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ABSTRACT

We apply the recently developed ladder approximation (LA) fo! three- and

: - four-particle correlation functions to the thermodynamic perturbation ~heory. We

calculate the first correction in the perturbative expansion of the pair correlation

function, and the second correction in the expansion of the free energy of a fluid of

particles interacting via a hard-sphere reference potential plus a perturbing term.

Both calculated quantities depend on the three- and four-particle correlation func-

tions of the reference system. The results for the free energy are in good overal

agreement with computer-simulation data over a wide range of densities, up to the

hard-sphere fluid-solid phase transition. The results for the pair correlation func-

tion are in good agreement with computer-simulation data except near contact at

high densities.

Key words:

many-particle correlation functions, simple fluids, Ornstein-Zernike equation,

ladder approximation, Kirkwood superposition approximation, thermodynamic per-

turbation theory, pair correlation function, free-energy.

PACS numbers: 05.20.-y, 05.70.-a, 61.20.Gy.



I. INTRODUCTION

The present paper is one of a series in which a powerful new methoQ of calculating

three- and four-particle correlation functions is considered. Our approach is based

on the generalized Ornstein- Zernike (OZ) formalism for many-particle correlation

functions, developed recently in refs. 1 and 2 (hereafter referred to as I and II).

As with the standard OZ equation for the pair correlation function, the generalized

OZ equation (GOZE) derived in I is a convenient starting point for approximate

evaluation of the three- and four-particle correlation functions in simple fluids. In

this paper we apply the simple closure approximation for the GOZE, leading to

a ladder approximation(1.2) (LA). The LA corresponds to a resummation of the

ladder diagrams in the h-bond Mayer graph expansion of three- and four-particle

correlation functions(2.3); hence its name.

Many-particle correlation functions, in particular three- and four-particle func-

tions, play an essential role in numerous problems of both equilibrium and non-

equilibrium statistical physics. Such functions appear in various BOrts of thermo-

dynamic perturbation theories, (".5) in a cluster expansion of the dielectric constant

of fluids and suspensions, (6,7) in the theory of depolarized interaction-induced light

B~attering,(8,9) in the kinetic theory of dense fluids(lO-13) and suspensions,(14), in

calculating quantum corrections to the equation of state of fluids(15), and in many

other applications. While there is a fundamental need for detailed knowledge of

three- and four-particle correlation functions, there is still a lack of good evaluation

methods. The most frequently used, the Kirkwood superposition approximation

(KSA) for the three-particle correlation function and its generalization to the four-

particle correlation function, are not reliable. For high densities the. superposition

approximation often gives poor, results and it is not easy to tell Gpriori for which

functionals of three- and four-particle correlation functions it will yield good results.
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One of the goals of the present paper, as well as the other papers of this series,

is to test the accuracy of the LA by comparing results it yields with computer-,

simulation data. (In future work we intend also to explore other, _moresophisti--:- ----
cated approximations based on the GOZE, which facilitate full satisfaction of the

core condition for the three-particle correlation functions. (16)) In ref. n the LA was

applied to a numm:ical evaluation of the dipole-dipole-interaction correlation func-

tions for a hard-sphere (BS) fluid. The dipole-dipole-interaction correlation func-

tions are present in expressions for the dielectric constant for nonpolar, polarizable

fluids,(17,18) and for the integrated intensity measured in depolarized interaction-

induced light scattering experiments(6,7). The comparison of the LA results with

computer-simulation data(19,20) show qualitative agreement for a very wide range

of densities, up to the fluid-solid phase transition. On the other hand in this context

for high densities the KSA completely fails.

In the present paper we give another example of an application of the LA which

is of great importance in liquid-state theory. We present results for thermodynamic

perturbation theory,<4,5) We consider a fluid, for which the pair potential can be

profitably separated into a short-ranged reference potential and a perturbing term.

With such a separation, one can use perturbative techniques to evaluate various

properties of the fluid, provided that appropriate properties of the reference system

are known. In this paper we are interested in the evaluation of the second-order

correction in the expansion of the free energy, and the first correction in the corre-

sponding perturbation expansion of the pair correlation function. To calculate these

quantities one needs an appropriate combination of two-, three- and four-particle

correlation functions for the reference system which can be expressed in terms of

the functional derivative of the Helmholtz free energy with respect-to the pair po-

tential. We denote this combination by A. To evaluate the function A we use here

the LA. All numerical results we present were obtained for a HS reference potential.
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Comparison of the LA results with computer-simulation data allows us to estimate

the validity of the LA for various densities and various configurations of particles.

