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Abstract

Computer simulations for the Lennard-Jones fluid show it to

be a reliable model for predicting thermophysical properties of

simple liquids. An analytic theory is described for modeling

these properties with a single reference fluid, based upon a mod-

ified potential that includes a hard-sphere repulsive core and

truncated tail. A kinetic theory for the one-particle distribu-

tion function and the potential energy density yields an equation

of state and transport coefficient formulas that can be applied

to simple liquids via standard perturbation theories. The theory

contains no adjustable parameters, other than the Lennard-Jones

parameters which are fixed by matching thermodynamic properties.

An enhanced theory is discussed, that includes a better approx-

imation to the nonequilibrium pair distribution function. Over a

wide range of densities and temperatures, a quantitatively useful

theory for shear viscosity, thermal conductivity, and self diffu-

sion is obtained via the Weeks, Chandler, Andersen prescription.
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I. Introduction

Explicit theoretical description of the transport properties

of simple liquids remains an open and challenging problem in non-

equilibrium statistical mechanics. The difficulty is not lack of

knowledge about the forces between particles, since computer simu-

lations show that the Lennard-Jones fluid is a reliable model for

predicting the thermophysical properties of simple real liquids.

Rather, the difficulties are technical. In a dense fluid, the

particles are in such close proximity that anyone particle is in

continual interaction with a cluster of near neighbors, which

makes building collision integrals very difficult because of the

lack of a readily identified collisional time scale. But even if

rigorous expressions for the transport coefficients were avail-

able, they would probably be difficult to evaluate because of

dependence upon three and four body correlation functions, which

seem to be more difficult to obtain than the transport coeffi-

cients themselves.

Much progress has been made in understanding transport phe-

nomena through study of simple models which bear realistic fea-

tures yet are tractable.
1

Most notable are the Enskog theory for

the dense hard-sphere fluid and the Davis, Rice, Sengers (DRS)

theory2 for the square-well fluid. Though they provide general

insight into the transport phenomena, there is ambiguity about

how to adapt these models to real liquids. The latter provides a

significant advance in that the square-well fluid can exhibit a

true liquid state. Generalizing from these prototypes, we pre-
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sent a kinetic and transport theory that overcomes some of their

technical deficiencies, while at the same time providing avenues

to adapt the model to real fluids without use of adjustable

parameters beyond those needed to fit equilibrium properties.

We model a realistic interparticle potential, such as the

Lennard-Jones (LJ) potential, through utilization of discontinu-

ous elements. A simplification of the collision integrals

results3 because the discontinuous elements act instantaneously,

and thereby introduce a vanishingly small time scale over which

smooth parts of the potential do not have time to act. The

theory provides approximate thermodynamics that can be equated to

true thermodynamics through application of equilibrium statisti-

cal mechanical perturbation theory. For the LJ fluid, the model

provides transport coefficient predictions of quantitative value

with no adjustable parameters. In the next section, the model

potential and a set of dynamical equations for the one-particle

distribution function and the potential energy density are

described. There follows a discussion of the fluxes of energy

and momentum and solution of the coupled equations for a variety

of approximate nonequilibrium pair correlation functions. In the

last section, the transport coefficients are analyzed and com-

pared to experimental results.

II. Model Potential and Dynamical Equations

The model interparticle potential is described by
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eo r < d

VCr) = ~t d < r < R (1)

0 R < r .

For application to real liquids, the smooth potential function ~t

is assumed to possess a short ranged repulsion and a long ranged

attraction, and d and R are chosen, respectively, such that the

repulsive hard sphere core is interposed over the smooth repul-

sion and the cutoff is made on the smooth attraction. These

features are not required by the structure of the theory below,

which could just as well be formulated for charged hard spheres

and many other fluids. In fact, this form (1) lends itself to

many limiting cases: the pure hard sphere when ~t = 0, the pure

potential, ~, when d = 0 and R ~ 00, the square-wellattraction

when ~t is a negative constant, and the square-well repulsion

when ~t is a positive constant.

At the least, a kinetic theory for dense fluids ought to

have enough structure to support hydrodynamic equations, which

describe the time evolution of mass density, velocity, and energy

density of the fluid. These are given in terms of the one- (f1)

and two- (f2) particle distribution functions, respectively:

(2a)

(2b)
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u(r,t) = Sdv v f1(r,v,t)



~

e(r,t) =

~

ek + ep = !dv ! mv2 f1 +2

(2c)

1 ~ ~
- JdX1dx2 v(r12) f2(X1,x2,t) ~(r1 - r).
2

~ -+

Here, m is the mass of a particle,r and v its position and
~ ~ -+-+

velocity,x = ( r, v), r12 = Irl - r21, and ~ is the Dirac delta.
~

Since p, u, and kinetic energy density ek are subsumed by f1' we

need develop equations only for f1 and potential energy density,

e. Formally exact equations for these, for the potential (1),p

follow from the BBGKY hierarchy4:

a ~ 1 t a
(-- + vloV1)fl(Xl,t) = - x J dX2 V1~ o~ f2(xl,x2,t) +at m d<r <R aV112

~ '"

{

2 . -+ -++~.

