
ABSTRACT

New theoretical results for the three-particle equilibrium probability distribution func-

tion 93(123) for classical hard-sphere fluids are given on the basis of the Percus-Yevick ap-

proximation applied to the inhomogeneous pair distribution function in the presence of a

third particle, 92(12/3). In particular, comprehensive results are given for three spheres in

rolling contact and partial results are given for two spheres in contact with a third parti-

cle in arbitrary position. When compared with available simulation data, our results are

found to be accurate, and the inhomogeneous Percus-Yevick approach appears to be the

first quantitatively successful one for the three-particle configurations considered here.



I. INTRODUCTION

The three-particle equilibrium probability distribution function g3(123) plays an im-

port ant role in fluid-state statistical mechanics, but for decades it has proven to be a difficult

function to adequately approximate. Here we give some new results for the g3 of a classical

hard-sphere fluid, based on an approximation scheme the first author, has recently developed

and implemented [1]. We describe the results in terms of a theoretical framework developed

some time ago by the second author [2]. Our quantitative results are seen to be highly accu-

rate when compared with existing simulation data; our theoretical approach appears to be

the first quantitatively successful one for the three-particle configurations we consider here.

One of the general problems one confronts in developing an adequate treatment of

g3 arises from the shear number of independent variables upon which g3 depends. Even for

a single-species homogeneous fluid for which the pair potential c,02(ij) is a function only of

absolute distance Irii Ibetween particles, g3is in general a function of three scalar coordinates

(for example, of r = Ir12l, s = Ir231and 0, the angle defined by r12 and r32 at r2) and

two independent thermodynamic variables (measuring, for example, number density p and

temperature T). Thus we are dealing with a function of 5 scalar variables. [Notationally

suppressing the thermodynamic dependence, we shall write g3(123) = g(r, s, cosO)].

However, in an important subset of fluid-state applications [5-11,13], g3 arises as a

key function in theories using a hard-sphere reference system, in which the thermodynamic

dependence of g3 is reduced to that of a single variable, pO!',where d is the hard-sphere diam-

eter (which we shall take to be unity in this note). Furthermore, in some of these applications

[5,7,8,9,11] g(r, s, cosO) is needed not over all configurations of three particles, but only over

configurations of three spheres in rolling contact, so that g(r, s, cosO)= g(l, 1,cosO),with

0 the only free variable for given p. In other applications [9,13]a more general set of con-

figurations is needed involving a pair of spheres in contact, with a third sphere in arbitrary
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position with respect to that pair. Here g(r, s, cosO)=g(l, s, cosO).Wegiveresultsfor both

types of configuration, compared with available computer-simulation data.

Our results can most easily be derived, discussed, and understood in the context of

the function

92(13/2) =93(123)/92(12)92(23) (1.1)

where 92(ij) is the pair distribution function of the fluid. The 92(12/3) was discussed in detail

by one of us some time ago [2]. As we showed in that treatment, 92(12/3) is exactly the pair

distribution function of the system of particles under consideration into which a particle is

inserted at r3 and taken to be the source of the external field cp(i,3) acting on the rest of

the particles. It is 92(12/3), rather than 93(123) itself, that is the central function of interest

of the theory developed in [1]. In fact, that theory is based upon use of Percus-Yevick (PY)

approximation applied to 92(12/3). Moreover, it is 92(12/3), rather than 93(123), that most

naturally appears in the treatments to which we have referred above as requiring knowledge

of three-particle hard-sphere correlations.

As discussed in [2], several well-known and useful approximations for 93(123) can

conveniently be characterized in terms of 92(12/3). For example, approximating 92(13/2) by

92(13) in Eq. (1.1) yield the Kirkwood superposition approximation (KSA)

93(123) = 92(12)92(13)92(23) (1.2)

For hard-spheres, this approximation appears to be at its worst for three particles in contact

or nearly in contact in a linear or nearly linear array. For such configurations, on the other

hand, an exact result in one dimension suggests a second approximation (also discussed in

detail in [2]) which we shall call the "linear approximation". For anyone-dimensional system

of hard-core particles (of core length 1) in which the interparticle potentials tp(ij) is felt only

by neighboring particles, one has

93(123) = 92(12)92(23)
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when particle 2 is between particle 1 and 3. In other words