Thermodynamic perturbation theory has previously been consi4eI:ed in many

papers. In particular, Smith et al.,(21) Alder et al.,(22) and Henderson et al.<23)

have calculated both the second-order term in an expansion of the free energy

and the first order term in an expansion of the two-particle correlation functions

directly from computer simulations. They considered a square-well fluid with a HS

reference potential. Stell and Weis(24) have obtained Monte Carlo (MC) results for

the difference between the pair correlation function for a HS and HS with added

Lennard-Jones (LJ) tail systems. We use their data to test the LA, along with very

new data generated by Weis.(25)

It is interesting to note that the correlation function A of the perturbation

theory appears as a natural object of the generalized OZ formalism presented in

refs. I and ll. In these references the set of functions describing equilibrium corre-

lations between two pairs of particles was considered. A full pair-pair correlation

function was defined in a natural way, and it was then separated into the reducible

and irreducible parts. The reducible pair-pair correlation function was defined as a

sum of the contributions to the full pair-pair correlation function for which the two

pairs are correlated through a chain of single intermediate particles. The sum of the

remaining contributions, i.e. for which a single intermediate particle cannot be dis-

tinguished, forms the irreducible pair-pair correlation function. One can show that

the irreducible pair-pair correlation function is equal to the function A appearing

in thermodynamic perturbation theory. We will address this point in the present

paper.

In the next step the direct and indirect pair-pair correlation functions was in-. -

troduced. The indirect pair-pair correlation function is a sum of those contributins

to the irreducible pair-pair correlation function for which the two pairs are corre-

lated through a sequence of intermediated pairs of partides. This is an extension
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of the idea that goes into the usual Ornstein-Zernike equation. The direct pair-pair

crrelation function is a sum of those terms for which i) an intermediate pair of

particles cannot be distinguished, and which ii) cannot be expressed- as a simple

: --combination of usual two-particle direct correlation functions. The "GOZE derived

in I relates the irreducible pair-pair correlation function to the direct pair-pair cor-

relation function and includes also two-particle full and direct correlation functions.

The closed integral equation for the irreducible pair-pair correlation function, cor-

responding to the LA, was obtained by neglecting the direct pair-pair correlation

function in the GOZE.

This paper is organized as follows. In Sec. ITwe introduce the basic formulas

of the thermodynamic perturbation theory. In Sec. ill the main elements of the

generalized OZ formalism are recalled and expressed in the functional differentiation

language. Next, the LA for the three- and four-particle correlation functions is

formulated. In Sec. IV the numerical results for the perturbative corrections to

the pair correlation function and the free energy are presented. We close our paper

with some concluding remarks in Sec. V.

D. THERMODYNAMIC PERTURBATION THEORY

We introduce now the basic formulas of the thermodynamic perturbation theory.

We express them in a form suitable for the discussion of their relation to the gener-

alized Ornstein-Zernike formalism.(l,2) (For review of various methods of thermo-

dynamic perturbation theory see e.g. refs. 4 and 5).

We consider a uniform equilibrium system of identical classical particles en-

closed in a volume V, described by the grand canonical distribution function. The

average number of particles is denoted by N, the density by n, th&-temperature

by T, and the standard notation fJ = l/kBT is used, where kB is Boltzmann's

constant. The position of ith particle rj is denoted by (i).
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We assume that the partides i and j interact via a spherically symmetric pair

potential ~2(ij) which is divided into a reference part ~2(ij) and the perturbation

f~~ (ij) so that

~2(ij) = ~2(ij) + E~~(ij). - - - (2.1)

For convenience we have introduced a parameter Ewhich measures the strength of

the perturbation. With such a partition of the pair potential, for a given temper-

ature and density, the Helmholtz free energy F ==F [~2] can be expanded around

the reference value F(D) ==F [~2]:
00

F = F(D) + I),sE) I:F(k).
1:=1

The k-th term in expansion (2.2) can be easily expressed in terms of a functional

derivative of the reference-system free energy with respect to the pair potential

(2.2)

Fl.) = (J~. f 41f 41'... f tIk f tIk' (6~2(11,t:6~2(kk'»).. i! ~~(ii'),
(2.3)

The functional derivative in eq. (2.3) is defined in a usual way and is evaluated at

constant temperature, constant uniform density n, and at ~2 = ~2.

The expression (2.3) for successive terms in the expansion (2.2) can be simpli-

fied by using a well-known relation

~n2(ij) = (6:2~ij)) n'
(2.4)

where n2(ij) = n2g2(ij) is the two-partide reduced distribution function. We

assume that the thermodynamic limit is taken in eq. (2.4) after the functional

derivative is calculated. Using eq. (2.3), the relation (2.4) specified for a reference

system, and the assumption that in bulk the system is uniform one gets in the

thermodynamic limit the following expression for the first term in the perturbative

expansion of the Helmholtz free energy per particle:

F(I) 1 / (0)

/(1) == N = 2nksT d292 (12)~~(12),
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where the superscript (0) indicates that that the pair distribution function g2 is

evaluated for ~2 = ~2' The function /(1) depends on the properties of the reference

system through the two-particle distribution function only. Since for many systems

: - there are good approximations and a number of computer-simulation- data for the

two-particle distribution function, calculation of /(1) usually does not cause much

difficulty (5,21 ,22) .

