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Abstract

A study of the optimal placement of processors in a single level tree net-
work processing a divisible load is presented. A set of conditions indicating
when the current processor arrangement profile can be improved in terms
of total processing cost is obtained. A heuristic algorithm based on a local
search is developed from these conditions. The experimental results show
an impressive quality of the solution both in effectiveness and in proximity
of suboptimal solutions to an optimal solution. The efficiency of the algo-
rithm in terms of the average number of processor arrangement profiles to
be searched before a final solution is reached can be bounded by a low or-
der polynomial in the number of children processors as O(N'®) for up to
19 processors. Several special cases of the model are considered. This work
demonstrates the feasibility of cost accounting for future computer utilities.

. Keywords Single-level tree network, divisible load sharing, processor ar-
rangement, heuristic algorithm, local search, cost, computer utility.



1 Introduction

There is growing interest in networked distributed computing systems. This
is evident from many new system technology developments as well as exper-
iments on such systems. Among these are the widespread use of the Internet
and intranets, the new development of portable and interoperable network
software such as JAVA, CORBA, and the successful solution of cryptographic
problems via distributed computing system. These factors naturally lead to
the introduction of “computer utilities” in the near future. This concept in-
troduces “resource utilization cost” into the problem of control and manage-
ment in distributed computing systems. By including the resource utilization
cost into such problems, the new problem setting requires not only system
performance but also the corresponding incurred cost to be considered. One
of the fundamental and interesting questions is how to arrange processors
in a network topology such that the “total processing cost” incurred from
utilizing network resources is minimized while the quality of service is at an
accepatable level.

In scheduling in network-wide environments both computational time and

communication time need to be considered together. Parallelism in the com-



putational load is another important aspect to be taken into account in order
to realize the full capability of a distributed computing system. There is a
significant class of loads which explicitly possess data parallelism. This is
the class of divisible loads where load can be divided into arbitrary fractions
and each fraction of load can be processed in parallel by different processors
in the network. Example of divisible loads include the processing of large
linear data files as in image processing, signal processing, massive computa-
tional or experimental data processing, some massive simulation programs,
and cryptography.

So far there have been a number of works on divisible load sharing [1,
2.3, 4, 5, 6]. All these works attempt to minimize the finish time based
on the premise that every active processor stop computing at the same time.
However there are only a few works [7, 8] which study the resource utilization
problem in the context of divisible load theory. In [8], the authors present a
study of optimizing computing cost in a bus network. Therein they provide a
criteria to determine a sequence of load distribution that yields the minimum
total computing cost. In [7], the authors generalize the previous work (8]
to include both link transmission cost and processor cost in a single-level
tree network. They find that it is not possible to derive a simple optimal
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condition. Instead a set of conditions indicating when a sequence can be
improved in total processing cost was obtained. In both works, however, it
was a logical interchange of an adjacent link-processor pairs that was used
as the primitive operation to find the best sequence of load distribution in
terms of the total processing cost. In this paper, on the other hand, it is an
architectural rearrangement, a reformation of processor-link pairs in a single
level tree network, through a physical interchange of pairs of processors that
is used as the basic operation to achieve a minimum total processing cost
in a single-level tree network with both link cost and processor cost. In
a processor arrangement problem the sequence of load distribution to each
link is fixed throughout the course of processor arrangement procedure. The
problem is which of N processors to connect to which of N links in a one to
one manner.

In this work there are two objective functions to be optimized: the finish
time and the total processing cost. It is well known that there are several
approaches to solve multiple-objective functions optimization problems. The
approach taken here is to find the minimal cost processor arrangement profile
given that for any profile, finish time is minimized using the methodology
of [3]. That is, for each arrangement profile considered, load is allocated so
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that all processors stop computing at the same time instant and finish time is
thus minimized for each specific profile. While other approaches are certainly
possibly, we believe that the proposed approach is a natural one.

The goal of this paper is to present an analysis of processor arrangement
in a single-level tree network where the processors are equipped with front-
end processors. We optimize the network arrangement in terms of cost and
finish time using adjacent processor pairwise swapping and a load distribution
principle, both of which are described below. This analysis is developed to
derive the necessary conditions for an improvement in total processing cost.
A heuristic algorithm to search for a cost-efficient processor arrangement
in an effective and eflicient maner is then developed. It is based upon a
local search with a multi-level neighborhood structure and multiple initial
solutions as its central parts. The corresponding performance is also assessed
and discussed.

The paper is organized as follows. The model and concept are presented
in section 2. In section 3, processor arrangement and cost optimization are
discussed. Cost efficient processor arrangements and the necessary cost im-
provement conditions in a general single-level tree network are developed in

section 4. Section 5 presents the optimal conditions to obtain the minimum
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total processing cost processor arrangements in a bus and related networks.
Remarks on the analysis of the previous two sections are given in section 6.
The heuristic cost efficient processor arrangement algorithm and its perfor-
mance evaluation are developed and discussed in section 7 and 8. Finally the

conclusion appears in section 9.

2 Models and Notations

2.1 Models Descriptions

In this paper, a single-level tree network where the root processor is equipped
with a front-end processor is considered. A single-level tree network with
(N + 1) processors and (N) links is shown in Figure 1. All the processors
are connected to the root processor, pp, via communication links. That is
the children processors py,..., py are connected to the root processor pgy via
links {4, I5,..., Iy. Associated with the links and processors are the associated
cost coefficients ¢!, ¢),..., ¢y and &, ¢, &,..., c&, respectively as depicted
in Figure 2. The root processor, assumed to be the only processor at which

the load arrives, partitions the total processing load into (/N 4 1) fractions,



keeps its own fraction «p, and distributes the other fractions ay, az,..., an
to the children processors py, ps,..., py respectively and sequentially. Each
processor begins computing immediately after receiving its assigned fraction
of load and continues without any interruption until all of its assigned load
fraction has been processed. We do not consider multi-installment strategies
as in [3].

For clarity, a sequence of load distribution from the root processor to the
children processors in a single-level tree network is represented by an ordered

set as below,

™= {va (llapl)v (127p2)7 ety (ljapj)’ ey (lN,PN)}

where ([}, p;) represents the j** processor (p;) connected to the root processor
(po) via the j** link ({;).

This ordered set represents a sequence in which the root processor dis-
tributes load to the children processors (from py to pi,pa,...,pn). Without
loss of generality, it is assumed that a sequence of load distribution is from

left to right.



2.2 Notations

Let

a;: The load fraction assigned to the ¢*" link-processor pair.

w;: The inverse of the computing speed of the i processor.

zi The inverse of the link speed of the ¢** link in the single level tree network.
Tep: Time taken to process an entire load by a standard processor, wsigndara = 1.
T.n: Time taken to communicate an entire load by a standard link, z54nderd = 1.
Ty: The finish time of an entire load, assuming that the load is delivered to

the origination processor at time zero. Here the “finish time ” is

the time when the last processor ceases computation.

2.3 Optimal Finish Time Load Distribution

An equal division of load among processors does not in general give a min-
imum processing finish time even in a homogeneous network [3]. Instead,
1t is intuitive that to minimize the processing finish time the cost efficient
load distribution should be such that all processors finish computing at the

same time. In other words, cost efficient load distribution should not allow



any processor to finish its computation and then remain idle while other
processors are still busy with their computations. Otherwise the processing
finish time could be reduced by transferring some fractions of load from the
busy processors to the idle processors. Formal proofs of this argument in the
case of linear, bus, and tree networks appear in [3]. However, under certain
sets of network parameters, in order to minimize the processing finish time,
it is not necessary that all processors have to be utilized. In [3] conditions
are found which determine which processors should be used to process the
arriving load in the case of a single-level tree network. Still, the processors
with non-zero assigned load have to finish computing at the same time. In
this paper, it is assumed that all processors in the network are utilized.
Hence, throughout this paper, all processors are required to participate
in load processing and they stop computing at the same time instant. Based
on this assumption, the recursive equations for a single-level tree network
are derived below. This is done by equating the finish times of all of the

Processors.



2.4 Fundamental Recusive Equations and Timing
Diagram

The timing diagram of a single level tree network is given by Figure 3.
From the timing diagram, one can derive fundamental recursive equation

as

aiwiTcp = ai+lzi+1Tcm + ai+1wi+1Tcp »i =0, ’N -1 (1)

They can be written in another form as,

Qi1 — k,'a,' = (H k]‘)ag 1= 0, ,N -1 (2)
7=0
where
ki = Qip
(8%
iTc .
= kit i=0,.,N—1 (3)

ZH—ITcm + wi+1Tcp
(4)
Clearly, from Eq.(1) and (2), there are N equations and (N+1) unknowns.

An additional equation, the normalization equation, is needed to solve this

system of equations. The normalization equation is given as,

aot+ar+..+tay=1 (5)
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dei=1 (6)

With the normalization equation, one can then resolve the recursive equa-
tions (1) to obtain the closed-form expression of ag, the fraction of load of
the root processor. Once «q is known, the other processor load fractions can

be obtained by substituting g into Eq.(2) and solving them recursively as

|

shown below.

a = [1+§[ﬁkj

i=1 | j=0
= [1+4ko+ kokr + ...+ koky - - ]CN—I]_l (8)
wOTcp f\_]—_al (wiTCP) -
{ (lecm + wchp) H?Ll(ziTcm + wiTcp) ( )
1 N
= - (ZiTcm + wiTc ) (10)
D i=1 b
Q) = koao
oncp 1 N
- - zTcm + lTC
(Zchm + wchp) D i=1(z v p)
1 N
= —D‘(wOTcp) H(ziTcm + wiTcp) (11)
=2
Qg = k1a1
wchp 1 N
= Tc =y idcem il
(ZZTcm + w2Tcp) ('LUO P)D 1=H2(Z T + w TP)
1 N
= _D'(wOTcp)(wchp) H(ziTcm + wiTcp)

1=3
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Qn

an

where

where:

Wy Tcp

kn-—l ap—1

1 n—1 N

—D— H(wiTCP) H (ziTcm + wiTcp)
1=0 i=n+1

kn_1an_1

1 1‘ﬁ1

) (wiTep)

D 1=0 ’

N

H(ziTcm + wiTcp)

=1
N n-1 N

+ Z H (wiTCP) H (ziTcm + wiTcp)
n=1 \ i=0 i=n+1

0

Q)(w,-Tc,,)
I—N

H (ZiTcm + wiTcp)
i=N+1

12
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3 Processor Arrangement and Cost Optimiza-
tion

3.1 Processor Arrangement

Processor arrangement refers to the connection between links and processors
in a single-level tree network. Processor arrangement in general involves
a permutation of the order of processors to receive fractions of load from
the root processor while maintaining the original arrangement of links in a
network throughout the course of the processor arrangement. In terms of an

ordered set representation of a single-level tree network:

o= {Po, (llapl)v eey (lj-—l’pj—l)a (ljvpj)v (lj+1»Pj+1), (lj+2,Pj+2), ooy (lN»PN)}

A processor arrangement determines which processor is connected to [y, [,
..., In. A processor arrangement does not change the order of dispatching
fractions of load from the root processor to links, i.e., an element {; associated
with each ordered pair is fixed during the course of processor arrangement.
That is, the sequence of load distribution from the root processor does not
change from the link point of view. This ordered set will be referred to

as a processor arrangement profile. Therefore, a processor arrangement is
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a mechanism to change from one processor arrangement profile to another
processor arrangement profile. In contrast to the sequencing mechanism of
[7], a processor arrangement requires a physical change of a link-processor
pairs through processor reordering. In this work, a processor arrangement is
performed to minimize total processing cost. One important specialization
of processor arrangement is an adjacent pairwise swapped processor arrange-

ment which will be discussed later.