93(13/2) = 1 for Ir131 > 2

when Ir131> Ir121 ; Ir131 > Ir231

(1.3)

For three-dimensional hard spheres in rolling contact, (1.3) proves to be reasonably accurate

as long as (J > 37r/4, but it becomes highly inaccurate as (J approaches 27r/3, for which

all three spheres are in mutual contact. (See Fig. 1). Until our work reported here, no

theoretical treatment of 93(123) has been demonstrated to give satisfactory results at liquid-

state densities for rolling sphere configurations over all realizable (J,or for the more general

set of configurations involving a pair of spheres in contact plus a third sphere at an arbitrary

position.

II. METHODS AND RESULTS

A general method for determining 93(12/3) for a simple atomic fluid has been given

previously by one of us [1]. Briefly, that method requires that the spherically inhomogeneous

Ornstein-Zernike equation, one of the exact equations for the density profile, and a closure

approximation relating the inhomogeneous pair correlation functions, be solved simultane-

ously when the external potential is the pair potential of the simple fluid. Explicit data

were obtained for the bulk thermodynamic properties and the triplet correlation function of

a hard-sphere fluid using the Treizenberg-Zwanzwig density relation and the Percus-Yevick

closure. This procedure was designated PY3 because the closure is applied at the triplet

level; it is more accurate but more numerically demanding than the usual analytic solution

obtained at the pair level.

The data presented here were obtained by the same procedure described in detail in

the original paper [1]. However, they do represent a more accurate numerical solution to

the PY3 approximation since the number of grid points, the bulk cutoff, and the fineness

of the grid were all significantly increased. Specifically, the number of angular nodes were
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increased from 60 to 75, the number of layers in the radial direction was 250, compared to

120 originally, and the distance beyond which bulk properties were assumed grew from 9 to

11 diameters, giving a mesh of 25 compared to 15 layers per diameter originally. In addition,

the convolution integral which remains in the Legendre expanded Ornstein-Zernike equation

was now evaluated using Simpson's rule rather than the trapezoidal rule used previously.

These improvements have little effect for low and moderate densities, but have led to more

reliable data for pas ~ 0.7 and higher.

Table I represents an extensive tabulation of the PY3 inhomogeneous pair probability

distribution of two hard-spheres in contact with a third, g(1,1,cosO)/g(1)2. (The angle is

that subtended by the two hard-spheres at the center of the third with which they are

in contact; the hard-sphere diameter is taken as the unit of length). Perhaps the most

convenient accurate way to obtain the full three-particle probability distribution for this

particular geometry is to utilize the contact value of the radial distribution function given

by the Carnahan-Starling equation of state. The number of significant figures retained in

the table reflects the accuracy of the solution to the PY3 equations rather than the accuracy

of that approximation itself; we discuss the latter shortly.

The inhomogeneous pair function near contact (cosO=0.5) is only close to the homo-

genenous pair correlation function at very low density whereas the Kirkwood superposition

approximation identifies these two functions at all densities. In fact a reasonable approxi-

mation is g(l, 1, 1/2) ~ g(1)2[1 + g(1)]/2. Also the two particles become uncorrelated for

nearly linear configuration [g(1,1, cosO)~- g(1)2,cosO ~ -1], which again contradicts the

KSA, but indicates that the linear approximation g(r,s,cosO) = g(r)g(s) is quite successful

for nearly linear configurations [12].

The accuracy of the PY3 approximation itself can best be gauged from the comparison

with the simulation data given in Figure 1. In general the agreement with the simulation is

highly satisfactory, especially consideringthe rather high density, p3 = 0.83685. The data
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attributed to Bellemansand Orban [3] was derived by dividing their simulated g(l, 1,oos9)

by the square of the contact valueobtained by extrapolating their MC data to contact, g(1) =

4.330. This value appears to underestimate the true value somewhat. The PY 3 contact value

is g(1) = 4.511,and hence a comparisonof the fullPY3 three particle probability distribution

would systematically overestimate the simulated quantity. Use of the Carnahan-Starling

equation of state, g(1) = 4.403, would give better agreement with the simulation of the full

quantity. The bulk radial distribution function g(t) is included in the figure for comparison