+ Jdv2 Jdu e(gu)gu d [f2(Xl,rl+d ,v2,t) -

~ ~+ ~
f2(xl,rl-d ,v2,t)] +

2 + ~ ~- ~+ -+ ~+ ~
+ R [f2(Xl,rl+R ,v2,t) - f2(xl,rl-R ,v2,t) + (3a)

- ~ ~+ ~- ~ ~- ~
+ 8 (gu-ve) (f2(xl,r1-R ,v2,t) - f2(X1,rl+R ,v2,t») +

-+-+-+ -+~~

}+ 8 (ve-gu) (f2(xi,rl-R-,v~,t) - f2(Xl,rl+R-,v2,t»)]
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ana

a -+ -+-+ -+-+
-- e (r,t) + vo[e u(r,t) + J~(r,t)] =
at p p ."

1 -+-+ -+ t
- x J dXldx2 ~(r-rl) f2 gov2i/J +
2 d<r <R

12

(3b)

1 2 -+ -+ A -+ -+- -+

+ ~ eR JdvldV2Jd~ gu[e(gu-ve)f2(xl,r+R ,v2,t) -

-+ -++ -+

e(g~)f2(xl,r-R ,v2,t)].

-+ -+ -+ A -+ t -

The e is the Heaviside function, 9 = v2-vl' g~ = uog, -e = i/J(R ),

v = (4e/m)1/2 is the escape velocity across the tail discontinu-e

. -+ A A .. . -+ -+. +
1ty, R = R~, where ~ 1S a un1t vector, x = (r,v ), and the R , R

refer to values just outside and
-+ -++ -+

The velocities v', v , v
-+

momentum. The flux Ji/J=

inside the tail discontinuity.

follow from conservation of energy and

1 -+ -+ -+ -+-+

- Jdvldx2(vl-u)V(r12)~(r-rl)f2.2

Both (3a) and (3b) contain the unknown f2' which is more

obscure than either fl or ep. Hence progress depends upon

reasonable and tractable approximations for f2. Defining the

correlation function G(Xl,x2,t) by

f2(Xl,x2,t) = fl(xl,t)fl(x2,t)G(xl,x2,t), (4)

our intent is to consider approximations to G. For arbitrary
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states, G is velocity dependent. In equilibrium, G is both veloc-

ity and time independent and dependent only upon r12' that is, it

is the radial distribution function. A family of approximations

to G has been constructed using the maximization of entropy3,5 to

express f2 in terms of fl and other information, such as ep. The

most sophisticated form considered to date6 is a pair correlation

function that has the Mayer-bond formal structure of the radial

distribution function, but differs in that each vertex is weighted

by the density field of the fluid, and the Mayer bonds contain a

temperature field of the fluid. The ensuing theory,? called KVT

III, is characterized by the form

~ ~

G = g2(rl,r2In,~). (5)

The time dependence of g2 lies in its functional dependence on

both the density field, n, and the temperature field, l/~. The

theory distinguishes8 between a "kinetic temperature" vested in

fl and a "potential temperature", namely l/~. Thus, this g2

bears a degree of independence from fl. This last feature is

absent in DRS theory,2 which also does not exhibit energy con-

servation. A kinetic theory similar to KVT III, ,discussed by

Sung and Dahler,9 does not treat ~ as a field.

III. Fluxes and the Nonequilibrium Pair Correlation Function

To obtain expressions for the fluxes of energy and momentum
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merely requires taking energy and momentummoments of eg. 3a, and

comparing the formal expressions with the hydrodynamic equations.

The energy flux is similar in form to the momentum flux, which is

more important to the subsequent discussion. For economy, the

former will not be written out. The momentum flux obtained from

eg. 3a is

~-+ -+ -+-+-+-+

P (r,t) = Jdv m(v-u) (v-u)fl -

1 -+;.. del>t -+ -+ -+ -+- J1dAJds st -- n2(r+As,r+(A-l)s,t) +
2 0 ds

1 -+ -+;..

{

3 -+ -++ -+ -+ -++-+

+ ; JodAJdvldV2Jd~ e(g~)g~ d g~ f2(r+(1-A)d ,vl,r-Ad ,v2,t)

3 -+ -+- -+ -+ -+--+

- R [e(ve-g~)g~f2(r+(A-l)R ,vl,r+AR ,v2,t) + (6)

1 2 2 -+ -+-+-+-+-+

(

1/2
)

- -
+ - e(g -v ) g -(g -v) f2(r+(A-l)R ,vl,r+AR ,v2,t)2 ~ e ~ ~ e

1 2 2 1/2 -+ -++ -+ -+ -++ -+

}- ; (g~-(g~ +ve) )f2(r+(1-A)R ,vl,r-AR ,V2'~)] .