3.2 Link-Processor Cost

The link-processor cost for processing a fraction of load at any processor is
defined as the cost incurred from utilizing the processor and its corresponding
link in order to successfully process the underlying fraction of load. There-
fore, the link-processor cost consists of two major parts: the one incurred
by communication over the link and the other incurred by the processor.
Throughout this paper, we assume that the cost coefficients associated with
links and processors are static. They do not change with either the level of
load in progress or the time when the job arrives. This cost is defined only in

terms of accounting for the duration during which the resource is busy serv-
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ing the assigned divisible load. The link-processor cost is thus a monotonic
increasing function of the service duration and moreover is a linear, regular
and additive function. The processing costs associated with each network

topology are as follows. Let:

W the inverse of the computing speed of the n** processor, with the unit
of second per load.

Zn: the inverse of the link speed of the n** link, with the unit
of second per load.

ch: the computing cost per second of utilizing the nt* processor.

. the communication cost per second of utilizing the nt* link.

c?wy,: the computing cost per load of utilizing the n** processor.

ctzy:  the communication cost per load of utilizing the n'* link.

(Pwy + ¢ z,):  the processing cost per load of the n* link-processor pair.

3.3 Total Cost

Total cost is a cost incurred for a network to process an entire load. It is
a linear addition of all individual link-processor costs incurred by utilizing

individual link-processor pairs. This individual cost depends on the assigned
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fraction of load, which in turn is determined by a processor arrangement
profile (by “profile” is meant a specific arrangement of processors). Therefore,
this total cost depends on the processor arrangement profile.

In this subsection, the general form of the total cost in a single-level tree
network is developed. Also its simple form, which is a ratio of numerator
and denominator, is given. This simple form will facilitate the subsequent
analysis.

Define:

Co = cngTcp (13)

Cn = & 2z,Tem + dwnTep n=1.,N (14)

Recall that the root processor is the load origination processor. Therefore

no communication cost is incurred by the root processor.

Now:
Co: the cost of processing the entire of load on the root processor.
Ch: the cost of processing the entire of load on the nt* processor.
agCo:  the cost of processing the assigned fraction of load («g) on

the root processor.

a,Cr:  the cost of processing the assigned fraction of load (a,) on
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the nt* processor.

The total cost, Cioar, is defined as a summation of the individual processing

costs incurred at each link-processor pair. That is:

N
Ctotal = aoCo + Z anCh (15)
n=1
N
= ao(dBwoTep) + 3 an (¢ 2nTem + Ew,Top) (16)
n=1

Note that in the following, in terms of notation the product signs do not
distribute over other product signs.
Now, by substituting ap and all «,, from the previous section into equation

(16) one obtains:

1 N N n-1
Ctotal = 5 { H(ziTcm + wiTCP)(cngTcp) + Z [H(wiTcp)
i=1

n=1 L:=0
o

One can also express the total cost while explicitly showing the processing

N
H (ZiTcm + wiTcp)(ci-LGTcm + cﬁwnTcp)

i=n+1

cost incurred by the j** and the (j + 1)** link-processor pairs as:
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1 N
Ctotal = { H(lecm + w; Tcp)(cprTcp)

=1
=1 |n-1 N
+ Z [ (szcp) H (ZzTLm + szcp)( ~nTcm + cpwnTcp)
n=1 | i=0 1=n+1
J-1 N
+ (wiTcp) H (ziTcm + wiTcp)(Cé'Zchm + cﬁ')ijcp)

1=0 i= j+l

j
+ H(wz cp) H (ziTem + wiTep ) ]+12]+1T0m + & winTy)
i=j+2

n—1 N
H H (ZiTcm + wiTcp)(c;znTcm + CﬁwnTcp)

1=0 i=n+1

[}

1=

fy

n=j+2

Since the total cost can be put in a simple form as:

N
Ctotal = '5 (19)

Thus, the corresponding numerator, N, is:

N
N = H(ziTcm + wiTcP)(csonCP)

=1

-1 |n-1 N
+ Z I:H H (ziTcm + wiTcp)(CLZnTcm + cﬁwnTcp)

=0 1_n+1
N
+ H wiTcp) H (ziTcm + wiTcp)(Cg'ijcm + c_zj’ijcp)

1=0 i—j+l

n=1

+ H wz cp H (ZzTcm + szcp)( §'+12j+1Tcm + C?+1wj+chp)
=0 =742

>

n=j342

n—1 N
H (wiTcp) H (ziTcm + wiTcp)(clnznTcm + cﬁwnTcp)

1=0 i=n+1

(20)
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(21)

Again, with the terms due to the j** and the (j + 1)* link-processor

explicitly shown, one has

1

[
i

D =

jam

(ZzTcm + szcp)(ZJTcm + wJTcp)(ZJ+1Tcm + w]+1Tcp) H zzTcm + szcp)

1=1 =742
Ji— 7-1
Z (H H (ziTcm + wiTcp)(ijcm + ijcp)(zj+chm + wj+1Tcp)
n=1 =0 t=n+1
N
H ZzTcm + w; cp))
i=j+2
71—2 N
+ H(thCP)(wj—lTCP)(szTcm + wj+1T6p) H (z2iTem + wiTcp)
1=0 i=j+2
i=2 N
+H w;Tep)(wj-1Tep)(w;Tep) H (2iTem + wiTep)
=0 =742
n—1 N
+ Z (H p) 1] (2iTem + thcp)) (22)
n=j+2 i=n+1

This rational form of a numerator and a denominator of the total com-

puting cost is useful in the subsequent analysis.

3.4 Cost Optimization

There are actually two optimization criteria involved in the problem con-

sidered in this paper. One is the above total cost and the second is finish
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time. Generally, both should be minimized as much as possible. In this
paper we choose to minimize total cost over all possible processor arrange-
ments with finish time being minimized for the given processor arrangement
chosen. While this is a natural and simple approach for this problem, other

approaches to such dual optimization criteria problems are certainly possible.

3.5 Adjacent Pairwise Processor Swapping
3.5.1 Concepts and Notations

Adjacent pairwise processor swapping refers to a physical interchange of two
processors in an adjacent link-processor pair of the current processor ar-
rangement profile, keeping all other link-processor pairs in their respective
positions.

Consider a processor arrangement profile called the “current” processor
arrangement profile as shown in Figure 1. A swapped processor arrangement
profile is a profile obtained by implementing a single adjacent pairwise pro-
cessor swap of one of the adjacent link-processor pairs of the current profile
as shown in Figure 4, a swap of p; and pj4;.

Here the term “current” profile is used with a view towards the algorithm
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developed later.
In the ordered set representation, a current profile and an associated

swapped profile can be expressed respectively as,

T = {pOa (ll7pl)’ ceey (lj—hpj—l)a (ljvpj)a (lj+17pj+1)’ (lj+2’pj+2)a ceny (lNapN)}

™ = A{po, (L, p1)s s (15 Pi=1)s (s Pi41)s (L1, P5)s (L2, Pig2)s s (Ivy PN ) }

3.5.2 Recursive Equations

As in section 2.4, we can derive a closed-form solution of the load fraction
of each link-processor pair under an adjacent pairwise processor swapped
arrangement 7’ (cf. Figure 5) as follow.

The set of general recursive equations of an adjacent pairwise processor

swapped arrangement analogous to equation (1) and equation (2) is given as,

ow Ty, = a2 Tom + ol wiy Ty 1=0,.,N=-1 (23)
oy = ko (24)
Here, a mapping of w; to w; of the original processor arrangement is given
as follows
w; = Wit
Wiy = W

21



/
Wy

Wk, Vk#]a]+1

One then has the following series of equations

7
ool ep

/ /
o121 em + ayunTy

( wOTCP ) /
QX
21 Tcm + w Tcp

/ !
ajijcm + ajwj-}-chp

wi-lTC:D o
i—1
Zchm + wj+chp ’

/ /
1741 Tem + o wiTe

( wj+1TCp )Ot'-
zj+1Tcm + ijcp ’

! /
AjyoZi+2lem + & powit2Tep

( ijCP o
i+1
Zj+2Tcm + wj+2Tcp ’

! !
anzNTem + aywnTy,

wN—chp CY,
ZNTcm + wNTcp N-1
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Again incorporating the normalization equation, one solves the above
system of (N +1) equations and (/N +1) unknowns to obtain an expression for
ag. Once aj known, by recursively substituting og into the other equations,

then all other o/, will be obtained as below.

That is

2
I

"~

-

(ziTcm + wiTcp) (25)

q\
1l

1

In the explicit form the j* and (j + 1)* terms can be provided as

1 J-1 N
a6 - ’D—— (H(ziTcm + wiTcp)(ijcm + wj+1Tcp)(zj+1Tcm + ijcp) H (ziTcm + wiTcp))
' \i=1 i=j+2
1 gt
oy = Do (woTep) H(ziTcm + wiTep) (2 Tem + wis1Tep)(2j41Tem + w;Tep)
™ =2

z

=542

: H (ZiTcm + wiTcp))

1 Jj=2 N

a;—l = Do (H(wiTCP)(ijcm + wj+1Tcp)(zj+chm + w;Tep) H (ziTem + wiTcp))
= \i=0 =42

, 1 j—2 N
Q; = Do, H(wiTcp)(wj—chzo)(zHchm + w;Tep) H (2iTem + wiTep)

™ 1=0 =742
1 [i=2 N

iy = o T (wiTep)(wj1 Tep) (w1 Tep) IT (2Tem + wiTep)
™ =0 =542
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=0
where,
j-1 N
D7r’ = H(ZiTcm + wiTcp)(ijcm + wj+1Tcp)(zj+chm + ijcp) H (ZiTcm + wiTcp)
=1 1=342
J

-1 [n-1 71-1
+ (H(wiTcp) H (Zz'Tcm + wiTcp)(ijcm + wj+1Tcp)(zj+1Tcm + 'ijcp)

n=1 1=0 i=n+1

N
: H (ZiTcm + wiTcp)

=342
=2 N
+ H(wiTch)(wj—lTCP)(ZjHTcm + ijep) H (2:Tem + wiTey)
i=0 i=j+2
Jj=2 N
+ H(wiTop)(wj—lTCP)(wj+1T0p) H (ziTem + wiTey)
i=0 i=j+2

N n—1 N
+ Z (H(wiTcp) H (Z,'Tcm + w,'Tcp)) (26)
n=j42 \1=0 1=n+1

3.6 Some Total Computing Cost Related Equations

In this subsection, the relevant equations arising from a total computing cost
performance comparison of an original arrangement and a swapped arrange-

ment are given. For the sake of clarity, some pertinent terms are restated

here.
Clotal the total computing cost of an original arrangement ().
rotal the total computing cost of an adjacent pairwise processor swapped arrangement (7).
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N, the numerator of Cyyq of an original arrangement (7).