(where t = (2 - 2ooSO)I/2);for this purpose the PY3 approximation to this quantity can be

taken as exact. It is clear that g(t) does not have as much structure as the inhomogeneous

quantity, g(1,1,oosO)/g(1)2, and that at this density g(1) greatly overestimates the contact

value g(l, 1, 1/2)/g(1)2. The disparity between the two pair functions graphically illustrates

the error in the Kirkwood superposition approximation. Finally, Bellemans and Orban [1968]

have utilized a quantity A3 in their theory for the entropy of mixing of nearly identical hard-

spheres. A3 is essentially the angular integral of the three particle distribution function

(rolling contact), and they found it to be equal to 231 ::i:2 at pfP =0.77254 and 343 ::i:2 at

pfP =0.83685. The PY3 values are 232.4 and 355.2; most of the error for the higher density

is attributable to the overestimation of the contact value discussed above.

Figure 2 compares the PY3 approximation to the inhomogeneous pair probability

distribution function with the simulations of Uehara et al. [12],for the case when two spheres

are in contact at a moderate density of pfP =0.5261. Wehaveplotted g(l, s, oosO)/(g(1)g(s)]

for 8 = 1,1.2, and 1.6. Note that the respective MC values are g(s) = 2.262,1.470 and 0.908,

and those given by PY3 are g(8) = 2.2876, 1.4701,and 0.9039. The simulation data are

derived from Table II of Uehara et aI, by multiplying their simulated quantity c5(r, 8,1) by

their BGY2 values for g(r), rather than by the more coarsely tabulated simulation data of Ree

et al. [11]; the small errors in the BGY2 results are not relevant for the comparison presented

here. Again the PY3 approximation is seen to perform very satisfactorily, indicating that it
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is probably a good approximation for the full three-particle probability distribution function

for all configurations of the hard-spheres, and not only the rolling contact most explicitly

addressed in this paper. We are currently actively pursuing extensions of our approach to

potentials lacking a hard core (e.g., the Lennard-Jones potential).

Tables of the PY3 g(!,s,cos9)/g(!)g(s) for representative ~,9, and p are available

from either author upon request.
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Table I. PY3 values for the inhomogeneous pair probability distribution for two hard-
spheres rolling around a. third, g(l, 1,cos 8)/g(1)2, for various densities, pd.3.

