE Transactions on Aerospace and Electronic Systems for Oct. 1993

lSSUf..

[15] J. Sohn and T.G. Robertazzi, "Optimal load sharing for a divisible job on bus network,"

Proceedings of the 1993 Confer'f1~ce on Information Sciences and Systems, The .Johns

Hopkins University, Baltimore, March 199:3.

. [16] .1.Sohn and T.G. Robertazzi, "Optimal load sharing for a divisible job on bus networks,"

SUNY at Stony Brook College of Engineering and Applied Science Technical Report,

Dec. 1992. (Available from T. Robertazzi).

[17] H.J. Kim, G.I. .lee, and J.G. Lee, "Optimal load distribution for tree network proces-

SOl'S," submitted for publication.

2:3

[18] D. Ghose and V. Mani. "Distributed computation in a linear network: closed form

solution and computational techniques." submitted for publication.

[19] D. Chose. and V. Mani. "Distributed computation with communication delays: Asymp-

totic performance analysis:' submitted for publication.

[:20] V. Bharadwaj, D. Ghose. and V. Mani. "Closed form solutions for optimal processing

time in distributed single-level tree networks with communication delays:' submitted

for publication.

[21] V. Bharadwaj, D. Chose, and V. Mani, "A new strategy of load distribution in a

distributed single-level tree network with communication delays," submitted for publi-

cation.

[:22] V. Bharadwaj, D. Chose, and V. Mani, "An efficient load distribution strategy for

a distributed linear network of processors with communication delays," submitted for

publication.

24

Affiliation of Author

Authors are with the Department of Electrical Engineering, SUNY at Stony Brook.

Stony Brook. .\T.Y. 11794

Acknow ledglllent

The research in this paper was supported in part by the SOLOlIST and managed by the

U.S. Office of Naval Research under grant no. NOOO14-91-.J406;3.

25

Figure Captions

Fig 1. Bus network with a control processor and queueing system.

Fig 2. Timing diagram for bus network with control processor in single-job scheme.

Fig 3. Timing diagram for bus network with contra! processor in multi-job scheme.

Fig 4. Timing diagram for bus network with control processor in multi-job scheme

when Tf1 ~ ZTclI'I + ZT:m2.

Fig 5. Timing diagram for bus network with control processor in multi-job scheme

when Tf1 < ZTcml + ZTcm2.

Fig 6. Transmission timing diagram for bus network with control processor in single-job

scheme and in multi-job scheme.

Fig 7. Bus network without control processor.

Fig 8. Timing diagram for bus network with front-end processors in multi-job scheme

when Tf1 ~ (1 - CY1)ZTcn'I+ (1 - !31)ZTcm2.

Fig 9. Transmission timing diagram for bus network with front-end processors in single-job

scheme and in multi-job scheme.

Fig 10. Timing diagram for bus network with front-end processors in multi-job scheme

when Tf1 < (1 - CYI)ZTcn'I + (1 - !3dZTcm2.

Fig 11. Timing diagram for bus network without control processor, processors without

front-end processors in multi-job scheme.

Fig 12. Total solution time when all Tcp's= 6.

26

Fig 13. Total solution time for network with control processor when Tcp = 10 for the first

five jobs and T,p = :3 for the last five jobs and vice versa.

Fig 14. Total solution time for network with front-end processors when Tcp = 10 for the

first five jobs and Tcp = :3for the last five jobs and vice versa.

27

Arri vals
III

Figure 1. Bus network with a control processor and queueing system.

28

Control
processor

Processor 1

Processor 2

Processor N

L.

C¥1 ZTc1Iq

Job 1

a'}.ZTcnq aN ZTcml

1 ~

a1 W1TePl

TiI

I

Job :2

B'}.ZTcm?

1

(3N ZTem? Comm

(31 W1 Tep?

Tf2

jComp

C¥'}.W'}.TePl jComp(J'}. w'}. Tep?

1 r
C¥NWNTePl

] ,-Comp
(IN 'WN TeP2

Figure 2. Timing diagram for bus network with control processor in single-job scheme.

29

Control
processor

Processor 1

Processor 2

Processor N

l.

01 ZTc7Iq

Job 1

02ZTcnq

+ .Job 2

ON ZTcnq /31ZTcn'2 /32Z T"'2

01WITcPl

(3N ZTcn'2

ONWNTcPl

~

Comm

Figure :3. Timing diagram for bus network with control processor in multi-job scheme.

°2W2 TcpJ

:30

TfJ Th

I (31 WI TCP2 ,Comp

n ,-Comp(32w2TcP2

'-Comp(3NwNTcP2

Comm

O'NWNTcPl

0'1 WI TCPl

0'2W2TcPl

Figure 4. Timing diagram for bus network with control processor in multi-job scheme
when Tfr 2:: ZTc7I'I + ZTWl2.