Ny the numerator of Cy.:.; of an adjacent pairwise processor swapped arrangement (7).
D, the denominator of Cy,, of an original arrangement (7).
D, the denominator of Cly, of an adjacent pairwise processor swapped arrangement (7).

As mentioned in subsection 3.3, one can express the total computing cost

in a simple form as,

(7total =

P|=

z

'
total

-]
a\

3.6.1 An Adjacent Pairwise Processor Arrangement

The total computing cost of an adjacent pairwise processor swapped arrange-

ment can be stated as

N
fotal = Co+ Y a,C, (27)
n=1
7-1
= aG(CSwOTCP) + Z a:z. (c;znTcm + CﬁwnTcz’) + a;(cgijcm + C?+1wj+1T0p)
n=1
N
+ oy (S zinTem + SwiTy) + Y o (clnznTcm + cﬁwnTcp) (28)
n=3+2
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By substituting o/, from the previous section into (28) one obtains,

: L
‘total T D { (2iTem + wiTep)(2;Tem + Wi Top) (2541 Tem + w;Tep)
™ =1
N -
: H (ZiTcm + wiTcp)(cngTcp)
=742
=1 [n-1 =1
+ Z H(wiTcp) H (ZiTcm + wiTcp)(ijcm + wj+chp)(zj+chm + ijcp)
n=1 \1=0 i=n+1
N
' H (ZiTcm + wiTcp)(cilznTcm + cﬁwnTcp)
=742
j=2
+ H(wiTw)(wj—chzJ)(ZjHTcm + w;Tep)
=0
N
' H (2iTem + wiTep)(C;Zchm + cf+1wj+1T0p)
=542
j—2
+ [ (wiTep)(wj-1Tep) (wj1 Tep)
=0
N
: H (ziTcm + wiTcp)(c§+1 Zj+1Tcm + Cyijcp)
=742
N n—1 N
+ 3 | HTwiTs) 1 (2iTem + wiTep)(chznTem + EwaTep) (29)
n=j+2 \ =0 i=n+1
where

1-1
Ny = H(ZiTcm + ’w,'Tcp)(Zchm + wj+1Tcp)(Zj+1Tcm + ijcp)
i=1
N
. H (ziTcm + wiTcp)(ngOTcp)

t=j+2

-1 [n-1 i-1
+ z (H(wiTcp) H (ziTcm + wiTcp)(ijcm + wj+1Tcp)(Zj+1Tcm + ijcp)

n=1 \ =0 i=n+1
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N
I (2T + wiTo)(chznTom + cﬁwnTcp)>

=742
j-2
+ H(wiTCP)(wj—chp)(szTcm + w;Tep)
1=0
N
) H (ziTeom + wiTep)(cé'ijcm + Cp+le+1TCP)
1=j+2
=2
+ H(wiTCP)(wj—chp)(ijTcp)
=0
N
) H (ZiTcm + wiTCP)(C§+1Zj+1Tcm + Cg?ijczo)
'—j+2
-1 N
+ Z H(wz cp H (ZiTcm + wiTcp)(cannTcm + CﬁwnTcp) (30)
n=j+2 =0 i=n+1
j—1 N
H(ziTcm + wiTcp)(ijcm + wj+1Tcp)(zj+chm + ijcp) H (ziTcm + wiTcp)
1=1 1=742
Jj=1 (n-1 i-1
+ Z H (wiTcp) H (ziTcm + wiTcp)(Zchm + wj+1Tcp)(zj+1Tcm + ijcp)
n=1 \ =0 i=n+1
N
: H (ziTcm +wiTcp)
1=j+2
j—=2 N
+ H Wi Tep)(Wi—1Tep)(2j41 Tem + wiTep) H (2iTom + wiTep)
1=0 1=j42
i-2 N
+ H wt cp w] chp)(wJ+chp) H (ziTcm + wiTcp)
1=0 1=j+2

n-1 N
+ Z (H(wiTCP) H (ziTcm+wiTcp)) (31)

n=j+2 \1=0 1=n+1
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3.6.2 An Original Processor Arrangement

The total computing cost of an original arrangement is exactly that derived

in subsection 3.3. For clarity it is restated again,

j-1
H(ZiTcm + wiTcp)(ijcm + ijcp)(Zj+1Tcm + wj+1Tcp)
=1
N
: H (ziTcm + wiTcp)(cngTcp)
=342
-1 fn-1 7-1
+ Z H(wiTcp) H (ziTcm + wiTcp)(ijcm + ijcp)(zj+chm + wj-HTcp)
n=1 =0 i=n+1
N
* H (ziTcm + wiTcp)(Ci,,ZnTcm + C‘anTcp))
1=j+2
j-2
+ H(wiTCP)(wj—lTCP)(Zj+1Tcm + w1 Tep)
1=0
N
: H (ziTcm + wiTcp)(cg'ijcm + c?ijcp)
=542
j—2
+ H(wiTCP)(wj—lTCP)(ijCP)
1=0
N
: H (2iTem + wiTcp)(cgﬂ Zi41Tem + c§+1wj+1Tcz>)
=542
N n—1 N
+ Z H(wiTcp) H (ZiTcm + wiTcp)(CizznTcm + czwnTcp)) (32)
n=j+2 \i=0 i=n+1
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Similarly we have the denominator for an original arrangement as follows

j=1 N
D, = H(ZiTcm + wiTe)(2jTem + w;Tep) (2541 Tem + wig1Tep) H (2T + wiTy,)
=1 1=7+2
Jj=1 fn-1 J=-1
+ Z (H(wiTCP) H (ZiTC'm + wiTCP)(Zchm + ijcp)(zj+1Tcm + w]‘+1Tcp)
n=1 =0 t=n+1
N
: H (ZiTcm + wiTcp))
i=j+2
J—2 N
+ H(wiTcp)(wj—chp)(zj+chm + wj+1Tcp) H (ziTcm + wiTcp)
=0 i=j+2
i-2 N
+ H(wiTch)(wj—lTCP)(ijCP) H (2iTem + wiTep)
=0 i=j+2
N n-1 N
+ E (H(wiTCP) H (ZiTcm + wiTcp)) (33)
n=j3+2 \1=0 i=n+1

3.6.3 The Difference Equations

The difference between the numerators and the denominators, based on the

information just developed, can be given as,

j-1

Ne = No = [[(2Tem + w0iT) (2541 — 25)(w; = wj41) Tem Tep

i=1
N

: H (ziTcm + wiTcp)(cgoncp)

i=j+2

=1 [n-1 =1

+ Z (H(wiTcp) H (2iTem + wiTey) (241 — 25)(w; — wi1) TemTep
n=1 \i=0 i=n+1
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N
* H (ZiTcm + wiTcp)(cannTcm + CﬁwnTcp))

i=j+2

-1
+ TT (wiT) [(w; = wi41)(2541¢5 41 — 2565 Teom Tep
=0

N
+ 2j41Tem Tep(wjch — wj+lc§+1)] H (2iTem + wiTey) (34)
=542
j=1 N
D1r - Drr’ = H(ZiTcm + wz'Tcp)(Zj+1 - Zj)(wj - wj+l)TcmTcp H (ziTcm + wiTcp)
t=1 1=j42
1-1 [n-1 7-1
+3 (H(w,-TC,,) II (&Tem + wiTo) (241 = 25)(w; — wjs1) TemTep
n=1 \ =0 i=n+1
N
' H (ZiTcm + wiTcp) (35)
i=j+2
To simplify further, define
j-1
a = H(ZiTcm + w;Te,) (36)
=1
N
b = H (ZiTcm + wiTcp) (37)
=542
j-1
d = [[(wTy) (38)
=0
Co = c’éonc,, (39)
C, = cilznTcm + Ew, T, (40)
n-1 i-1
kn = H(wiTcp) H (ziTcm +wiTcp) (41)
1=0 i=n+1
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Hence one has the simpler forms as below,

Ny — Ny

Dy — Dy

a (241 — 2;)(w; — wyg1) Tem Tep] bCo
J-1

+ 3 (kn[(zj31 — 2)(wj — wj41) TemTep) bCr)

=1

t+d [(w; — wi1) (2416541 — 55¢)) + 2j41(w;¢8 — wig1lyy)| TemTeph

j-1
(2j+1 = 23)(wj = wj31) TomTepb [aCo + ) kncn}
n=1
+d [(w; = wis1)(zi41¢5 41 — 25¢))
+ Zj+1(ch§ - wj+10§+1)1 TenTepb (42)

al(zj41 — 2z;)(w; — wj+1)TcmTcp] b

¥ 2: (ka (2541 — 25)(w; — w541)TonTop] D)

i-1
(zi41 = 2 )(w; — wj41) TemTop la + kn] b (43)

n=1

4 Cost Efficient Processor Arrangement

In this part, the conditions under which by transposing an adjacent pairwise

processor pair the total computing cost performance will improve are found.

The conditions under which it is better not transpose an adjacent pairwise

processor pair are also found.
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4.1 The C,;, Conditions

In this subsection, we first use the simple expression of computing cost, the
rational form, to derive some intermediate results. These results exhibit the
total computing cost relationships of an original processor arrangement pro-
file, Ciotar, and that of a transposed processor arrangement profile, (7, ;.
Incorporated with results from the previous sections regarding the numera-
tors and denominators of the total computing costs, a number of lemmas are
then provided.