cos 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5000 1.0713 1.1610 1.2753 1.4225 1.6164 1.878 2.238 -2.751 3.52
0.4419 1.0603 1.1342 1.2252 1.3384 1.4806 1.662 1.895 2.198 2.60
0.4042 1.0539 1.1186 1.1966 1.2908 1.4051 1.544 1.713 1.916 2.16
0.3658 1.0479 1.1042 1.1704 1.2476 1.3376 1.442 1.558 1.682 1.80
0.3268 1.0422 1.0908 1.1463 1.2087 1.2778 1.352 1.427 1.49] 1.53
0.2872 1.0370 1.0785 1.1244 1.1738 1.2252 1.275 1.317 1.337 1.31
0.247] 1.0321 1.0672 1.1044 1.1421 1.1781 1.208 1.222 1.209 1.14
0.2066 1.0277 1.0569 1.0865 1.1144 1.1376 1.151 1.146 1.110 1.02
0.1657 1.0237 1.0476 1.0704 1.0898 1.1024 1.103 1.083 1.03] 0.93
0.1245 1.0199 1.0391 1.0561 1.0681 1.0719 1.062 1.032 0.970 0.86
0.0831 1.0166 1.0316 1.0434 1.0494 1.0462 1.029 0.991 0.924 0.82
0.0416 1.0135 1.0250 1.0324 1.0335 1.0250 1.003 0.961 0.893 0.79
0.0000 1.0108 1.0191 1.0229 1.0198 1.0069 0.981 0.936 0.869 0.77
-0.0416 1.0085 1.0140 . 1.0148 1.0087 0.9932 0.965 0.921 0.858 0.77
-0.0831 1.0064 1.0096 1.0081 0.9996 0.9822 0.953 0.911 0.853 0.78
-0.1245 1.0046 1.0060 1.0026 0.9926 0.9743 0.946 0.906 0.855 0.79
-0.1657 1.0032 1.0030 0.9983 0.9874 0.9692 0.943 0.907 0.864 0.82
-0.2066 1.0020 1.0007 0.9951 0.9839 0.9664 0.942 0.912 0.877 0.84
-0.247] 1.0010 0.9989 0.9928 0.9819 0.9658 0.945 0.920 0.896 0.88
-0.2872 1.0003 0.9977 0.9915 0.9814 0.9673 0.950 0.933 0.919 0.92
-0.3268 0.9998 0.9969 0.9910 0.9819 0.9702 0.957 0.947 0.944 0.96
-0.3658 0.9995 0.9966 0.9913 0.9838 0.9750 0.967 0.964 0.974 1.01
-0.4042 0.9993 0.9966 0.9921 0.9862 0.9803 0.977 0.982 1.002 1.06
-0.4419 0.9992 0.9970 0.9934 0.9894 0.9867 0.989 1.001 1.034 1.11
-0,4788 0.9993 0.9975 0.9950 0.9930 0.9934 1.000 1.019 1.062 1.15
-0.5149 0.9995 0.9981 0.9966 0.9963 0.9993 1.010 1.034 1.082 1.18
-0.5501 0.9995 0.9986 0.9979 0.9988 1.0034 1.0]6 1.040 1.087 1.17
-0.5844 0.9997 0.9990 0.9989 1.0006 1.0061 1.019 1.042 1.082 1.15
-0.6176 0.9998 0.9994 0.9997 1.0018 1.0075 1.019 1.039 1.069 1.11
-0.6498 0.9998 0.9997 1.0002 1.0026 1.0082 1.019 1.034 1.054 1.07
-0.6809 0.9998 0.9998 1.0005 1.0030 1.0080 1.017 1.028 1.037 1.03
-0.7108 0.9999 1.0000 1.0008 1.0032 1.0075 1.014 1.021 1.020 0.99
-0.7394 0.9999 1.0001 1.0009 1.0030 1.0065 1.011 1.013 1.005 0.96
-0.7668 0.9999 1.0002 1.0010 1.0028 1.0055 1.008 1.007 0.992 0.94
-0.7928 1.0000 1.0002 1.0009 1.0024 1.0043 1.005 1.001 0.98] 0.92
-0.8175 1.0000 1.0002 1.0009 1.0021 1.0032 1.003 0.996 0.974 0.92
-0.8407 1.0000 1.0002 1.0007 1.0016 1.0020 1.000 0.992 0.969 0.91
-0.8625 1.0000 1.0002 1.0007 1.0012 1.0010 0.998 0.989 0.967 0.92
-0.8828 1.0000 1.0002 1.0005 1.0008 1.0001 0.997 0.988 0.967 0.92
-0.9016 1.0000 1.0002 1.0004 1.0004 0.9993 0.996 0.987 0.970 0.94
-0.9188 1.0000 1.0001 1.0003 1.000] 0.9987 0.995 0.987 0.974 0.95
-0.9344 1.0000 1.0001 1.0002 0.9998 0.9982 0.995 0.989 0.981 0.98
-0.9484 1.0000 1.0001 1.0001 0.9996 0.9978 0.995 0.990 0.988 1.00
-0.9608 1.0000 1.0001 1.0000 0.9994 0.9976 0.995 0.993 0.997 1.03
-0.9715 1.0000 1.0001 0.9999 0.9992 0.9975 0.995 0.995 1.006 1.05
-0.9805 1.0000 1.0000 0.9999 0.9991 0.9975 0.996 0.998 1.015 1.08
-0.9878 1.0000 1.0000 0.9998 0.9991 0.9975 0.996 1.000 1.024 1.10
-0.9934 1.0000 1.0000 0.9998 0.9990 0.9975 0.997 1.002 1.031 1.13
-0.9973 1.0000 1.0000 0.9997 0.9990 0.9975 0.997 1.004 1.036 1.14
-0.9995 1.0000 1.0000 0.9997 0.9990 0.9976 0.998 1.005 1.040 1.15
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