-+ -+

Here, n2 = Jdvldv2f2' Explicit expressions for the bulk and shear

viscositiescan be gotten from (6) by expandingthe fl and f2 to
-+ -+

linear order in VoU and Vu, and also the equations 3a,b which are

then solved to linear order, and then comparing theoretical

results to the Newton stress tensor. This procedureS comprises a
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generalization of the Chapman-Enskog procedurelO due to the strong

coupling between kinetic and potential energy through eg. 3b.
8 ~

The KVT III form (5) for G yields a dependence of g2 on V.u
~

through coupling between P and the velocity field in the energy

equation. The coupling is vested through ~ and affects the bulk

viscosity. This dependence differs from structural distortion in

the presence of a velocity field that is expected to be manifest

even in the hard-sphere limit where ~ becomes inoperative. Thus,

a possible generalization to g2 could include functional depen-
~

dence on the velocity field, u,

~ ~ ~

G = g2(rl,r2In,u,~) (7)

This new functional dependence can be clarified. Expanding

~~ ~~ ~~ ~
u(r,t) = u(~,t) + (r-~).Vu

~
where ~ is an arbitrary point whose value is not important, the

new contribution to g2 can be written

~ ~
~ ~ ~ ~ ~ ~g (r ,r ,t)

~g2 = Jdr (r-~).Vu(~,t). 2 1 2~~
~u(r,t)

0 0
n = n , ~ = ~
~ ~~

u = u(~,t)

By Galilean invariance, the fluid structure is independent of
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~~
uniform translational motion, therefore we may set u(~,t) = o.

The functional derivative is then evaluated wholly at equilibrium.
~

The nine components of the matrix multiplying VU reduce to two

independent quantities due to invariance of the equilibrium fluid

under rotational, translational, and space inversion transforma-

tions. Thus, the ~g2 can be written

0

A ~ A ~

~g2 = r12.vu.r12 vs(r12) + V.u vb(r12) .
(8)

0

~ ~ ~T ~ ~
The traceless symmetric tensor Vu = r Vu + (Vu) '/2 - (V.u/3) I

~
is functionally independent of V.u. This form of perturbation was

considered by Green.11 The Vs and vb' relating to shear and bulk

viscosity, respectively, are not rigorously known, though there

are some experimental and simulation results.12,13

The tail-dependent collision integrals in (3a) bear the same

symmetries as the hard-core collision integral. Because our ulti-

mate interest is in the LJ fluid, there is no need to consider the

truncated tail further. For the pure hard sphere fluid, on the

other hand, the greater discrepancy between theory and simulation

lies in the shear viscosity, to which we confine our attention

here.

Applying the shear part of (8) to (6) yields the contribu-
~

tion to P beyond that provided by (5):
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0

t =
~ 2 3 + ~ de/> ~

~ p = ~ [ 4nd kTv (d ) - Ids s-- v (s) ]Vu
15 s ds s

(9)

In the present limit (R ~ m), the shear viscosity provided through

(5) has precisely the form given by Enskog's hard sphere theory,l

but here the radial distribution function depends on the whole

potential - core plus tail. Since the Enskog result is known to

disagree with simulation results,14 one might surmise that the

hard-core part of (9) remedies that. This is not the case; the

Enskog result differs from simulation results14 in detail, in the

kinetic, kinetic-potential, and potential terms, whereas the first

term of (9) is only a potential term. The former two emanate from

the perturbation to f1 that is obtained by solving the linearized

version of (3a). Inserting (8) into that linearizedequation

produces no change beyond the result given by (5) because the ~g2

does not distinguish orientation of the colliding particles.

Because the mean-field tail terms in (3a,b) do not exhibit inter-

change of kinetic and potential energies, the tail contribution

in (9) also seems spurious.

The g2 in (7) exhibits the simplest form of velocity correla-

tion between colliding particles, namely, a common mean velocity

of the fluid. However, this is not a true two-body correlation.

Such correlation is clearly a nonequilibrium phenomenon, which in

the case of transport is associated with the existence of gradi-

ents of the hydrodynamic variables. Hence, one can surmise the

manner in which such a departure from equilibrium would contribute

to transport, in relation to the KVT III or Enskog results. Again
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restricting attention to the hard-core collision term, the G and

f1 can be expanded appropriately for shear viscosity:

~ ~0
G(x1,x2,t) = g2(r12) + ~g2(X1,x2,t):vu (10)

and

~~ ~~ ~ ~~ ~ ~
(0)

[
°

]f1 (x,t) = f1 (ft,v, t) 1 + m/3 (r-ft). 'Ju.(v-u) + B :'Ju . (11)

Equation (3a) is linearized in similar fashion, using (4), (10),

and (11). The f~O) is a local Maxwellian that has /3°,the leading

contribution to /3, in its argument. In the KVT
~

B is associated with the g~. Consequently, by
~
B acquires an additional term that

III, the unknown
~

including the ~g2'
~

is proportional to ~g2. This

increment results in an addition to the KVT III shear viscosity.

