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ABSTRACT

We calculate the intrinsic shear and bulk viscosities of a

hard-sphere solute in a hard-sphere solvent by using the ideas,

developed in the preceding paper, of an effective collision radius

and effective reduced mass of a solute-solvent collision, which

differ from the bare radius and reduced mass because of the presence

of the surrounding solvent treated as a continuum. We combine

these ideas with the development of an extended hydrodynamic theory.

Our final result incorporates both the Enskog theory and the

extended hydrodynamic description of the solvent, so as to include

both molecular collisional effects and hydrodynamic collective

effects. Our synthesis of the two descriptions yields intrinsic

viscosities that are analytically simple and manifest the correct

hydrodynamic results in the limit °11/°22 + 0 with solvent density

fixed, as well as a re&sonab1e approach to the Enskog results when

°11/°22 ~ 1. Here °Il and °22 are the diameters of the solvent and

solute particles, respectively.
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1. INTRODUCTION

A well-known and long-standing problem in hydrodynamics is

calculation of the effective viscosity of a suspension. Since the

pioneering work of Einstein on the intrinsic shear viscosity of a

dilute suspensionl many workers have dealt with generalizations of

his treatment to include such features as higher concentration of

suspended solute particle, their nonspherical shapes, etc.2

However, all these hydrodynamic considerations are based on the

assumption that the solute consists of macroparticles large enough

to permit the treatment of the solvent as a continuum. To our

knowledge, however, no work has been fully successful in generalizing

the hydrodynamic result to the case of a solute particle of arbitrary

dimension and mass in a way that yields the correct hydrodynamic

result in the limit of large solute particle.

Here, we present a microscopic theory of shear and bulk

viscosities of dilute suspension by utilizing the idea and results

of the preceding paper.3 In I, we derived the generalized boundary

condition (B.C.) and the effective contact distance 0 and reduced

mass ~ for solute-solvent collisions, which (along with the use of

hydrodynamics for r ~ 0) effectively describe the microscopic

translational motion of the solute particle. This description was

found to yield a sensible translational diffusivity, for the mole-

cular solute, and yields as well the exact hydrodynamic limit. ~r

notations and definitions will be identical to those of paper I.
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Cited equations preceded by the letter I will refer to equations

found in paper I.

Since our hard-sphere model for the molecular interaction

does not allow the transfer of the angular momentum by collision,

the hydrodynamic limit of the intrinsic shear viscosity is not 5/2,

the Einstein value that results from the usual stick B.C. ~r

result from (1-3-4) (1-3-12) will be unity for slip B.C. However,

the intrinsic bulk viscosity obtained by us, apparently for the

first time,

- . K*-K 4 K
{K} = 11m - = - + - ,

H E;2-+-o E;2Tl 3 Tl

is common to both boundary conditions.

(1-2)

~r presentation of this work is as follows: In sec. II

we give a brief summary of our previous work on the shear and bulk

viscosities based solely on Enskog theory.4 While Enskog theory

yields reasonable approximations for a small solute particle; it

is found to yield artificial divergences in {Tl} and {K} that go

like a22/all in the limit a22/all + 00. In sec. III, we follow

Batchelor'sS approach in defining the bulk stress, through which

the effective viscosities are identified hydrodynamically.

Utilizing the effective contact radius and generalized boundary

condition of paper I,we obtain the intrinsic shear and bulk vis-

cosities that yields the correct hydrodynamic limit. In sec. IV,

we compare two theories of intrinsic viscosities: Enskog theory

and the extended hydrodynamics of sec. III. Through a synthesis



of the two theories, the effective reduced masses appropriate to the

intrinsic shear and bulk viscosities are introduced in sec. IV in

such a way as to fully reflect the molecular nature of the solvent.

The result incorporates all of the desired features of the Enskog

theory for °22/°11 ~ 1 and the hydrodynamic theory in the limit

°22/°11 + 00 (with n1 fixed).

3
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II. THE VISCOSITIES OF A BINARY MIXTURE: ENSKOG THEORY

In the kinetic-theorytreatment, the suspension can be

viewed as a binary mixture. The suspended (solute) particle is

treated as a molecular entity in common with the solvent p~rticle;

each is described by a probability density function (DF).