We can state the difference of the total computing costs of an adjacent
pairwise processor arrangement and an original arrangement in a simple form

as,

N7r’ N7r

t,otal - Ctotal = D,rl - D, (44)
NyDy — Ny D,
= 4
DD. (45)

To obtain the optimal conditions, the expression in (45) will be used. Note
that both denominators, D, and D,s, are positive. Therefore to determine
the relationships between the total computing cost, it is suffice to consider

only the numerator, Ny Dy — N Dy

Lemma 1 In a single-level tree network, the total cost of a current proces-
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sor arrangement, Cioar, 18 less than that of an associated swapped processor

arrangement, C, .., if one of the following conditions holds:

1. Np>N.,Dy<D,.
2. Nupw>N,,Du.=D,.
2 Nw>N,,Dw>D, and NpDp> N;Dy.
4. Np=Np,Dp<D,.

5 Nupw <N, , Du<D, and NuD,> N,D,.

Proof

From equation (45):

1 Nﬂ"Dﬂ- - Nﬂ-Dﬂ-l
total — CtOtal = .Dﬂ-Dﬂ»/
Thus, C{,ta1 > Cltotas When :
NeDy —NeDp > 0 (46)
Nﬂ—lDﬂ— > N7rD7r’ (47)

By checking all possible cases of the relationship of (N.,N,/) and that of
(Dr,Dy) that satisfy equation (46) and equation (47), only these conditions

result. Thus the lemma is proven. O
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Lemma 2 In a single-level tree network, the total cost of a current proces-
sor arrangement, Cyoar, 15 equal to that of an associated swapped processor

arrangement, C| ., if one of the following conditions holds:

1. N > N, s D, > D, and NpyD,=N.D,.
2. Nu=N,,D.=0D,.

3. Nuw<N;,Dp<D; and NpD,=N;Dp.

Proof

From equation (45):

e NpDy — Ny Dy
total total D7rD1r’
Thus, C},..; = Ctotar when :
NyDy— NyDy = 0 (48)
NuDy = NyDs (49)

By checking all possible cases of the relationship of (N.,N;/) and that of

(Dr,Dy) that satisfy equation (48) and equation (49), only these conditions

result. Thus the lemma is proven. O

Lemma 3 In a single-level tree network, the total cost of a current processor
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arrangement, Cioiq1, 15 greater than that of an associated swapped processor

arrangement, C{,.;. tf one of the following conditions holds:

1. Nuo<N,,D.>D,.
2. Np < Np, Dy =D,.
3. Npw<N;,Dn<D, and NpDp < N.Dp.
/. Np=N,,Dw>D,.

5 Nwpw >N, ,Dn>D, and NpD,< N,Dp.

Proof

From equation (45):

o _ NeDi=N,Dy
total total D,.-D,rl
Thus, C{,;, < Ciotar When :
NuDy = NyDp < 0. (50)
NW/DW < N7r-D7r' (51)

By checking all possible cases of the relationship of (N.,N,) and of
(Dx,Dx) that satisfy equation (50) and equation (51), only these conditions

result. Thus the lemma is proven. O
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Lemma 4 In a single-level tree network, the relationship between the nu-

merator of a current processor arrangement (N,) and the numerator of an

associated swapped processor arrangement (N ) can be stated equivalently in

terms of z;, zj41, Cj, and Cj41 as follows:

1. Npo >N off

1 I
[(wj — w1 )(2j41¢541 — 2565) + zj(w;ch — wj+10§+1)]

1

2. Ny=N, iff

n=1

<3 {(Zj = zj41)(wj — wj4) - {aco + Ji: knCn} }

{
[(w; = wis) (24161 = 256)) + 2341 (w5 — wipalyy)]

1

3. No < N off

=~ {(Zj = zj41)(w; — wjp1) -

7-1
aCo + z k‘ncn] }

n=1

!
[(wj ~ Wit ) (2416541 — 7¢5) + zjma(w;c) — wj+10§+1)]

1

Proof

=1

> —(—1- {(Z]' — Zj+1)(w]‘ -_ ’LU]'+1) . {aCo + JX_: knCn} }

From the difference equation of equation (42):

N,r - Nﬂ-l = (Zj+1 — Z]‘)(’wj - w]‘+1)TcmTcpb [aCO +

7-1
n=1
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! !
+d [(wj — wi1)(Z+1C41 — Z565)

+ zj1(w;ch — ijc?H)] TemTepb
Then, these conditions are obvious from the above equation. O

Lemma 5 In a single-level tree network, the relationship between the de-
nominator of a current processor arrangement (D,) and the denominator of
an associated swapped processor arrangement (D) can be stated equivalently

in terms of zj, zj+1, Cj, and Cj41 as follows:
I. Du>D, iff
(2541 — 25)(w; —wjpa) < 0
2. Dy=D, iff
(zi41 = 2)(wj —wjp1) = 0
3. Do <D, iff
(241 = 2)(w; — wj1) > 0

Proof

From the difference equation of equation (43):

Dy —Dr = (zj41 — 2)(wj = wip1)Tem Tep

j-1
a+ Z kn} b

n=1
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Then, these conditions are obvious from the above equation. O

4.2 The Intermediate Results

From the lemmas in the previous subsection, a number of intermediate results

can be derived as follows.

4.2.1 The Intermediate Results from Lemma 1 where C/

tota

! > Ctotal

1. Ny > Ny, Dy < Dy

That is,
(w5 = wis1) (25416541 — 2i€h) + Zia (wyc] — wj+10§+1)] <
1 i
P {(Zj — zip1)(w; — wipa) [aCo+ Y knCn] } (52)
n=1
and

(zj41 — z;)(w; — wjy1) >0 (53)

2. Np > Nﬂ-, D = D,

That is,

[(w5 = wi41)(z341¢54, = 2i6)) + 241 (w5 — winchyy)] <
1 i1
7 {(Zj = zj41)(wj — wjt1) [aco +3 kncn] } (54)

n=1
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and

—_—
(a1}
<t

~—

(2j41 = 2;)(w; — wj41) =0

3. N,r/ > N,T, D7r’ > D,r and NH—IDW > ]V,erl

That is
(10 = wis1) (23416541 — 2i6) + 2 (wic} — wigaclyy)] <
% {(Zj — zj41)(wj — wjs1) {aCo + g knCn] } (56)
and
(2541 — 2;)(w; — wj41) <0 (57)
and

NwlDﬂ- > N,rD,rl

4. Nr’ = Nm D1r' < D7r

That is,
[(w]- - wj+1)(zj+lc§+1 - ch;) + zj41(wjcy — wj+10?+1)] =
1 i1
p {(Zj — zjp1)(w; — wj1) {GCO +3 knCn] } (58)
n=1
and

(zj41 — zj)(w; — wj41) > 0 (59)
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5 Np < Ny, Do < Dyand Npy Dy > N Dy

That is
() = wip1) (5416541 = 2i6}) + Zia(wic — wiachy)] >
3 {(Zj = zj41)(w; — wjs1) [GCO + g kncn] } (60)
and
(zj+1 — z;)(w; — wjpa) >0 (61)
and
NpDy > NpDy

4.2.2 The Intermediate Results from Lemma 2 where C} ,,; = Ciotal

1. Np > Nﬂ-, D> D, and N,rlDﬂ- = N,Dp

That is
[(wj = wi1) (25416540 — 2i¢h) + Zjs1(w;df — wj+1¢?+1)] <
;11' {(Zj — zj41)(Wj — Wj41) {GCO + g kncn} } (62)
and
(zj41 = 2j)(w; — wj41) <0 (63)
and
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N,r!D,r == N,rDﬂ-l

2. N =Ny, D= D,

That is,
[(wj - ’wj+1)(zj+lcé'+1 - chi-) + zjp1(w;c) — wj+1‘3]})+1)] =
1 -1
p {(Zj — zj41)(w; — wj41) [GCO +> knCn} } (64)
n=1
and
(zj+1 — 2)(w; — wjp1) = 0 (65)

3. Ny < Ngy, Do < Dy and No Dy = Ny D

That is
[(wj — 1) (Z41¢5 41 — 2i€5) + Zj (widh = wj+10§+1)] >
% {(Zj = zj1)(w; — wjt1) [aCo + :Z; knCn] } (66)
and
(zj41 = zj)(w; — wj41) > 0 (67)
and
NepDy = NpDp
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4.2.3 The Intermediate Results from Lemma 3 where C],,; < Ciotal

1. Np < Nﬂ—, D,rl > D,

That is,
(w5 = win)(zimachyy = 265) + zia (Wi — windy,)] >
1 it
p {(Zj — zjp1)(w; — wj41) {aco +3° kncn} } (68)
n=1
and
(2j41 = 2;)(w; — wjzq) <0 (69)

2. Ny < Ny Dy = Dy

That is,
(w5 = W) (z41€h 41 = 2565) + Zina(widh = winaclyy)] >
1 -1
7 {(Zj — zjp1 (W — Wj41) [aCo +) k‘ncn} } (70)
n=1
and
(zj41 = 2;)(w; — wjy) =0 (71)

3. N,.»l < N,r, D,.-l <D, and N,,-fD,r < N,rD,r/

That is

[(wj - wj+1)(zj+10§'+1 - ZJ'C;) + zjp1(wic5 — wj+1‘3§+1)] >
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% {(Zj — zj41)(wj — wjga) [aCo + :Z: knCn] } (72)
and
(241 = 2;)(wj — wjp1) > 0 (73)
and
No Dy < Ny Dy

4. N,rl = N,r, D7|'I > D7r

That is,
(w5 = i) (2416541 = 2i¢h) + 2 (w3 — wialyy)] =
1 i1
p {(zj = zip1)(w; — wipa) [aCo+ ) knCn} } (74)
n=1
and

(zj41 — 2;)(w; — wjy1) <0 (75)

5. N,rt > N,r, D,,r > D,r and N,rtD,r < N,rDﬂ-/

That is

[(wj - wj+1)(zj+10;'+1 - ch;) + zjp1(w;cf — wj+lc§+1)] <

GC() + Jz—:l kncn] } (76)

n=1

é {(ZJ’ — zj1)(wj — wjy1)
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and
(zj41 — zj)(wj — wja) <0 (17)
and

Nﬂ-lDﬂ- < N,rDﬂ,l

4.3 The Main Results

From the findings in the previous subsection, the conditions for processor

arrangement can be divided into two cases as follows:

4.3.1 Casel(z; — zj41)(wj —wjy1) =0 or Dy = D,
This case includes:

1. Ny > Ny, Do = Dy, where C,,,.; > Chotai-

From equation (54) and equation (55), one has:
(wj — wis1)(z41€540 — 2i€}) < 2z (Wi — wid) (78)

2. Ny = Ny, Dy = Dy, where C ., = Chotal-

From equation (64) and equation (65), one has:

(w; — wj+1)(zj+10§+1 - chi') = Zj+1(wj+10§+1 - ché?) (79)
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3. Np < Ngy Dy = Dy, where C, ., < Ciotal.