To evaluate the second-order term in the expansion of the free energy one needs

the first derivative of the two-particle distribution function n2(12) with respect to

the pair potential. We define the function A by the following expression

( 6n2(12) )n4 A(12 134) = - 6,8~2(34)n'2 (2.6)

With this notation, in the thermodynamic limit, one obtains from (2.3) and (2.4) the

following equation for the second term in perturbative expansion of the Helmholtz

free energy per particle:

/(2) = F;) = -in3kBT f d2 f d3f d4 A(O)(12 134) ~~(12)~~(34),
(2.7)

where, similarly as before, the superscript (0) indicates the reference-system value

of the function A.

The function A(12 I 34) can be expressed in terms of two-, three- and four-

particle equilibrium correlation functions of the reference system. Such a relation

is discussed in the next section. We will see that the function A can be numerically

evaluated in the LA, and the results can be applied to thermodynamic perturbation

theory.

The expansion similar to (2.2) can be also introduced for the pair distribution

function of the perturbed system:

00

92 =9~O)+ L(,8f)kg~k).
i=1

(2.8)

8



In this case already the first-order term g~l) depends on the function A:

g~1)(12) = -~n2 f d3 f d4 A (0) (12 134)~~(34).
(2.9)

.--

The quantity g~l) can be evaluated using the LA and numerical results of the

evaluation are presented in this paper.

The problem of calculating the functions 1(2) and g~l) have been addressed

previously in many papers(5,21-2<i). The functions have been evaluated for various

systems using both computer simulations and the KSA. The comparison of the

results shows that the KSA is in substantial error for high densities and that there

is need for a better approximation.

ID. LADDER APPROXIMATION FOR THE mREDUCmLE PAIR-

PAm CORRELATION FUNCTION

In this section we describe an approximate method of evaluating the function A,

based on the LA introduced in refs. I and n. To this end first we need to know

the relation between the function A, defined by eq. (2.6), and the irreducible

pair-pair correlation function discussed in refs. I and n in the framework of the

generalized OZ formalism. The problem of this relation has been already considered

in ref. lOb) in a different context. It was shown there that the function A and

the irreducible pair-pair correlation function are identical. We repeat briefly the

arguments appropriate to our present purpose, and we put the generalized OZ

formalism in the context of functional differentiation.

Following ref. lOb) we define, in terms of functional derivativ~, the set of

functions Qij. For our present purpose it is sufficient to consider i,; = 1,2 only. It

is convenient at this point to assume that the equilibrium system of particles under
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consideration is subject to an arbitrary external field ~l. The local number density

at the point (i) is denoted by n(i). With this notation we can conveniently define

( 6n(1) )n2Qll(112) = - 6,8~1(2) ~2'

(6n2 (12) )n3 Q21(12 13) = - 6,8~1(3) ~2'
3

( 6n(1) )!:..Q12(1123) = - 6,8~2(23) ~l'2

(3.1)

(3.2)

(3.3)

and

n" Q22(12 134) = - ( 6n2(12» ) .
2 6,8~2(34) ~l

We also introduce the function Q11"(1 I 2) defined by the functional derivative

inverse to (3.1):

(3.4)

(6,8~(2») .
n-2 Qi~"(2 11) = - 6n(1) ~2

(3.5)

(The above definitions, and the definitions of all other quantities introduced in this

section are general, valid for any interaction potential. In the application to the

thermodynamic perturbation theory the quantities are evaluated for the reference

system with ~l = 0.) The functional derivatives of eqs. (3.1) and (3.0) obey the

following identity

f d2 (6~1(1» ) (6n(2» ) =6(1-3).
6n(2) ~2 6~1(3) ~2

(3.6)

Taking into account known properties of the functional derivatives, it is not

difficult to express the functions Qi;, where ij = 1,2, in terms of k-particle equi-

librium correlation functions 9/c,with k = 2,3,4. The explicit expressions are as

follows:

Qll(111') = ! 6(1-1') + h2(1-1'),n

Q21(12 11') = Q12 (1' 112)
1

= - (6(1- 1') + 6(2 - 1'» 92(12)+ 93(123)- 92(12),n

(3.7)

(3.8)
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and

Q22(12 11'2') =~[6(1-1')6(2 - 2') + 6(1- 2')6(2-1')] 92(12)n
1 -

+ - [(6(1-1') + 6(2-1'» 93(122')+ (6(1- 2') + 6(2- 2')}93(121')]n - -.