Enskog theory gives an expression6 for ~M, the pressure

(stress) tensor in the binary mixture with trace concentration of

component 2 (solute), in terms of probability DF'S f. (r,V,t):1 - -

pM= pll + p12 + p21- - - -- - - - (2-1)

11
JE = ml(~l-~)(~l-~)fl(:'~l,t)d~l

ml 3
J )

2
)

+ 2: allYll dYl dYl d~(~.Yll ~~0(~.Yll

x f~f1 [1 + ~l (:'~l,t) + ~l (:'~l,t)

+ 1..a a. V'in f (0) / f (0) ]2 11 1 ~

12 3
J

2.
~ =~12a12YI2 d~2 d~l d~(~.~21) ~~0(~.~21)

0 0
x flf2[1 + ~l (:,yI,t) + ~2(:'Y2,t)

1 (0) (0)
+ 2" aI2 ~.V' in fl /f2 ].

The quantities appearing here and in the rest of the equations

of this paper are all defined in I, to which we refer the reader.

using the Standard Chapman-Enskog method,6,7 we find

By

~M = pMI - 2nM@ - 3KM6I

~ll = pIlI - 2nll~ - 3Kl16I

p12 = p121 - 2n12g - 3K126!
~ - - -

(2-2)

(2-3)

(2-4 )
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where the shear and bulk viscosities of the mixture, by using

the lowest Sonine polynomial approximation, was calculated through

the first order ~2' the volume fraction of the solute.4

Here

(11)0 =

M 1 12
11 = 11 + 11 = (11) + ~ (11)021

{

I
[

8 0
)

2 768 2 0
}

B
y~ 1 1 + 5" ~1 Y 11 + 25rr ~1 y 11 11

t

1

(

8 0

~
2 3

(

1112) 0
yo 1 + 5" ~1 Y 11 5" (l+q) 1 + illl y 12 -11 . 1 .

+
{
768 ~2yO + ~

(

21112

)
~ (1+ )4 -1~ yO

}25rr 1 11,2 25rr ml q q 1 12

+ ~-1
[

1 + l111 2
)

-1 1

[

1 + ~ ~ yO
1 {

~ 3 1112- 2-

1 3 ml y~1 5 1 11. 3q ml 12

x q(1+q)2[2~~2)~ y~J1 + ~ ~lY~1)Y~2

(2-5)

(11)1 =
0 8 0 I

y~ + 5"~lY11,2f

+ ~[~\2 - 1)C1+q)3~lY~2}

+ ~-1
(
1+l1112

)

-1

{
1(1112)-L

[

1+~ ~yO
)1 3 m13 ml y~1 8 1 11

(

k

~
-l -1

}l
+ 4 C1+q)2(21112) . yO (q3 +l(1+q)3p 1112 ~ yO) llB

ml . 12 5 ml 1 12 -

M 1 12
K = K + K = (K)O + ~2(K)1

(2-6)

256 2 0 B
(K)O = 5rr ~lY11 11

[256 ~2yO + g
(

21112

)
~ -1(1+ )4~ yO

[5rr 1 11,2 5rr ml q q 1 12

fi

( )

-3/2 1

(

0

1

2

1+ 452~12 (pq(1+q)2f Y~2 q3 ~~~ -.;C1+q)3-p11;12J ~l_11B

(K)l =

where

"
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p = ml/m2'

y? = Y.. I ~ 01J 1J ~2=

q = °11/°22
0 d

I
Y.. k = ~ Y.. ~ _0

.
1J , o~k 1J ~2-

For the pressure contributions, we find

(P) 0 =

(P) 1

pM = pll + pI2 = (P)O
0

nl kT (1 + 4~1 Y11)

= nlkT{4~lY~1,2 +

+ ~2(P)1 (2-7)

3 0
}(l+q) YI2 .

The viscosities and pressure in the pure solvent are found from the

expression of ~Il in which ~l is replaced by ~~, the volume fraction

of the pure solvent

{
I

(
8 0 0

)2 768 02 0 O
}

B

nlO = Y~l(~~) 1 + 5 ~lYll (~l) + 25~ ~l Yll(~l) n
(2-8)

- 256 02 0 0 B
KIO - ~ ~l Yll (~l)n (2-9)

0
(

00 0
)PlO = nlkT 1 + 4~lYll(~1) . (2-10)

Here ~~ is generally different from ~l as exemplified as below.