From equation (70) and equation (71), one has:
(w; — wyp1)(z41¢540 — 2i¢5) > zjp1(Win Sy — w;c) (80)

It can be represented by the figure below:

C’total = Ctotal

C’total > Ctotal C’total < Ctotal

[

1

]

|

1

1

]

]

]

]

]

| | |
. W W )25, Cjpp-Z;C )
P

14

Increasing value

Case I: D’m= D’
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In this figure (wj——wj+1)(zj+1c§»+1 —zjcé-) is a testing variable and zj41(w;41
w;c’) is a threshold. If the testing value (w; — wj41)(zj416541 — z;¢}) is less
than the threshold value z;11(wjy1¢f,; — w;cf), then Cj, ) > Ciotar- If they

are equal, then C,,; = Ciotar. Otherwise Cj,,; < Ciotai-

4.3.2 Case Il (z; — zj41)(w; —wjp1) #0 or Dy # Dy

Let

A= % {(Zj — zHl)(wj - wj+1) aCy + ]X:: knCn] } (81)

This case includes:

A. Lemma 1 Related Results

1. Nuv > Ny Dpe < Dy, where Cl . > Chotal-

From equation (52) and equation (53), one has:

(wj = wip1) (27416541 = 7€) < (Wil —wicf) + A (82)

negative

2. Ny > Ny, Do > Dy, where Cj . > Chotar

From equation (56) and equation (57), one has:

| !
(wj — wir1) (2641 — 2i¢5) < zim(wipici —wics) + A (83)
positive
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and

Nﬂ-lD,r > N,TD,rl

3. N7r’ = N7r, D7r’ < Dﬂ" where C;otal > Ct"tal'

From equation (58) and equation (59), one has:

(w; — wj+1)(zj+10§+1 - ché) = zin(winchy — wid) + é_, (84)

negative

4. Ny < Np, Do < Dy, where Cf . ; > Ciotal.

From equation (60) and equation (61), one has:

(w; — wir1)(zn161 = 2%65) > Zip(winp —wid) + A (85)
negative

and

Ny Dy > NyDp

B. Lemma 2 Related Results

1. Ny > Ny Dy > Dy, where C},,,; = Chotal-

From equation (62) and equation (63), one has:

(wj = wis1)(zj1¢i41 = 2i¢)) < zirr(winn iy — wick) + A (86)
positive

and
NoD, = N,Dy

47



2. No < Ny, Do < Dy, where C},,; = Chotar-

From equation (66) and equation (67), one has:

(w; = Wiz — 5¢) > Hn(windn —wid) + A (87)

negative

and

NuD, = N;Dp

C. Lemma 3 Related Results

1. Ny < Ny, Dy > Dy, where C},.; < Chotal-

From equation (68) and equation (69), one has:

(w; — wj+1)(z,~+1c§-+1 - 31'03) > zjn(wjrichy, —wic)) + \,A_, (88)

posttive

2. N,rl < N,r, D-,rl < D,r, where Céotal < Ctota.l-

From equation (72) and equation (73), one has:

(w; ~ wis1)(Zj41¢i41 — %¢5) > zin(windi —wid) + A (89)
negative

and

NoD, < N, D,

3. Np = N‘Il” Dy > D7r7 where Ct’otal < thal'
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From equation (74) and equation (75), one has:

(w; — wj+1)(zj+102+1 - chﬂ) = i1 (Wi i — wic)) + QA/ (90)

4. Np > Ny, Dp > Dy, where C},,,; < Ctotal-

From equation (76) and equation (77), one has:

(w; = wis1)(z01€50 — 25¢5) < zipa(wipnchy, —

and

N,rlDW < N,rD,r/

It can be represented by the figure below:

49
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Uncertain Area

|
|
|
|
|
|
Sl
|
|
|
|
|
I
1
|

C’total > Ctotal C’total < Ctotal
:
Z. w.clow.ch . a z.owicl weh s a
W Cia W :;)' il juiCin W )+
| |
W W)@ G i€ )

1
A== {|(zj = Zj+1)(wj = wja)|

aCy + Jf knC’n} } (92)

n=1

Note A is assumed positive here.

In this figure (w;—wjs1)(zj41¢54, —2;¢}) is a testing variable, z;41(wjt165,, —
wjc}) + A is an upper threshold, and zj41(wjq1chy, — w;d) — A is a lower

threshold. If the testing value (w; — wj41)(zj41¢54; — z;c;) is less than the

lower threshold value zj41(wj41¢i; — w;ck) — A, then Cy,p > Crotar. If the
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testing value (w; — wj+1)(z]-+1c§-+1 — zj¢}) is greater than the upper thresh-
old value zjyi(wjpicfy; — wich) + A, then Cf,,; < Cioar. Otherwise, the

relationship of C|,,,, and Ci,a need further checking as will be discussed

later.

4.3.3 Uncertain Area Revisited

The uncertain area resulted from the uncertain cases where N > N, D, >
D, according to section 4.3.2.A.2, 4.3.2.B.1, 4.3.2.C.4 and Ny < Ny, D <
D, according to section 4.3.2.A.4, 4.3.2.B.2, 4.3.2.C.2. So as to simplify the
conditions involved in that area, an alternative means of analysis of the two

uncertain cases will be provided in the following.
1. Ny > Nypy Dy > D
Let

D, = D,+Ap ,Ap>0

Ny = N.+Any ,An>0




Nﬂ'Dﬂ' + Nﬂ'AD - N7|'D7|' - DWAN

DW(Dr + AD)
_ N,Ap-D,Ay
B D‘I\'(D’lr + AD)

(a) C|yta1 > Clotai associated with 4.3.2.A.2.

N:Ap — D AN

N,
Dr

< 0
Ay
Ap
(Np — Np)
(Dvr' - Dr)

(b) C{otai = Ctotar associated with 4.3.2.B.1.

N:Ap — D, AN
N

D

= 0

LY

= %

_ (Nx — Ny)
- (Dr — Dr)

(¢) Ciotat < Ctotar associated with 4.3.2.C 4.

N:Ap — DAy

Nx
Dr

9. Ny, < Ny, Dy < D
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> 0
Av
Ap
(Np — Ny)
(Dxr — Dy)

(95)
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Let

D, = Du+Ap ,Ap>0

Nﬂ_ = Nﬂ.l—*—AN ,AN>0

N (Nu+Ay) Ny
Dv ~ (Dw+A4p) D
Ny Dy + DAy — Ny Do = NoAp
D (D + Ap)
DAy — NoAp

Dw’(D‘rr' + AD)

(a) Ctopa1 > Clotar associated with 4.3.2.A.4.

D,.-IAN—N,.-IAD < 0

Ny An
D, = Ap
(Nfr - Nfr')
(D1r - D7r

> (98)

(b) C{ ;a1 = Ctotar associated with 4.3.2.B.2

DyAn — NuAp = 0

N,rl AN

D, Ap
(N7r - NW’)
(Dfr - Dr’)
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(¢) Ca1 < Ciotar associated with 4.3.2.C.2.

“tota

DWIAN—N,\JAD > 0

N, An
D. < A,

(Nfr - Nﬂ")
(Dw - Dvr’)

<
Therefore, in the uncertain area, one has:
1. D > Dyor (zj41 — 2j)(wj —wjp1) <0

(a') Ct,otal > Ctotaly lf

(N1r - N?r’)

N
Ctotal = D_1r < m

(0) Ciotar = Crotars if
Clotat = 75~

(¢) Clotat < Crotar, if
Ciotal = —g—: >
2. Dp < Dy or (zj41 — 2zj)(w; —wjs1) >0

(a') Ct,otal > CtOta1> if

(100)

(101)

(102)

(103)

(104)



(b) Ctlotal = Ctoml’ if

! Ny (N,.- - NW’)

’ = = 1 .

total D,‘-l (Dr _ Dﬂ-l) ( 05)
(C) Ct/otal < CtOtal’ if

’ N7r’ (Nﬂ‘ - N7r’)

= 1
total Dﬂ-l < (Dr _ Dﬂ-l) ( 06)
From equation (42) and equation (43), one has:
(Ne = Nwo) _ aCo+ Zi;ll knCh d(zj+lcé‘+1 - zjcé‘)
(Dr = Drr) a"'Zi—:ll kn (2j+1 —Zj)(a-i-Zi;ll kn)
+ d(w;cf — wjs16541) 241 (107)

(z41 — 2)(wj — wip1)(a + iz kn)
4.3.4 The Resulting Theorems

Theorem 1 In a single-level tree network, if one of the following condi-
tions is satisfied, then the total cost of the current processor arrangement
Clotal(T(py,.p;pys10eem px)) 15 less than the total cost of the adjacent pairwise

swapped processor arrangement Ciop,(T(,, for1<j<N.

77777 p]+lvpjv"'va))

1). (zj+1 — z;)(wj — wjy1) =0 and
(w; — wip1)(zj41¢54, — 2i¢h) < zj(wipicdyy — w;ch)

2). (zi41 — z)(w; — wj1) # 0 and
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(w; — wj+1)(zj+10§+1 - %56 5) < Zipi (Wil —w;df) — A

3). (zj+1 — zj)(w; —wjs1) <0 and Cipu < ——ﬂ—gD g ';

w—N_;
4) (21— 2)(w; —wjq1) > 0 and Cly > H=pat)

Proof

The first condition results from equation (78).

The second condition results from equation (82) and equation (84).
The third condition results from equation (101).

The fourth condition results from equation (104).

Thus the theorem is proved. O

Theorem 2 In a single-level tree network, if one of the following condi-
tions is satisfied, then the total cost of the current processor arrangement
Crotal(T(py,...0,pj410pn)) 15 €qual to the total cost of the adjacent pairwise

swapped processor arrangement Cyy, (7, oxy) for 1< g <N.

1). (zj41 = 2;)(w; — wjy1) = 0 and
(w5 — wis1) (25416541 — 2i€5) = zjp1 (w1 py — wjc])

Nx—N,1)
2). (zj+1 — 2z )(w; —wjp1) # 0 and Corar = ED,,—D,,/)
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Proof
The first condition results from equation (79).
The second condition results from equation (102) and equation (105).

Thus the theorem is proved. O

Theorem 3 In a single-level tree network, if one of the following cond:i-
tions is satisfied, then the total cost of the current processor arrangement
Ciotal(T(py,....0;p,41..pn)) 1 greater than the total cost of the adjacent pairwise

swapped processor arrangement C,,,_,( for1 <5 <N.

!
T(ps ,---,p1+1,pJ,---,pN))

1). (zi41 = z)(wj — wjp1) =0 and
(wj = wis1)(Zi+16540 — 2i¢5) > zj41(Wip1 ¢y — w;ich)
2). (zi41 — 2;)(w; — wj41) # 0 and
(wj = wit1)(Zi41C541 = 25€5) 2 zjg1 (Wi, — wic)) + A

(Ne—=Ng1)
(Dr—Dy)

3) (Zj+1 — ZJ)(’U)] - wj+1) <0 and Cioa >

4)- (zj41 — z)(w; —wjs1) >0 and Ciyy < (g::gwi)

Proof
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The first condition results from equation (80).