+ 94(121'2') - 92 (12)g2(1'2') ,
(3.9)

where

h2(12) = 92(12)-1. (3.10)

Taking into account the expression (3.7) one can easily see that eq. (3.6) is equiv-

alent to the standard OZ equation and that the function Qi~" can be expressed in

the form

Q~~"(112) = .!6(1- 2)- c2(1- 2),. n (3.11)

where c2(1 - 2) is a two-particle direct correlation function.

By comparing eqs. (3.7)-(3.9) and (3.11) with eqs. (2.9)-(2.11) and (2.15) of

ref. n one immediately arrives at the conclusion that the functions Q, in the present

paper defined in terms of functional derivatives, are identical to the functions Q of

refs. I and n. In refs. -r and n the functions Qij were defined as the correlation

functions between two groups including i and j particles respectively. In particular,

the function A(12 I 34) describes the correlations between the two pairs of particles

(12) and (34); we call this function the pair-pair correlation function.

We are now in position to prove that the function A defined by eq. (2.6) is

equal to the irreducible pair-pair correlation function considered in refs. I and n.

Let us consider the following functional-derivative identity:

-

(6n2(12)) - f d5f d6 (6n2 (12») (c5~ 1(5)) ( c5n(6) )6~2(34) ~l - c5~1(5) ~2 c5n(6) ~2 c5~2(34) 41

(c5n2(12))+ c5~2(34) n'

(3.12)
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Using notation (2.6) and (3.1)-(3.5) one can rewrite eq. (3.12) in the form

Q22(12 134) =n2 f d5 f d6 Q21 (12 15)Qi~V(5 16)Q12(6 134)

-- +..4(12134).
(3.13)

Eq. (3.13) is identical to eq. (2.13) of ref. n. It describes the decomposition of

the pair-pair correlation function Q22 into the reducible part (the first term on

the rhs of this equation) and the irreducible part (the second term ..4). It follows

immediately that the function ..4given by eq. (2.6) is identical to the irreducible

pair-pair correlation function defined in I and n. (In ref. I the irreducible part was

denoted by (Q)Q~~». One can Show(l,20) that the reducible pair-pair correlation

function, defined in eq. (3.13) corresponds to the situations in which the pairs

of particles (12) and (34) are correlated through a chain of a single intermediate

. particles. The irreducible part ..4(12 134) correspond to the case in which no single

intermediate particle can be found between (12) and (34).

In ref. I a detailed analysis of the structure of the irreducible pair-pair corre-

lation function A was given. This analysis led to the derivation of the GOZE. The

GOZE can be expressed in the following form(2)

~2 f d5f d6Ai''''(12 156)A(56 134) = 1(12134),

where

1(12 134) = ~(6(1- 3)6(2- 4) + 6(1- 4)6(2- 3»,n

and the inverse integral kernel Aino is decomposed as follows:

Aino(12 134) = : 2\ 1(12134) - D(12 134),92 1

with D given by

D(12 134) = (1 + P(34») [~c2(13)6(2- 4)

+ ~ 6(1- 3)C2(24) - C2(13)C2(24)]

+ C22(12 134).

12
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The operator P(34) in eq. (3.17) permutes the variables (3) and (4). It can be

shown that the function C22(12 134) is the only term on the rhs of eq. (3.17) with

: - a group property, i.e. which vanishes when the distance between &n)' two of the

particles (1), (2), (3), and (4) tends to infinity. The Mayer-graph analysis of eqs.

(3.14)-(3.17) leads to the conclusion that C22(12 I 34) corresponds to the cases

in which there are no intermediate pair of particles such that (12) and (34) are

correlated only through it. Therefore C22 can be naturally interpreted as a direct

pair-pair correlation function and eq. (3.14) supplemented with the decomposition

(3.16)-(3.17) as a GOZE.

It is interesting to note that the GOZE (3.14) can be cast into a form analogous

to (3.10) for the standard OZ equation. Taking into account that the pair potential

is symmetric with respect to the permutation of the variables one can rewrite (3.14)

as

f d5f d6 (6~2(12) ) (6n2(56) ) =! (6(1- 3)6(2- 4) + 6(1- 4)6(2- 3))

6n2(56) n 6~2(34) n 2 (3.18)

The underlying structure of a correlation functions is more complicated for the pair-

pair GOZE then for the standard OZ equation and the additional decomposition

(3.16)-(3.17) of the function AiRt1is an inherent part of the formalism. Functional-

derivative expressions (3.6) and (3.18) form a part of a general scheme. In this

scheme the GOZE of an order i can be expressed 88 a relation analogous to eq.