To compare the viscosities of the mixture and those of the

pure solvent, each measurement of the viscosities should be made

under common thermodynamic condition. Keeping the pressure and

temperature of the mixture unchanged from that of the pure solvent,

we have, from (2-7) and (2-10)

M
PlO = P (2-11)

or

0
(

0 0 0
)

0
(

0
nlkT 1 + 4~lYll (~l) = nlkT{l + 4~lYll(~1) + ~2 4~lYll,2(~1)

3 0
)+ (l+q) YI2(~1) }.
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As was shown previous1y,4 this equality demands the change of the

solvent density after the mixing, given by. ,
0

~1 = ~1 (1 - M~2) (2-12)

where

- 0 02 0
)

0 - - 1 q3+(1+q)3~Y~zC~1,q)+4~1 Yl1,2~~1,q
M(~l,q) = -{~1} - ~ 1+ 8~~Y~1 (~~)+4~~ Y~l,l (~d

Physically, M is the ratio of the overall volume increase to the

total volume of the solute mixed.
This difference between ~1 and

~~ results in a change in the viscosity (n)O (2-3) by

- 0 a(n)o

/

O~ anlO
~2~(n)O = -M~1~2 a~ = -M~ls2 ~ .

1 ~l=~~ Sl
(2-13)

We express the change of the viscosities by the

nondimensiona1 intrinsic quantities defined by

M
{n} == lim D -nlO

~2-+O ~2nlO

(2-14)

M
{ }

- 1" K -KIO
K = 1m-

~2-+O ~2nl 0

Substituting the relation (2-11), we finally arrive at

(2-15)

{n}E = {~(n)O + (n)1}/n10

{K}E = {~(K)O + (K)1}/n10

(2-16)

(2-17)

-1 3
The results are plotted vs. q = 0"2/0"11in the case m/m2 = q for

several densities of the solvent (Figure 1, 2, 3). For Y" .,
1J

the expressions of MCSL adequately modified by us are used. (See
,

the appendix of I.) It is observed that in the limit q + 0 the

results show artificial divergences that go like q-1. These singular

deviations from the conventional hydrodynamic results that are exact
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in this limit appears to stem from the same cause as the failure of

Enskog diffusivity in this limit--the assumption of velocity chaos,

(i.e., the lack of the velocity correlation) which breaks down for

collision between the large solute and small solvent particle at

high solvent density. We shall discuss how to remedy this in sec. IV.

However, Enskog theory does reflect an important exact molecular

symmetry--the vanishing of the intrinsic viscosities at q = 1, P = 1,

i.e. mixing of identical particles at fixed pressure and temperature

does not change the viscosities. As the size of the solute particle

becomes smaller (q > 1), the Enskog theory is expected to improve

because of the larger possibility of uncorrelated solute-solvent

11
.. 8

co lSlons. The only approximation imbedded in the expressions

(2-5), (2-6) is the lowest Sonine polynomial approximation which is

expected to be good as long as the solute mass is not very much

9
smaller than that of the solvent.
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III. EXTENDEDHYDRODYNAMICTHEORYOF VISCOSITIES OF THE DILUTE

SUSPENSION

While the hydrodynamic viewpoint distinguishes the fluid

from the solute par~icles through the boundary condition, it is often

possible to regard the solute-fluid mixture as a homogeneous continuum

and to ascribe to it certain effective properties (e.g. shear and bulk

viscosities). This is possible when the dimension of the (solute)

particles and the average separation between them are much smaller than

the length scale describing the suspension as a whole. This

situation is precisely analogous to the one which pertains to the

Chapman-Enskog solution for the kinetic equation of binary mixture,

in which the fluid mixture is considered as locally homogeneous in

the hydrodynamic variables.

Einstein's original method of deriving the effective shear

viscosity involves evaluation of the additional dissipation of

energy due to the presence of the particles.I,IO,11 As straight-

forward operationally as it is, this method is still controversial,

since it involves a subtle nonconvergent integral. To bypass this

difficulty, we follow BatchelorS in deriving the linear constitutive

relation between the bulk stress and the velocity gradients,

through which the effective viscosities are identified. While

yielding the identical result as Einstein's method, this will

also provide a conceptional parallel to the kinetic-theory expression

(2-2).
.

A modification, however, will be made to incorporate
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consideration of the bulk viscosity, which appears to have been

neglected in conventional hydrodynamic treatments.

We can regard the suspension as statistically homogeneous

over a sample volume V which is chosen to be small macroscopically

and yet large enough to contain many particles. The ensemble

average of the stress r is expressed as identical to the average

overV:

<p> = .!. r P dV
;:: V 1;;::

(3-1)

This can be written as

<p> =.!.
J

(PI-2ng-3K~J)dV + .!.
J

p dV
~ V V-LV - ~ ~ V LV ~

cr cr

where Vcr(=~'ITcr3),Acr are the volume and surface area generated by the

effective contact distance (radius) cr = ~(cr~l +cr22) (1-3-14), the

(3-2)

summation being over the solute particles inside V. Substituting

J
P dV =

J
(p.r)n ciA

V ~ A ~ - -
cr cr

as a result of Z.~ = 0, and

(3-3)

<Vu> = ~ J~ ~ dV

=.!.