The second condition results from equation (88) and equation (90).
The third condition results from equation (103).

The fourth condition results from equation (106).

Thus the theorem is proved. O

Here:
1 it
A = P (2 — zjs1)(wj — wjz1)] [aCo + Y knCo
n=1
(Nx = Nx) — aCo + Ei_:ll k.Cr d(zj+1c§‘+1 - Zj_cé)
(Dr — Dyr) a+ 325 ka (241 — 7)(a + Thz1 kn)

d(wjcj — wi1ciy)zin

(zi1 — 2;)(wj — wip1)(a + T3] kn)

+

5 Bus and Related Networks

5.1 Bus Network

A bus network is a special case of a single-level tree network where all link
speeds and link costs are equal. The following lemma and theorem can be

obtained:
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Lemma 6 In a bus network, the total cost of a current processor arrange-
ment, Cioal, 18 less than or equal to (greater than) that of an associated
swapped processor arrangement, Cy ..., if, for the current processor arrange-

ment,

Fw; < (>)E L win

Proof

In case of a bus network one has z; = z;41 and z;c} = zj+1¢544, therefore

(zj41 — 2zj)(w; — wj4+1) = 0. For the case Cj,,,; > Ciotal, from condition 1 of

theorem 1,2 one has,

zigr(Epwip — dw;) > 0

Gw; < Wi

A similar result holds for the case of Ciq1 > Cj,,, if one uses condition

1 of theorem 3. The lemma is thus proved. O

Lemma 7 In a bus network, if the processors are arranged such that for
every adjacent pair of processors the condition cfw; < b, wjyy is satisfied,

then there is no other processor arrangement profile with a lower total cost.

Proof
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By contradiction, assume that an underlying processor arrangement pro-
file 7 is arranged such that for every adjacent pair the condition fw; < ¢/ w;4
holds, and there exists another processor arrangement profile 7', a permuta-
tion of 7, that has at least one adjacent pair of processors with a condition
fw; > ¢, w;i1 which gives a lower total cost than 7. By lemma 6, a to-
tal cost of 7' can be decreased by swapping a pair of processors with the
condition cfw; > ¢f, ;w;y;. Lemma 6 can then be applied recursively to the
resulting processor arrangement profile as far as it has such an adjacent pair
of processors with the condition cfw; > ¢/, w;41. The total cost of the cur-
rent processor arrangement profile is decreased each time lemma 6 is applied.
Finally, 7 is reached from =’ through a series of lemma 6 applications. There-

fore a total cost of 7 is lower than that of #’. This contradicts the hypothesis

that 7’ gives a lower total cost that 7. The lemma is thus proved. O

Theorem 4 In a bus network, the total cost, Ciota1, s minimized over all

processor arrangement profiles if and only if the processors are arranged to

satisfy the following condition:

duw < dw; < ... < Qwy

Proof
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Assume that cfw; are not all identical.

The “only if” part (=): By contradiction, suppose that the processors
are arranged in such a way that Ciy, is minimized over all processor ar-
rangement profiles and there exists at least one adjacent pair of processors in
that arrangement such that w; > %, w;;1. Then by lemma 6 there exists
another processor arrangement with a lower total cost by swapping proces-
sor j and (7 + 1). This contradicts the hypothesis that Ci,,; is minimal.
Therefore the (=) is proved.

The “if” part («<): If the processors are arranged such that for every
adjacent pair fw; < i, wj41, then by lemma 7 there is no other processor
arrangement that can lower the total cost further. Thus, Ciya of such an

arrangement is indeed minimal.

The theorem is then proved. O

5.2 The Related Networks

In this subsection, a single-level tree network with identical processors and a

homogeneous single-level tree network are investigated.
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Lemma 8 In a single-level tree network where all processors have the same
computing speeds, the total cost of a current processor arrangement, Ciopq1, 15
less than or equal to (greater than) that of an associated swapped processor

arrangement, C,,,.;, if, for the current processor arrangement,

C? < (>)C§+1

Proof

Since w; = wj41, therefore (zj41 — 2z;)(w; — wj41) = 0. For the case

Clota > Clotal, from condition 1 of theorem 1,2 one has,

zis(pwin — Gw;) 2 0

&< &

J

Similarly for the case of Ciptar > C,,,; if one uses condition 1 of theorem

3. The lemma is thus proved. O

Lemma 9 In a single-level tree network where all processors have the same
computing speeds, if the processors are arranged such that for every adjacent
pair of processors the condition ¢ < ¢, is satisfied, then there is no other

processor arrangement profile with a lower total cost.

Proof
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By contradiction, assume that an underlying processor arrangement pro-
file 7 is arranged such that for every adjacent pair the condition ¢ < cf,
holds, and there exists another processor arrangement profile 7/, a permuta-
tion of 7, that has at least one adjacent pair of processors with a condition
¢ > ¢, which gives a lower total cost than 7. By lemma 8, a total cost
of 7’ can be decreased by swapping a pair of processors with the condition
¢ > cf,,. Lemma 8 can then be applied recursively to the resulting processor
arrangement profile as far as it has such an adjacent pair of processors with
the condition ¢ > ¢,,. The total cost of the current processor arrangement
profile is decreased each time lemma 8 is applied. Finally, = is reached from
7' through a series of lemma 8 applications. Therefore a total cost of 7 is

lower than that of #’. This contradicts the hypothesis that 7’ gives a lower

total cost that 7. The lemma is thus proved. O

Theorem 5 In a single-level tree network where all processors have the same
computing speeds, the total cost, Ciq1, 1s minimized over all processor ar-

rangement profiles if and only if the processors are arranged to satisfy the

following condition:

d<E<. <y
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Proof

Assume that ¢ are not all identical.

The “only if” part (=): By contradiction, suppose that the processors
are arranged in such a way that Cyu, is minimized over all processor ar-
rangement profiles and there exists at least one adjacent pair of processors in
that arrangement such that ¢f > ¢, ;. Then by lemma 8 there exists another
processor arrangement with a lower total cost by swapping processor j and
(7 +1). This contradicts the hypothesis that C}u,; is minimal. Therefore the
(=) is proven.

The “if” part («<): If the processors are arranged such that for every
adjacent pair ¢f < £, then by lemma 9 there is no other processor ar-
rangement which can lower the total cost further. Thus, Ciysa of such an

arrangement is indeed minimal.

The theorem is thus proved. O

Lemma 10 In a homogeneous single-level tree network where all the link
speeds and the processor speeds are the same, the total cost of a current
processor arrangement, Cioal, 15 less than or equal to (greater than) that

of an associated swapped processor arrangement, Ci,.;, if, for the current
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processor armngement,

& < (>

Proof
Since w; = w;4y and z; = zj41, therefore (241 — z;)(w; — wj+1) = 0. For

the case CY,,,; > Clotal, from condition 1 of theorem 1,2 one has,

zipr(chwip — cw;) > 0

& < &y

J - J

Similarly for the case of Cyotar > C;,,,; if one uses condition 1 of theorem

3. The lemma is thus proved. O

Lemma 11 In a homogeneous single-level tree network where all the link
speeds and the processor speeds are the same, if the processors are arranged
such that for every adjacent pair of processors the condition cf < £, is

satisfied, then there is no other processor arrangement profile with a lower

total cost.

Proof

The proof is similar to the one in lemma 9 except one uses lemma 10

instead of lemma 8. O
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Theorem 6 In a homogeneous single-level tree network, where all the link
and processor speeds are the same, the total cost, Cisiar, is minimized over
all processor arrangement profiles if and only if the processors are arranged
to satisfy the following condition:

d<g <. <y

Proof
This is a special case of theorem 5. The proof is similar to the one for
theorem 5 except one uses lemma 10 instead of lemma 8 and lemma 11 instead

of lemma 9. O

6 Analysis Remarks

It should be noted that in a general single-level tree network, as is evident
from theorem 1-3 there is no simple condition to check for an optimal total
cost processor arrangement. This is due to the fact that there are several
interrelated conditions when Cly, is compared to Cj,,,;. There may exist
two processor arrangements with all adjacent pair conditions compliant to
theorem 1 or 2 such that one cannot simply tell which arrangement yields

a lower total cost or whether they both are optimal. However, if special
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cases of a single-level tree network are considered as shown in section 5,
simple optimal conditions for a processor arrangement can be established as
indicated in theorem 4, 5, and 6.

The analysis of a processor arrangement in a general single-level tree net-
work, even though it may not provide a s.irnple check for optimality, sheds
1ight on the derivation of the conditions for the optimal processor arrange-
ment in the special case networks. In addition, it is useful, through the use of
theorem 1-3, to identify an adjacent processor pair that could be rearranged
to reduce total cost in the process of searching for the optimal processor
arrangement in a general single-level tree network. This makes the cost ef-
ficient processor arrangement algorithm to be discussed appealing in terms
of its simplicity, complexity, feasibility, and monotonic improvement of its
solutions.

In the case of a bus network as indicated by theorem 4, Cyya is min-
imized over all processor arrangement profiles if and only if the processor
costs, cfw;, are ordered in a non-decreasing maner. This is exactly the op-
timality condition found in [8]. Therein the authors use a sequencing with
an adjacent pairwise swapping to find a sequence of load distribution with a

minimum total cost. This is because in a bus network where all link speeds
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are identical and link costs have the same values, to do sequencing, i.e. a log-
ical interchange of the processors, is equivalent to the problem of processor
arrangement, a physical interchange of the processors, of this paper.

For a single-level tree network where all processors have the same comput-
ing speeds, Ciota is minimized over all processor arrangement profiles when
the processor cost coefficients, ¢, are ordered in a non-decreasing maner.
This can be explained as follows. The root processor always distributes
fractions of load through ly,1s,..., Iy sequentially in this order no matter
which processor is attached to which link. Since w; = wj4; for all 7 =1 to
N —1, the closed-form expression of ¢; is indepedent of the processor arrange-
ment; consequently the communication time is unchanged due to processor

arrangements as well. Moreover a; > a; > ... > an. Note that in this case

oy (Zi+1Tcm+WTcp)
iyl wly,

> 1. In order to minimize the total cost the processor
with the lowest processor cost coefficient should receive the largest fraction
of load () and the next lowest processor cost coefficient processor receive
the next largest fraction of load (a3) and so on.