(3.18) but with the functional derivative of the i-particle density n, with respect to

an i-particle potential, with the densities ni, kept constant for j = 1,. . . ,i - 1. (26)

As with the standard OZ equation, the GOZE is not a closed integral equation

for the irreducible part of the pair-pair correlation function. For ~e purpose of

evaluating the function A, the GOZE has to be supplemented by an appropriate

closure approximation for the pair-pair direct correlation function A. The simplest
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possible approximation, corresponding to a resummation of the ladder diagrams in

the h-bond expansion of the function A, is obtained by setting

C22 = o. - -- (3.19)

By inserting expression (3.19) into the GaZE one gets the followingclosed integral

equation for the function A

A(12 134) - n2 g2(12) f tISf d6( ~6(1- 5)<2(2- 6)

+ ~ 6(2 - 6)<2(1- 5) - <2(1- 5)<2(2- 6») x A(56 134)

= g2(12)(6(1- 5)6(2 - 6) + 6(1- 6)6(2 - 6)).

(3.20)

Equation (3.20) allows as to approximately evaluate the function A in terms of the

two-particle correlation function.

In ref. IT, eq. (3.20) was used to calculate the dipole-dipole interaction cor-

relation functions that appear in the theory of the dielectric constant of nonpolar,

polarizable fluids and in the theory of depolarized light scattering. In the present

paper we apply this equation in the thermodynamic perturbation theory and cal-

culate the quantities /(2) and g(l) defined byeqs. (2.7) and (2.9).

IV. Numerical results

We are now in position to present our numerical results. We have performed calcu-

lations based on the LA for two systems, both with a HS reference potential:

~r (i .) =
{

0 for rij < (1; (4.1)
2 J 00 for r ij > (1,

- where (1 is a HS diameter and rij is a distance between particles i and j. The first

of the systems considered has a square-well (SW) perturbation correction to a pair

potential:

{
-1 for rij < d;

~~(ij) = 0 for r~j > d. (4.2)

14
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In the second case the perturbation potential is a LJ tail:

p "" ) - {-1
)6]~2(tJ - 4 [(U/Tij)l2 - (U/Tij

for T"" < 21/6u.') - ,
for Tij > 21/6u.

(4.3)

In both cases the strength of the perturbation is measured by the parameter f in

the expression (2.1).

To numerically solve the eq. (3.20) and evaluate the quantities 1(2) and g~1)

given by the respective expressions (2.7) and(2.9), we have used the algorithm

which was described in detail in ref. II. As input we have used a Verlet-Weis

parametrization of the HS pair correlation function. (27) Without giving details, we

only mention that by multiplying eq. (3.5) by the perturbing potential tP~(34)

and integrating with respect to the variables (3) and (4) one arrives directly at

an integral equation for the function g~1). This greatly simplifies the numerical

problem, since in this way one only has to solve an integral equation for a function of

one variable. The free-energy correction 1(2) can then be evaluated by integrating

g~1) with a perturbation potential ~~ [cf. eqs. (2.7) and (2.9)]. The integral

equation have been solved using fast Fourier transform techniques. It takes only

a few minutes of CPU time on a VAX 11/780 to obtain the solution for a given

density.

First we describe the results for a SW perturbing potential. We have calculated,

using the LA, the second-order correction to the free energy 1(2), for a number of

SW widths and a wide range of densities. The results are presented in figs. 1-3. In

figs. 1 and 2 the dependence of the the LA results for the free energy per particle on

the reduced density nuS for various SW widths are presented. The best fits to the

MC data, by Henderson et al. (23), are also given for the comparison. (Henderson et

al.<23)and Smith et al.<21)have evaluated the integrals (2.7) and (2.8)!or 1(2) and

g~1) directly, using the MC method). One can see that the LA and the MC results

are in qualitative agreement for a very wide range of densities. For the SW width
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dju = 1.5 the function f(2) was calculated by Smith et al.c21) using a superposition

approximation for the three and four-particle correlation functions:

g~O) = g~O) (12) g~O) (13) g~O) (23) (4.4)

and

g~O) (1234) = g~O) (12) g~O) (13) g~O) (14) g~O) (23) g~O) (24) g~O) (34). (4.5)

(eq. (4.5) is a generalization of the the KSA (4.4) to the four-particle correlation

function; we refer to both approximations (4.4) and (4.5) as KSA]. We compare in

fig. 3 the KSA results for f(2) by Smith et al. with the LA results and the computer-

simulation data by Henderson at al. (23) and Alder et al. (22) The KSA results are

in great error for high densities, while the LA results qualitatively follow the MC

data up to very high densities. This is a similar situation as with the dipole-dipole-

interaction correlation functions discussed in ll, where analogous behavior of the

LA and KSA results with respect to the computer-simulation data was observed.