J
V u dV + .!.

J
unciA

V V-LV ~ ~ V LA ~

cr cr

(3-4)

we get

<p> = V
I

J
(Pl dV - n<g> - K<~>1 + <pP»dV (3-5)

~ V-LV ~ ~ ~-
cr

where ,<~p>, the "particle stress" or "force dipole strength" is

defined by
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<~>= ~ I fA [(~.:)~ + T1{(~~+ ~ ~) - ~ ~.~ J}
cr

+ K u.n I]ciA. (3-6)

This is identified as the contribution to the bulk stress by

the particles and is certainly the counterpart to r12 (2-4). Let

us decompose it into two parts:

pOl \
f

0 0 020
<~> =yL [Pe.:~+(~.:)~+T1(~~+~~-3~.~P

. Acr
0

+ K ~ .~!]ciA

<pp>, = ~ fA [(~'.:)~+T1(~'~+~~' - ~ ~,.~ p
cr

(3-7)

+ j( u'.~ !] ciA . (3-8)

The surface integral involving the flow of the unperturbed solvent,

converted into a volume integral, is calculated to be

<~p>o
1 \ f 1 \ f .0 0 0= -
y L P r n ciA+ Y L (E + 2T1g + 3K6 DdV

A e-- - - -
cr Vcr

Vcr 0=- \ (P + P ) Iy L e :::: (3-9)

where the identity

- -I
f

1
(nn).. = A

n.n.ciA = _
3

0..-- 1J 1 J 1J

has been utilized.

In an extremely dilute suspension of effectively isolated

particles the integral (3-8) may be evaluated from knowledge of the

flow field due to one particle. Substituting (1-4-14), (4-15c),

(I-4-21c), (I-4-2Id) into (3-8) one finds after a lengthy but

straightforward calculation
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<pP> = 1.L crA T)rdO-nn L~ + 10ecr-5
1~ E V cr L~ --l T)cr .

0 - [ l5Q -5
)]+ g .nnnn ~ - 25ecr- T)cr

3
= ~crLgo(Q/cr) (3-10)

:vhere

- 1
(nnnn). .kl

= --
15(0. 'Okl

+O'
k

O'
l

+O'
l

C'
k )

1J 1J 1 J 1 J

has been used. The contribution of the flow field due to the

infinitesimal compression (1-4-28), (1-4-37) can be found by

retaining only the first order in w

Vcr 0
<EP>~ = \T L(4T)+3K)~ , (3-11)

where ~o should be understood as an inverse Fourier transform of

0
~ (1-4-27) .w The Stokes flow (1-4-l5b) is found to yield only

vanishing contribution.

Summing up all the contributions, we obtain

<EP> = :cr L {(P e+po)J + 3 (Q/cr3) gO + (4T)+3K)<Pcr~o}. (3-12)

By noting the identity

Vcr

\T L X = ~<X> (3-13)

where ~ = N2Vcr/V, N2 being the total number of the solute particles

inside V, we obtain

<EP> = ~[<P e +po>£ + 3 (Q/cr3) <do> + (3K+4T))~cr<~o>] . (3-14)

The total stress (3-5), then is

~-----..
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°<p>= <P +P >1 - 2n<d> - 3K<6>1
:;:: e::::::: :;::

+ EJ3 (Q/cr3) <do> + (3K+4n) CP<6°>}.:::: cr (3-15)

From <d> = <do>, resulting from the spatial homogeneity inside V::::

that requires <Vu'> = V<u'> = 0, we finally find

<P> = <p +po>1 - 2n<do>{I-~(3Q/2ncr3)}
:;:: e ~ ::::

- 3K<6° >~ {I -~ (1 + ~~) CP cr}

= <p +po> I - 2n*<do> - 3K*<6°> Ie :::;:::: :::: (3-16)

where n*, K* are to be identified as the effective viscosities.

Here we see that in this hydrodynamic formulation, the pressures of

the suspension and the unperturbed solvent are automatically

regarded as being equal:

0
<p> = <p +P >.e (3-17)

By utilizing the results (1-4-21c), (1-4-37) we find the

effective viscosities to be

3
n* = n {1 - ( 3Q/ 2ncr ) ~ }

[

15H-40
1= n 1 + 15H+24 ~.