Similarly for the case of a homogeneous single-level tree network which
is a special case of the single-level tree where all of processors have the same

speed, the total cost, C}ota1, is minimized over all processor arrangement pro-
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files when the processor cost coefficients, ¢’s, are ordered in a non-decreasing
maner.
Note that in our analysis, the processor arrangement does not involve the

root processor. It consists only of an arrangement of the children processors.

7 Heuristic Processor Arrangement Algorithm

In this section, a discussion of the performance of two basic greedy algorithms
for processor arrangement is presented. A heuristic algorithm for processor
arrangement, which is a modified version of the two basic algorithms, is pro-
posed so as to improve the performance. This algorithm uses several starting
points in order to produce a final solution. The mechanism to generate a
new processor arrangement profile, 7/, is no longer restricted to an adjacent
pairwise processor swapping as in the case of sequencing of [7]. It extends
to cover the cases of swapping two processors which are two positions apart,
three positions apart and so on. Finally an exhaustive permutation algo-
rithm is presented which serves as a tool to obtain globally optimal solutions

for testing purposes.
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7.1 Two Basic Greedy Processor Arrangement Algo-
rithms

Both of these basic algorithms are based on a nearest neighbor search which
repeatedly improves the current solution until no further improvement can be
made. The first algorithm is the theorem-based greedy algorithm. This algo-
rithm is based on the theorems developed in the previous section to identify
which adjacent pair of processors could be swapped to reduce total cost. A
greedy strategy is then applied to select among the candidate adjacent pairs
of processors an actual adjacent pair to swap in order to obtain the best
improvement in terms of total cost. The second algorithm is the direct cost
greedy algorithm. This algorithm computes the total cost associated with
each adjacent pairwise processor swapped profile, 7/, and the current profile,
7, directly. It then uses a greedy strategy to select the profile with the lowest
total cost. This direct cost greedy algorithm can be considered as a variant,
but more general version, of the theorem-based greedy algorithm. However
they are equivalent in terms of the final solution convergence. Experimen-
tal results using the direct cost greedy algorithm show that the number of

suboptimal convergence solutions are quite large (cf.table 1). This indicates
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that both algorithms may not be effective enough and need to be modified

to improve the performance. This therefore leads to a heuristic algorithm.

7.2 Heuristic Method

In order to improve the performance of a processor arrangement algorithm
four main approaches are introduced. First, several initial processor arrange-
ments, which serve as starting points of the heuristic algorithm, are generated
according to patterns determined by the orderings of some network parame-
ters. Secondly, the extent of a neighborhood to be search is enlarged to cover
not only a neighborhood obtained by adjacent processor pairwise swapping.
Thirdly, an exhaustive search over an entire neighborhood is employed. A
greedy strategy is applied to select the best processor arrangement profile in
terms of a total processing cost. Finally, restart searching, the procedure de-
termining a pair of processors to start over with after a new processor profile
has been obtained, is used as the order of searching. Integrating all of these

approaches constitutes the proposed heuristic algorithm.
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Table 1: Number network parameter sets with local optimal solutions. The

number of randomly generated network parameter sets per run is 100

Run No.of suboptimal
solutions
1 15
2 13
3 13
4 18
5 9
6 9
7 10
8 8
9 10
10 9
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7.3 Elements of the Heuristic Algorithm
7.3.1 The Starting Points

In this heuristic algorithm, there are a number of starting points (set to 19
in this work). Each starting point is obtained by ordering the randomly
generated network parameters including w;, z;, ¢, cf. The order of wy, z;, c!
are fixed for every starting point according to the original order resulting
from the random generation procedure. That is the root node, link speeds,
and link cost coefficients are kept in their respective orders while w; and ¢

are rearranged according to some specific patterns. These patterns are:
1. Non-decreasing and non-increasing orderings of ¢;.
2. Non-decreasing and non-increasing orderings of c!.
3. Non-decreasing and non-increasing orderings of z;.
4. Non-decreasing and non-increasing orderings of w;.
5. Non-decreasing and non-increasing orderings of cz; T, + ¢ w;Tep.

6. Non-decreasing and non-increasing orderings of ¢fw;T,.
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. Non-decreasing and non-increasing orderings of the sum of the positions

in the rank of ¢! and ¢f.

8. Non-decreasing and non-increasing orderings of the sum of the positions

in the rank of ¢/ and fw;T,,.

9. Non-decreasing and non-increasing orderings of the sum of the positions

in the rank of ¢! and clz;Tom + Cw; Ty
10. The original ordering from the randomly generating procedure.

Note that a rank is a list of all processors where the order in the list is
determined by their corresponding parameter values, i.e., ¢}, ¢/, (w;Tsp),
or (c¢!2;Tom + fw;T,,). All the processors in a rank are ordered in a non-

decreasing maner of their pertinent parameter values as given above.

7.3.2 The Nmove Procedure

This is a procedure to obtain a solution of each starting point which is called
an intermediate solution of the algorithm. It consists of four main aspects

as follows:

1. N-Position Apart Processor Swapping
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N-position apart swapping refers to an interchange of a pair of pro-
cessors which are apart by N positions and leaves other processors in
their respective positions. For example, an adjacent pair of processors
is considered to be 1- position apart; a pair of processors which has
one processor between them is called a 2-position apart pair of proces-
sors and so on. The implementation of any n-position apart processor
swapping always starts from swapping the processor in the first (say
leftmost) position of the underlying processor arrangement profile with
the corresponding processor and then moves to the processor in the

second position and so on.

. Neighborhood Generating Function

This subprocedure generates different levels of the neighborhood of
the current processor arrangement profile by starting from swapping
an adjacent pair of processors which gives (N — 1) neighbors. Next,
if required by the algorithm, it swaps a pair of processors which are
two positions apart which gives (N — 2) new distinct neighbors. The
subprocedure continues, if necessary, until a pair of processors with

(N — 1) positions apart is swapped which produces one new neighbor.
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3. Greedy Strategy

In order to obtain a new processor arrangement profile, a greedy strat-
egy is used to select the profile with the lowest total cost from the
underlying level of the neighborhood set which is currently searched. If
there is no neighbor which has a lower total cost than the current one,

then the next level of neighborhood set will be searched.

4. Restart Searching Strategy

The order of searching used in this procedure is a “restart search-
ing”. That is, once a new processor arrangement profile is obtained
and adopted as a new current processor arrangement profile, the pro-

cedure searches the neighborhood of this new current profile by starting

in the 1-position apart mode of operation from the leftmost position.

7.3.3 Nmove2 Procedure

The Nmove2 subprocedure is similar to the Nmove subprocedure described
above except that it starts by swapping a pair of processors which are two
positions apart, then three positions apart and so on. It continues until a

pair of processors which are (N — 1) positions apart is swapped then moves
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to swap an adjacent pair of processors, i.e., the 1-position apart pair of
processors, is the final level of generated neighborhood. The restart searching
of the neighborhood of the new profile is from the 2-position apart mode of

operation.

7.3.4 The Intermediate Solutions

The intermediate solution is a processor arrangement profile obtained from
the heuristic algorithm when the algorithm is initialized with a specific start-
ing point. Therefore, in this work, the intermediate solutions result from
using the starting points according to the patterns given in 1-9 in subsection
7.3.1 with the Nmove procedure, and the original ordering as stated in 10 in
subsection 7.3.1 with the Nmove2 procedure. Totally there are 19 interme-
diate solutions. It should be noted here that the intermediate solution is in

fact a local optimal solution.

7.3.5 The Final Solution

The final solution is obtained by comparing the intermediate solutions from
the Nmove and Nmove2 procedures which are initialized with different start-

ing points. The one with the lowest total cost will be a final solution to the
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algorithm.

7.4 The Heuristic Algorithm Description

The algorithm is initialized by generating 19 starting points. A certain set
of orderings determined by w;, z;, !, ¢}, T, and ¢!T.,, as mentioned in sub-
section 7.3.1 are formed. These orderings are then used to produce certain
ordering patterns, the patterns of processor index orderings. From these
ordering patterns, the starting points are obtained through rearranging the
order of the original processors according to the corresponding patterns while
keeping all links in their original order. In this rearrangement process the
root processor is not taken into consideration.

For each starting point according to 1-9 in subsection 7.3.1, the Nmove
procedure is called to find the minimum total cost processor arrangement
profile, which is an intermediate solution. The procedure begins searching
for a minimum total cost processor arrangement profile by first examining the
1-position apart neighbors to check if there is any profile with a lower total
cost than the current profile. If there is no such a profile, the Nmove procke-

dure then moves to search the next level of neighbor which is the 2-position
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apart and checks for a lower total cost profile. The procedure continues
searching until it finds a lower total cost profile or otherwise terminates if
it can not find such a profile after searching all levels of the neighborhood
of the current processor arrangement profile. In this last case the current
processor arrangement profile is the solution. If the procedure finds a lower
total cost profile before terminating then that processor arrangement profile
will be adopted as the new processor arrangement profile and the process
starts over again according to the restart searching strategy. In case that
there is more than one profile with a lower total cost, the greedy strategy
is applied and the lowest total cost profile among them will be chosen as
a new current profile. For an original order starting point from randomly
generating procedure with the Nmove2 procedure which is according to 10 in
subsection 7.2.1, the process is similar to that described above except that
the Nmove2 procedure is called instead of the Nmove procedure.

The algorithm continues finding a solution for each starting point, i.e.,
an intermediate solution, until all of them have been processed through the
Nmove or Nmove2 procedure accordingly. Finally, the algorithm compares all
the intermediate solutions obtained from the Nmove and Nmove2 procedures

to reach the final solution. The solution whose Cj; is less than or equal to
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that of the others is chosen to be the final solution.

7.5 The Heuristic Processor Arrangement Algorithm

R 19

Given an arbitrary single level tree network and z;, w;, ¢, ¢, T..,, and Tep.

Given an initial processor arrangement profile.

Step 0. Set an initial processor arrangement profile to be 7#(0).
Set N to 19.
Step 1. Compute an associated Cyq of 77(0), set it to CH(0).
Step 2. For j =0to 19
2.1) Call Nmove or Nmove2.
2.2) Set the intermediate solution obtained in (2.1) to #,(j).
Compute the associated Ciotar, set it to CH,(j).
23)j=j+1
Step 3.  For k=0to019
Compare CH,(k), find the index, k, with the lowest C'H, (k).
Step 4. Output 77 (k) as the final processor arrangement profile and

CH (k) as its associated total cost. Stop.
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7.6 Exhaustive Permutation Algorithm

The main function of the exhaustive permutation algorithm is to find the
global minimum total cost processor arrangement profile and the correspond-
ing values by exhaustively examining all possible processor arrangement pro-
files. The algorithm computes a total cost directly from the closed-form
expression of the total cost. It then moves to the next processor arrange-
ment profile by permuting the current order of the children processors in
a lexicograhpic maner while keeping the original arrangement of links. It
continues to generate the permutation and compute an associated total cost
until all possible permutations are generated. Finally, all obtained total costs

are compared to find the minimal one(s).