For the pure hard-sphere fluid, this increment, which distinctly

affects all three terms of the shear viscosity, would bring theory

into agreement with simulation results for the correct choice of
~

~g2. Guided by this formal result, we show in the next section

how to achieve this correction operationally.

IV. Transport Coefficients

The KVT III expressions for shear viscosity, thermal conduc-
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tivity, and self diffusion ~re:l5

where 11 , A , and 'D are the dilute hard-sphere gas transport0 0 0
2

coefficients, and h3 = - nnOd3g~(d+). The g~ is the radial dis-3

tribution function evaluated for (1) in the R ~ m limit. These

bare transport coefficients can be readily adapted to the full LJ

potential by making d dependent on density and temperature through

any of several perturbation theories. Earlier work16 suggested

the superiority of the WCA prescription17 for this application,

but the results here are more convincing.

.
th

.
t

. 18
uS1ng e EXP approx1ma 1on.

The g~ is evaluated

When interpreted as hard sphere formulas, (12) and (14) give

predictions, at high density, that differ greatly from simulation

results. Analytic expressions have been developed that serve as

correction factors to those formulas, to render agreement with

simulation results. In view of the additivity of contributions to
+---+
B as discussed in the previous section, we extend these correc-

tions to (12) and (14) in the present context by treating the hard

14

--- _u--
.- --- - -- - -

110
[ 1 + O.8h3 + O.7615(h3)2 ] (12)11 =

9(d+)

A = Ao
[1 + 1.2h3 + O.7575(h3)2 ] (13)

9(d+)

'D
'D = 0

(14)
g (d+)



core part exactly (that is, assuming that the short-rangecorrela-

tions in the full fluid do not differ significantlyfrom those in

the pure hard sphere fluid) and the tail contribution as a pertur-

bation, to wit,

c hs E
7} = 7} + 7} - 7}

and similarly for V. The 7}c is the corrected quantity, 7}hs is the

exact hard-sphere result, which can be expressed analytically, and

7}E is the Enskog result, given by (12) in the hard sphere limit.

Thus, in essence, 7}cconsists of the KVT III result for 7}and the

contribution to shear viscosity of the hard sphere fluid arising

from velocity correlations.

The results shown in the table demonstrate that the present

theory?,15 represents a considerable improvement over the earlier

work,16 both numerically and formally, in that now all properties

are represented reasonably well with a single reference fluid,

whereas in the earlier work shear viscosity and thermal conduc-

tivity were better represented16 by different prescriptions. The

earlier work also utilized a hard-sphere reference fluid, which

amounts to setting ~t = 0 in eqs. 12-14. The softening of the

fluid structure that is achieved by including ~t to emulate the LJ

fluid produces significant reductions in all theoretical values

for the transport coefficients. For the thermal conductivity in

particular, this renders the WCA prescription applicable at a

level of accuracy for which the earlier work required a smaller

diameter. Similar results are found? along the saturated liquid

15
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Table. Theoretical transport coefficients compared to experimen-

tal (E) results for argon and simulation(S) results. The "old"

results are from ref. 16 which also cites the data sources. Data

sources for the new results are cited in ref. 15. Except where

noted, the theory employs the WCA prescription for making d state

* 3 *
dependent.The n = n~ and T = kT/c, where ~ = 0.3405nmandLJ W

Ik h 't ' -4, I / -1
c = 119.8K. T e un~ s are:~ ~n Pa-s x 10 , A ~n W K m x 10 ,

2 -9
and V in m Is x 10 .

state Transport
coefficient

Theory E/S

A

~

~

A

~

~ 1.26 1.27(E)

0.91(E)A 0.97

a different diameter prescription, see ref.16

16

*
n = 0.844

(old)
*

T = 0.722

*
n = 0.844

(new)
*
T = 0.73

*
n = 0.853

(old)
*

T = 0.70

*
n = 0.818

(new)
*
T = 0.761

*
n = 0.76

(old)
*
T = 0.872

*
n = 0.715

(new)
*
T = 0.94

'I'
evaluated using

for details.

3.42 2.62(S)

1.72(1.441') 1.24(S)

2.72 2.76(E)

1.46 1.32(E)

3.85 2.97(5)

2.19 2.35(E)

V 2.42 2.30(5)

1.765 1.734(5)



line for argon, except in the criticalregion where the anomalies

are not capturedby this simple theory.
~
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