It is interesting and important to compare the successive terms in the per-

turbative expansion (2.2) of the free energy. The reference value f(O) - fB of the

excess free energy per particle, where fB is the ideal-gas (Boltzmann) value, can be

calculated with high accuracy from the approximate analytical expression given by

Carnahan and Starling(28) for a hard-sphere fluid. The first perturbative correction

f(1) can be easily obtained from eq. (2.5). The values of (f(0) - fB) jkBT and

f(i) jkBT, for i = 1,2 et various densities are summarized in the table I. One can see

that the first correction is large in absolute magnitude compared to the reference

value of the excess free energy. However, for high densities, the expansion converges

- rapidly, and the the second-order correction constitutes only a few percent of the

first correction. Thus the errors in our approximate assessment of f(21, which are

quite small over a wide range of densities, give rise to essentialy negligible error in

the excess free energy obtained from adding at these densities the contributions from

16
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lei) for i = 0,1, and 2. The fast convergence of the perturbative expansion (2.2)

for high densities is related to the stringent configurational constraints imposed on

the system by the repulsive cores.<4) In fact, it has been shown rigorously in one(29)

and in two(30) dimensions that the first-order perturbation thermodynemic theory

is exact in the close-packing limit for a short-ranged perturbing potentIal.

The irreducible pair-pair correlation function A is a sum of terms depending

on the correlations between two, three, and four particles. To see this cf. e.g. eqs.

(3.7)-(3.11), and (3.13). The respective two-, three-, and four-particle contributions

to A(12 134) are obtained by selecting in eq. (3.13) the terms which include, after

integration, two, one, and no Dirac 0 functions describing particles common for the

pairs (12) and (34). It is important to note, that, individually, the corresponding

two-, three- and four-particle contributions to 1(2) are big; the smallness of 1(2)

is due to a substantial cancellation among the individual terms. Indeed, for the

square-well fluid the two-particle contribution IJ2) to the second order term in the

expansion of the free energy 1(2) is related to the first order term 1(1) by

IJ2) = ! 1(1) .2 (4.6)

Taking this into account, one can see from the table I that, for high densities, the

total value of 1(2) is less than 10% of the two-particle contribution IJ2). In our

calculations the two-particle contribution was determined accurately. Therefore

one can conclude that the relative error in the sum of the three- and four-particle

contributions obtained from the LA is quite small.

The results for the first perturbative correction to the pair correlation function

g~1) for the SW widths d = 1.5(Tare represented in figs. 4-7. The MC results by

Smith et al. (21b)are also given. The hard-core contact values obtained from the MC

- simulations by Smith et al. are subject to large uncertainty; we have substituted

for them the results obtained from molecular-dynamics data by Michels et al. (3f) .

Michels et al. have calculated the contact values of the two-particle correlation
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function of a square-well fluid for various reduced square-well depths f* = (3E.The

contact values of g~l) were obtained from Michels' data by extrapolating f* -+ O.

From the results for g~l) one gets more detailed information about the--accuracy of

- the approximation than from the results for the free-energy correction. For low and

intermediate densities, up to n = 0.5 the LA and MC results agree very well for

all separations of the particles. For higher densities, however, although the overall

agreement is quite good, the LA contact values are in a substantial error. This is a

substantial disadvantage of the approximation in applications in which the contact

values of correlation functions are very important, for example in a kinetic theory

of the HS fluid(lO,ll). One should note, however, that, as for /(2), there is strong

cancellation among two-, three-, and four-particle contributions to g~l). Taking into

account that the contact value of the HS pair correlation at the reduced density

nu3 is approximately equal to 4, one concludes that the relative error in the sum

of the three- and four-particle contributions to the contact value of g~l) is on the

order of 10%.

In figs. 8 and 9 we compare the first-order perturbation results for the pair-

distribution function g2 of a square-well fluid with the pair distribution function of

the hard-sphere reference system g~O)at a typical liquid-state density nu3 = 0.8 and

the reduced temperature T* = kBT IE = 1. The results for the square-well widths

d = 1.3750' and d = 1.750' are given. One can see that even at this relatively low

temperature the perturbative correction is rather small.