(3-18)

K* = K[ 1 - (1 - ~~) CP cr~)

= K
[
l-; (1+ 4n){

H(1-3A)-~
})3K H +-'+-3

where
~ (cr)

[

.

)

~
H = H(cr) = E = 32 2~12 ~ -l(S +1)1+4~lYll~H(cr) 5'IT ml lq q C An n

A = 'ITf (-E!.L)2 _l...1!!l.. y 11 ~ll )
3

}- 481 m2 2 1112 Y12 (cr) cr .
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We find the intrinsic viscosities

{rdh0 := lim T)*-T)= 15H-40
[

2o ,3

~2-+-0~2Tl 15H+24 O22.1

15H-40 3
= (Sq+1) (3-20)

K 3

[

4 + K
)

H(1-3A) - Tl

(

~
)3 Tl H+~ O22

3
K

=
(

4 + K
)
H(1-3A) -nCSq+l)3

3 Tl H +.!.
3

wherein the subscripts h0 indicate our hydrodynamic results with

{K} = 1
. K*

h0- 1m ~
~2+O ~2T) =

(3-21)

generalized BC and the effective contact radius 0.

In the limit q = °22/°11 -+- 00 with n1 fixed, i.e. H -+- 00,

2O/°22 -+- 1, S -+- 0, A -+- 0, we obtain

{T)}H = 1

4 K
{K}H = 3"+ T)

(3-22)

(3-23)

which is indeed the exact conventional hydrodynamic result with the

slip BC. The bulk viscosity (3-23) still holds true for the stick

BC which leads us to the Einstein value {Tl}H = 5/2 for the shear

viscosity. The results (3-20) and (3-21) are shown (along with the

Enskog results) in Figs. 1, 2, 3 in the case ml/m2 = q3, with use

of the viscosities of pure fluid given by (1-3-9), (1-3-10).
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IV. SYNTHESIS OF TWO THEORIES

The Enskog theory and the extended hydrodynamic theory

represent two opposite extremes. The former describes well the

short-time collision dynamics, the latter the long-time collective

effect of the fluid; the regime best described by each theory is

the one poorly described by the other.

This complimentarity of the two theories was well exemplified

by the result of translational diffusivity in paper I. There the

function H(cr) or H(cr,~) emerges as a criterion that determines the

relative validity of the two theories: For large H, the hydro-

dynamic description is good and prevails over the kinetic (Enskog)

theory. On the other hand, a smaller value of H guarantees greater

validity of the Enskog-theory description. This argument is an

obvious one in light of the fact that H i~ proportional to cr/t,

where t is the mean free path of the solvent. We argue that this is

also true for the shear and bulk viscosities, as shall be shown

below.

In sec. II, we found the Enskog results for the viscosities

diverge like q-l in the hydrodynamic limit q + 0, as a symptom of the

velocity-chaos assumption. A closer look at the term responsible

for such divergence reveals that this term is proportional to H(cr).

For smaller value of H(cr), this description would naturally be

better. In contrast, in the extended hydrodynamic results of sec.

III (based on the generalized boundary condition and the effective

collision radius)~ it was found that the hydrodynamic limit is
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achieved as H goes to infinity. This is strong evidence that this

extended hydrodynamic result improves with higher solvent density

(i.e. higher H) as shown by the considerable overall similarity at

higher S~ between the Enskog and hydrodynamic result for small values

-1
of q (where the Enskog results are presumably at their best). The

later results do not reflect the identity of all molecules at

q = 1 = p, (i.e., {n} = {K} = 0 at q = 1 = p) and deviation from

this important sYmmetry condition is more serious at the lower

densities. Such evidence leads us to conclude that the relative

validity of hydrodynamic theory and Enskog theory is essentiallyI

determinedby the size of H in the case of the viscositiesas well

as diffusivity.

Here we describe a scheme to correct the two theories of

the viscosities simultaneously in a way to synthesize the two

disparate and defective theories into one more exact theory. This

will be done in much the same manner that was described in the case

of the translational diffusion in paper I. For correction to the

Enskog results, we write {X}, the intrinsic quantity associated with

X, as
M MM

{X} = lim X -XIO = lim CXXE - CXXlOE

S2-+o S2XIO S2-+o S2CXXlOE

= {X} + {C }EX (4-1)

where c~, Cx are the correction factors to the Enskog viscosities

for the mixture and pure fluid, and
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{Cx} = lim
~2-rO

c~ - Cx
~2CX

(4-2)

Our central problem is to determine {CX}' Since {X}E has a term

responsible for a divergence that is proportional to H, in the limit

q -r 0 or H -7 00, the correction factor {CX}should contain a term

linear in H so that it cancels the divergence. In view of the

condition {CX}= 0 at q = 1 = p, we may write

{CX} = aH- a(1)H(l) (4-3)

where the argument 1 represents the point q = 1 = p. This equation

defines and introducesan unknown variable ~ which generally depends
0

on p and q as well as ~l' Since H vanishes as ~~ -7 0, the

Eqs. (4-1) and (4-3) naturally incorporates the Enskog result in

the low density limit, as it should.