8 Performance Evaluation

In this section, two prime performance aspects of the proposed heuristic

algorithm are studied, i.e., the quality of solutions and the time complexity.
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8.1 Quality of Solutions

In this work, the quality of solutions is measured by two criteria, the ability
to achieve an optimal solution and the proximity of the final solutions to
the optimal solution. In terms of an ability to achieve an optimal solution,
the performance metric in this case is a number of final solutions which are
suboptimal. For the proximity of the final solutions to the optimal solution,
we consider in two cases, i.e., the averge case and the worst case. There
are two metrics associated with each case, i.e., the ratio and the relative

difference.

8.1.1 Performance Metrics

Let
I : the network instance.
Cu(I) : the total cost of the final solution of the network instance /

obtained by the proposed heuristic algorithm.
Copr(I) : the minimum total cost of the network instance I.

| 1] : the cardinality of the set of network instances in the experiment.
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Define:

A number of suboptimal solutions = A number of final solutions with total cost

higher than that of an optimal solution.

E Copr(l)
The average ratio, Ray = VI G (llclH () )
. _ . {Copr(I)
The worst-case ratio, Rwsr = min <_—CH(I)

Cy)-C (II
ZVI( HCOPTO(;))T )

]

The average relative difference, Ay =

The worst-case relative difference, Awsr = max( )

8.1.2 Experimental Procedure

Two experiment sets were conducted on single-level tree networks so as to
evaluate the quality of the solutions produced by the proposed heuristic al-
gorithm. The general procedure for the two experiment sets are as follows.
The network parameters, zj,wj,cg-,c;’ s Tem, Tep are generated uniformly and

independently in the interval [0,10] for z;,w;, [0,20] for c;,c;-’,

and [0,5] for
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Tom, Tep. In each experiment set, it consists of two subexperiments. That is,
a subexperiment conducted on single-level tree network where z; T, > w; T,
and the other with 2,7, < wT,, for all s =1 to N (N is a number of
children processors).

The first experiment set was performed on single-level tree networks with
one root processor and five children processors (N = 5). The total number
of run is 10 and for each run 20000 network parameters were generated for
each subexperiment set.

The second experiment set, a number of children processors were varied
from 5 to 10. For N = 5 to 8, 20000 network parameters were generated,

and for N =9 to 10, 10000 network parameters were generated.

8.1.3 Results and Discussion

The first experimental results (cf.table 2,3) show that the probability of con-
verging to a suboptimal solution is extremly small in both subexperiments,
based on a network parameters are generated randomly and uniformly on
the specified intervals. In addition, the quality of the suboptimal solutions
1s also impressive, that is the closeness of the suboptimal solutions to the

optimal solution is evident from the experimental results both in the average
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Table 2: 2;T.m < w;Tcp

Run No.of suboptimal | Average Case Worst-Case
solutions Rav | Aav | Rwst | Awsr
1 0 NA NA NA NA
2 0 NA NA NA NA
3 1 99.963 | 0.0366 | 99.963 | 0.0366
4 0 NA NA NA NA
5 0 NA NA NA NA
6 0 NA NA NA NA
7 1 99.573 | 0.4292 | 99.573 | 0.4292
8 1 99.628 | 0.3733 | 99.628 | 0.3733
9 0 NA NA NA NA
10 0 NA NA NA NA
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Table 3: z,T.,, > w;Tcp

Run No.of suboptimal | Average Case Worst-Case
solutions Rav | Aav | Rwst | Awst

1 0 NA NA NA NA

2 0 NA NA NA NA

3 0 NA NA NA NA
4 1 99.838 | 0.1627 | 99.838 | 0.1627
5 1 99.147 | 0.8605 | 99.147 | 0.8605
6 1 99.883 | 0.1175 | 99.883 | 0.1175
7 1 99.841 | 0.1597 | 99.841 | 0.1597
8 1 99.367 | 0.6372 | 99.367 | 0.6372
9 1 95.689 | 4.5051 | 95.689 | 4.5051
10 2 99.827 | 0.1732 | 99.786 | 0.2147
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Table 4: z,T.,, < w;Tecp

No. of children | No.of suboptimal | Average Case Worst-Case
processors solutions Rav Agv | Rwst | Awst
6 1 99.936 | 0.0582 | 99.936 | 0.0582
7 8 99.669 | 0.3333 | 99.757 | 1.2585
8 7 99.929 | 0.0713 | 99.626 | 0.3751
9* 9 99.925 | 0.0747 | 99.774 | 0.2263

Table 5: z;Tem 2> wiTcp

No. of children | No.of suboptimal | Average Case Worst-Case
processors solutions Rav Aav | Rwst | Awst
6 1 99.816 | 0.1841 | 99.816 | 0.1841
7 4 99.686 | 0.3169 | 98.889 | 1.1237
8 10 99.988 | 0.0116 | 99.966 | 0.0342
9* 7 99.980 | 0.0198 | 99.919 | 0.0813
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case and the worst case.

The second experimental results (cf. table 4,5) also show the effective-
ness of the heuristic algorithm when the number of children processors was
increased. The quality of the suboptimal solutions both in terms of average
case and worst case is very impressive. From the results, the proximity of
the solutions to the optimal solution does not deteriorate with the number
of children processors.

It can be seen from the experimental results that the proposed heuristic
algorithm converges to the optimal solution with high probability. Moreover,
the experimental results indicate the goodness of the suboptimal solutions
obtained by the algorithm in terms of the proximity of the solutions to the

optimal solution in both the average case and the worst case.

8.2 Efficiency

In this section, the efficiency of the proposed heuristic algorithm in terms of
computation time performance metric is studied through a series of experi-
ments. The average number of iterations needed to search the neighborhoods

before an intermediate solution (a local optimum) was obtained was mea-
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sured. The experiments involved running the algorithm on 5000 randomly
generated single-level tree networks of each network size, with the number
of children processors ranging from 5 to 20. The network parameters were
generated in the same way as in the previous section. The expected number
of iterations needed in the Nmove or Nmove2 procedure for each starting
point was then computed. Efficiency is defined as the total number of iter-
ations needed from all the starting points to obtained a final solution. In
order to evaluate efficiency, the average number of iterations to obtain the
intermediate solution was calculated when the proposed heuristic algorithm
was initialized with each starting point. The efficiency is thus proportional
to the number of starting points times the average number of iterations.

The experimental results are shown in table 6. From table 6, the average
number of iterations needed in the range used can be asymptotically bounded
by O(N'®), where N is a number of children processors. Consequently an
efficiency as a total number of iterations needed can also be asymptotically
bounded by O(N'®). That is an efficiency is bounded by a low-order polyn-
imial in N which is consistent with the results in [9].

It should be noted here that for a local search algorithm to solve a com-
binatorial optimization, the worst-case time complexity, an upper bound on

89



Table 6: The average number of iterations and its corresponding asymptotic

bounds
No.of pairs | Average | N''7 | N165 | N16 | N5
5 4.8 154 | 14.2 | 13.1 | 11.2
6 7.2 21.0 | 19.2 | 176 | 14.7
7 10.2 273 | 24.8 | 225 | 185
8 13.7 34.3 | 31.0 | 27.9 | 22.6
9 17.6 419 | 37,5 | 33.6 | 27.0
10 22.1 50.1 | 44.7 | 39.8 | 31.6
11 27.1 58.9 | 52.3 | 46.4 | 36.5
12 32.7 68.3 | 60.3 | 53.3 | 41.6
13 38.9 783 | 68.9 | 60.6 | 46.9
14 45.4 88.8 | 77.8 | 68.2 | 52.4
15 52.6 99.8 | 87.2 | 76.2 | 58.1
16 60.2 111.4 | 97.0 | 84.4 | 64.0
17 68.6 123.5 { 107.2 | 93.1 | 70.1
18 7.3 136.1 | 117.8 | 102.0 | 76.4
19 86.8 149.2 | 128.8 | 111.2 | 82.8
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the computation time, is not known for many problems or may require an
exponential number of iterations as seen in case of the simplex algorithm. In
this paper, the worst-case time complexity, which is always found through a

theoretical analysis, is not investigated due to its apparent intractability.

9 Conclusions

In this paper, total cost and finish time are minimized in a natural manner
in a single-level tree network. The total cost was defined as a summation
of the computing and communication costs. The analysis involved a load
distribution principle and an adjacent processor pairwise swapping. It was
found that it was not possible to develop a simple condition for cost optimally
arranging a general single-level tree network. However, for special cases of
the single-level tree networks, (i.e., a bus n‘etwork, a single-level tree network
with processors with identical computing speeds and a homogeneous single-
level tree network), a simple condition for optimizing processor arrangement
can be established. The simple optimal condition requires the processor cost
to be ordered in a non-decreasing manner for a bus network; while it requires

the processor cost coefficient to be arranged in a non-decreasing manner in
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the latter two cases.

A cost efficient processor arrangement algorithm, based on a local search,
to find a cost efficient processor arrangement profile was then proposed. It is a
heuristic algorithm which is based upon the multi-level neighborhood struc-
ture, multiple-initial solutions, the greedy strategy, and the restart search
strategy concepts. An experimental performance evaluation involving run-
ning the algorithm on a number of single-level tree networks with various
sizes was performed. The results indicate an impressive quality of the solu-
tion. This is in terms of the effectiveness, a small probability of suboptimal
solution convergence, and the goodness of the proximity of the suboptimal
solution to the optimal solution in both the average and the worst cases,
(both of which are within 5% of the optimal solution). In addition, the ex-
perimental results show that the goodness of the suboptimal solution did
not deteriorate with the increasing number of children processors. Finally
an efficiency in terms of the number of iterations needed to reach a final
solution can be bounded by a low-order polynomial in a number of children
processors, O( N1€).

This work shows how one could optimize total processing cost in a single-

level tree network which models a networked distributed computing system.
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It clearly indicates the feasibility of including resource utilization cost into the
problem of scheduling divisible load in the distributed computing systems.

This bodes well for future implementation of computer utilities.
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Figure 1: Single level tree network: Normal Case
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Figure 2: Single level tree network with associated cost coefficients
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Figure 4: Single level tree network: Adjacent Pairwise Processor Swap

99



’

N ZN Tc:m

Comm
—

T¢

Conm'

b

o j+17j+1T cm

o

ijTcm

Tcm

*
0323

’

o,z 2T cm

ey

b

’

a‘OWOTcp

’

alwchp

WZTcp

W3Tcp

Comp

% WiuiT ep
i
)
t
N

'+leTcp

’
1

1:54‘1

ar

—
Comp

WNTcp

Figure 5: Timing Diagram: Swapping Case

100