Similar calculations have been performed for a HS system with the LJ tail

(4.2) as a perturbing potential. The LA results for g~l) for the respective densities

nuS = 0.6 and 0.91 are represented in figs. 10 and 11. For the comparison we give

also the results of the MC calculations by Stell and Weis(24), augment~d by results

of Weis(25) of much greater precision required for our present purpose. Weis has

evaluated, with great accuracy, the pair distribution function g~O)of the reference
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HS fluid, and the pair distribution function of the HS+LJ tail fluid for various

temperatures. In addition to the LA result we present in figs. 8 and 9 the quantity

T* (gfS+LJ - g!!S). (4.6)

evaluated by Weis at the reduced temperature T* = 1.6 for the density nu3 = 0.6

and T* = 1.35 for nu3 = 0.91. The calculations at temperatures higher than pre-

sented here showsthat the contributions from the terms nonlinear in the perturbing

potential are negligible for the considered densities and temperatures, and that the

quantity (4.6), essentially, represents the first-order correction to the pair distribu-

tion function. The statistical absolute error of the MC results is smaller then 0.01,

except for the contact value, which was obtained by extrapolation (r = 1.010' is the

smallest distance for which g2(r) was evaluated directly from the MC simulations).

The contact value inaccuracy can be estimated to be less then 0.1. The MC calcu-

lations were performed using 1372 particles (which is a number compatible with a

fcc crystal structure) and generating between 8 and 11 million configurations. The

perturbing LJ potential was cut at r = 3.20',but we found that the influenceof this

cutoff is negligible for our purpose here.

To illustrate a typical difference between the pair distribution functions of a

system of particles with hard-sphere cores and LJ tails and a HS system at high

densities we show, in fig. 12, the distribution functions for both systems at reduced

temperature T* = 0.7 and density nu3 = 0.9. The pair distribution function for the

HS+LJ tail system was evaluated in first order in the perturbing potential, using

the LA. The difference between pair correlation functions of the reference and the

perturbed systems is very small for the slowly varying perturbing LJ potential. The

MC results for the perturbed system would be practically indistinguishable from

the theoretical results on the scale of the figure.

Finally, in fig. 13 we represent the LA results for /(2) for the HS+LJ tail

system. In this case, due to a long range of the LJ tail, the cancellation between
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two-, three-, and four- particle term is particularly strong and the second-order

contribution to the free-energy is very small at high densities.

V. Conclusions

In this paper we have presented an application of the LA to the three- and four-

particle correlation function in thermodynamic perturbation theory. The LA can

be obtained from the GOZE for the pair-pair irreducible correlation function(1,2)

by leaving out the direct pair-pair correlation function. This simple closure approx-

imation leads to a closed integral equation from which the three- and four-particle

correlation function can be approximately evaluated in terms of the pair correlation

function. The LA corresponds to a resummation of the ladder diagrams in the h-

bond Mayer graph expansion of the three- and four-particle correlation functions.

Evaluating of the correlation functions from the LA is relatively undemanding from

the numerical point of view.

We have applied the LA to evaluate the second perturbative correction to the

free energy and the first correction to the pair correlation function for two systems,

both with a HS reference potential. In the first case we have considered the SW

perturbation potential, in the second case the perturbation was the LJ tail. For

the second correction to the free energy density /(2) we have obtained good overal

agreement with the computer-simulation data for a very wide range of densities,

up the HS fluid-solid phase transition. At least for the SW width d = 1.50', for

high densities the LA gives much better results than the KSA. For the perturbative

- correction to the pair correlation function g!l) the LA are in very good agreement

with computer-simulation data up the the reduced density nO's = O.5oL- For higher

densities the LA fails to represent accurately the contact value of the correlation

function.
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As we have already discussed in refs. I and II the LA is closely related to

the generalized hypernetted-chain approximation (HNC) for a pair-pair correla-

tion function, introduced by Pinski et a1.(32) They obtained the generalized HNC

- approximation by functionally differentiating the two-particle correlation function

given in the HNC approximation with respect to the pair potential with the local

density held constant. This lead to an integral equation very similar to our eq.

(3.20). There are, however, two differences between their and our results. The first

difference is that their integral equation includes in its structure the pair corre-

lation function in the HNC approximation. In contrast, our approximation leads

to the exact two-particle correlation function. The second and main difference is

the interpretation of the function which fulfills the integral equation. Pinski and

Campbell assumed that the solution of the integral equation is the full pair-pair

correlation function rather then its irreducible part. The reason for the difference

stems from an error they made in the functional differentiation. They assumed

that the full pair-pair correlation function is given by the functional derivative of

the two particle correlation function with respect to the pair potential with density

held constant, while indeed it is given by eq. (3.4), i.e. by the derivative with

one-particle potential held constant. We discuss this point in detail in Sec. 3 of the

present paper. The error in functional differentiation does not influence most of

the numerical results given by Pinski et a1. Due to a specific angular dependence

of the reducible pair-pair correlation function the difference shows up only in the

zero-order Legendre polynomial projection of the function A(12 I 34) with respect

to the angle between vectors ria and r24. In our present application, however, this

difference is essential.