;31

Job 1 ,I, Job 2 .1

O'N
I ;31 I /32 I /3N IControl 0'1

processor

Processor 1

Processor 2

Processor N

Tfr Th

I /31 WI TCP2 ,-Camp

,Camp(32W2TcP2

,Camp/3 NW N TCP2

Control
processor

Proc 1

Proc 2

Procn

Proc n+l

Proc N

I
r ~ .Job :2

I
...Job 1

0:1 Comm

rComp[
] O:NWNTcPl ~IN---J

{3NwNTeP2

Figure S. Timing diagram for bus network with control processor in multi-job scheme
when TfI < ZTC11!J+ ZTC7n2'

:32

Th Tf2

0:1Wl TePI] {31 Wl TeP2 1--Camp

I ,Camp0:2W2TePI {32w2TeP2

=n ,CampO:nWnTPl {3n Wn TeP2

-jlnf-

O:n+l Wn+1TePl=:] I 1--Camp!3n+ 1Wn+ 1TeP2

f-In+ 1-1

/31 f3N - single-job scheme

Control
processor /Jl /3N - multi-job schemE'

TfI

Figure 6. Transmission timing diagram for bus network with control processor
in single-job scheme and in multi-job scheme.

;3;3

III
Arrivals

Figure 7. Bus network without control processor.

;34

~ Job 1
I.k Job 2 ~

Processor 1
CY2

Processor N
CYNWNTcPl

Processor 2
CY2W2TcPl

Processor :3
CY3W3TcPl

Figure 8. Timing diagram for bus network with front-end processors in multi-job scheme
when Tit 2:: (1 - cydZTc7nl+ (1 - (31)ZTc7n2'

:35

Comm

] {31 WI TCP2 rComp

Tit Tf2

I f32W2TcP2 rComp

r Compf33w;3TcP2

rCompf3NwNTcP2

;32 !3N-l /hv -- single-jobscheme

Processor 1 (32 /3N - 1 !3N -- multi-job scheme

Tf1

Figure 9. Transmission timing diagram for bus network with front-end processors
in single-job scheme and in multi-job scheme.

:36

~

Proc n+ 1

.Job 1

Procl
0'2

Proc2
0'2W2TcPl

Procn

Proc N
] O'NWNTcPl rr (3NwNTcP2 IComp

IN
!

~

Figure 10. Timing diagram for bus network with front-end processors in multi-job scheme
when TfI < (1 - O'dZTcnll + (1 - (3dZTwi2.

;37

+ Job :2 .1

Comm

Comp

TfI Th

I /32 W2 TCP2 I--+-Comp

-=rl ICompan WnTcPl /3n Wn TCP2

---+jInf-

O'n+ 1 Wn+ 1 TCP1-
1 IComp(3n+ 1Wn+ 1TCP2

f--In+ I--j

Proc ~

Procl

Proc 2

Proc :3

Proc N-l

~ Job 1 + 1.Job :2

al

!3NWNTcP2

al WI TCPl

TfI

I /31 WI TCP2

/32w2TcP2a2W2TcPl

n /33 w.1 TCP2(Y3W:3TcPl

Comm

Comp

Th

jComp

jComp

jComp

aN-l WN-ITcPl] /3N-IWN-ITcP2 I-Comp

Figure 11. Timing diagram for bus network without control processor,
processors without front-end processors in multi-job scheme

:38

24

20

single-job scheme when Tcp=lO to Tcp=3 ~
single-job scheme when Tcp=3 to Tcp=lO -+--.
multi-job scheme when Tcp=lO to Tcp=3 .EJ..
multi-job scheme when Tcp=3 to Tcp=lO ,x""

OJ
E
.rl
.u

- /

/'

//

//,.v/

,/'/

8""""" e :>:>,w"~'~"',':~:;>/5~::/'
..'r:r ,if" X"

, //'/'' x""""""""""

..c:

UJ
'rl

~
.rl
~

16

~
0
.rl
.u
;J

rl
0
UJ

12

rl
[(j
.u
0
E-<

8

4

0
1 2 3 4 5 6

Number of jobs

7 8 9 10

Figure 1:3. Total solution time for network with control processor when Tcp = 10 for the

first five jobs and Tcp = :3for the last five jobs and vice versa.

40

Q)
E
'ri

.w

~
UJ
'ri
e

'ri

'-H

e
0

'ri

.w
::J

""

0
UJ

""
rU
.w
0
E-<

24

20

single-job scheme when Tcp=10 to Tcp=3 ~
single-job scheme when Tcp=3 to Tcp=lO -+--,
multi-job scheme when Tcp=lO to Tcp=3 -B--

multi-job scheme when Tcp=3 to Tcp=lO '"X'"--

16

8

/
/

/,/

..1</'

12

4

0
1 2 3 4 5 6

Number of jobs

7 8 9 10

Figure 14. Total solution time for network with front-end processors when Tcp = 10 for the

first five jobs and Tcp = ;3 for the last five jobs and vice versa.

41