As we have mentioned before, the function A is a combination of the two-,

three-, and four- particle terms. For some applications it is important to evaluate

those terms individually. This can be done in the LA with the help of the integral

eq. (3.20). To evaluate the three-particle term one should select in eq. (3.20) all
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terms which include, after integration, the Dirac 6-function 6(1 - 3). (One should

take int account in this procedure the Dirac 6-functions included in the function

..4.) This terms correspond to the cases in which the pairs of particles (!2) and (34)

- have a common particle (1) = (3). After such selection one gets an integral equation

for the sum of the two- and three-particle terms. Since the two-particle term is a

trivial combination of the two-particle distribution function and Dirac 6-functions

such a procedure enables us to evaluate all the contributing terms separately. For

details of this procedure see ref. n.
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Figure captions

Fig. 1. Plot of 1(2)/kBT, with 1(2) given by eq. (2.7), as the function of the reduced

density nu3 for a for a fluid with a hard-sphere reference potential BEda square-

well perturbing term ((4.1). Results form the LA, solid lines; the best fit to

the MC results, by Henderson et al.,(23) dashed lines. The curves are labeled

with the appropriate values of the square-well width d.

Fig. 2. The same as in fig. 1 but with the different values of d.

Fig. 3. Plot of 1(2)/kBT, with 1(2) given by eq. (2.7), as the function of the reduced

density nu3 for a for a fluid with a hard-sphere reference potential and a square-

well perturbing term (4.1), for the square-well width d = 1.5. Results form

the LA, solid line; superposition approximation results (4.4)-(4.5), long-short

dashed line; the best fit to the MC results by Henderson, et a1.(23) dashed line;

MD results by Alder et a1.(22)circles.

Fig. 4. The first-order perturbation correction g~l) to the pair distribution function,

as given by eq. (2.9), for a fluid with a hard-sphere reference potential and a

square-well perturbing term ((4.1). Results for the square-well width d = 1.5u,

at the reduced density nu3 = 0.5. The LA results, solid line; MC results by

Smith et al.,(21b) open circles; the interpolated MD result by Michels et al.,(31)

for the hard-core contact value, solid line.

Fig. 5. The same as in the Fig. 4, but at the reduced density nu3 = 0.7.

Fig. 6. The same as in the Fig. 4, but at the reduced density nu3 = 0.8.

Fig. 7. The same as in the Fig. 4, but at the reduced density nu3 = 0.9.

fig. 8. The first-order perturbation result for the pair distribution function of the fluid

with a hard-sphere reference potential and a square-well perturbing term (4.1).

The results for the square-well width d = 1.375u at the reduced temperature

T. = kBT/f. = 1 and the reduced density nu3 = 0.8. The perturbation
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result, g'1s +g11), dashed line; the pair distribution function of the hard-sphere

reference system, g'1S, solid line.

Fig. 9. The same as in the fig. 8, but with the square-well width d = 1.75u.

Fig. 10. The first-order perturbation correction g11) to the pair distrib~ti~n function,

as given by eq. (2.9), for a fluid with a hard-sphere reference potential and a

Lennard-Jones perturbing term (4.2), at the reduced density nu3 = 0.6. The

LA results, solid line; the MC results of Weis(25), dashed line.

Fig. 11. The same as in the fig. 10 but at the reduced density nu3 = 0.91.

Fig. 12. The first-order perturbation result for the pair distribution function of the fluid

with a hard-sphere reference potential and a Lennard-Jones perturbing term

(4.2). The results at the reduced temperature T* = kBT/f = 0.7 and the

reduced density nu3 = 0.9. The perturbation result, g'1s + g11),dashed line;

the pair distribution function of the hard-sphere reference system, g'1s, solid

line.

Fig. 13. Plot of 1(2) /kBT, with 1(2) given by eq. (2.7), as the function of the reduced

density nu3 for a fluid with a hard-sphere reference potential and a Lennard-

Jones perturbing term (4.2). Results obtained using the LA.
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TABLE 1. The values of the reference excess free energy per particle f(O) - fB, and

of the first- and the second-order terms f(1) and f(2) in the perturbative expansion

27

of the free energy per particle of the square-well fluid with a hard-sphere reference-
- potential, at various densities nu3. - -

ncr3 f(B-! l:l l:2

0.1 0.009 -0.534 -0.248

0.2 0.041 -1.143 -0.343

0.3 0.104 -1.820 -0.359

0.4 0.206 -2.554 -0.352

0.5 0.362 -3.324 -0.346

0.6 0.587 -4.106 -0.338

0.7 0.907 -4.866 -0.322

0.8 1.355 -5.560 -0.300

0.9 1.985 -6.139 -0.281

1.0 2.876 -6.563 -0.276
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