On the other hand, correction to the hydrodynamic result

(3-20), (3-21) is to be obtained by introducing ~, the effective

reduced mass that will include the molecular nature of the solute

and solvent.
Replacing ~12 in H by ~, the ~quations (3.20) and

(3.21) take the form

{X}h = {X} (Sq+l)3 aH-A
all H aH+B

(4-4 )

k

if A is neglected in (3.21), where a == (~/~12) 2, and {X}H = 1,

A = 8/3, B = 8/5 for shear viscosity and {X}H = 4/3 + Kin, A = Kin,

B = 4/3 for bulk viscosity. We neglect A on the basis of its direct

computation, which suggests that contribution to (3-21) is small.

The numerical consequences of this approximation are absorbed into
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the value of a, which we must now determine. From (4-1), (4-3),

(4-4) we have a relation

{X} = {X} E + baH - b (1 )a (1) H (1 )

3 aH-A
= {X}H(Sq+1) aH+B' (4-5)

where the substitution a = ba has been made.

-1
E = H for convenience, we have

Multiplying by

E{X}E + y - y(1)H(l)E = {X}H(Sq+1)3 ~:~~ E

where y = ba. To determine a and y, we can follow exactly the same

procedure that we described in the preceding paper (1). However, in

the case of intrinsic viscosities, we have one more condition repre-

sented by (1-5-23), i.e. {X} = 0 at q = 1 = p.

The simplest nontrivial approximation is obtained by making

an ad hoc assumption that b is independent of p and q and that the

dependence of{Cx} on q and p is only given through H(cr,~) (= aH) (4-5)

the only factor that emerges in our binary dynamics in the bath of

solvent continuum.
Utilizing an important observation that ~ + ~12'

i.e., a + 1 in the limit q + 0, and the fact that {X} + {X}H in this

limit, we get from (4-5), (2-5), (2-6), the following conditions

for the shear and bulk viscosities, respectively,

0 = ~
[

2~12
1
~ -l~OyO (~O =0) + b 32

f

2~12I~

25~ ml . q 1 12 l,q 5TI ml J

0 0 10
~O -1 (1+4~IYll) 1)x lq C A 1)B1) 1)
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0 = 32
[
21112~!z -l~OyO (~O =0) + b g

(
21112

)

!z

5TI ml j q 1 12 1,q 5TI ml

0 0 10
~O -1 (1+4~1 Yll) n

x ~lq C A ~ 'n n n

which must be satisfied we get rid of the q-l divergence as q + o.

We find by noting Y~2(~~,q=0) = 1+4~~Y~1 (1-3-13), nlOjnB=An (1-3-9),

that

3
b = - 5" Cn

b - -C- n

(4-9)

(4-10)

for the shear and bulk viscosities, respectively. In addition, the

condition {X} = 0 at q = 1 = P requires that

a(l)H(l) = A, (4-11 )

which enables us to rewrite (4-5) as a quadratic equation for a,H-A

3 a,H-A
{X}E + b(aH-A) = {X}H(Sq+1) aH+B. (4-12)

The root of the above equation that satisfies the condition (4-11)

is

a,H-A =
(2b)-1 [-{X}E - b(A+B) + {X}H(Sq+1)3

- {nX}E + b (A+B)- {X}H(Sq+1)3]2

- 4b(A+B){X}E}!z)
(4-13)

We find {CX} and a:

{CX} = ~(-{X}E - b(A+B) + {X}H(Sq+1)3

- {[{X}E+b(A+B) -".{X}H(Sq+1)3]2
~

- 4b(A+B){X}E} 2)
(4-14)
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a = H-l{A+(2b)-1[_{X}E-b(A+B)+{X}H(Bq+l)3

- '(~{X}E+b(A+B)-{X}H(Bq+l)3]2_4b(A+B){X}E)~)}'
(4-15)

and our final result is

{x} = {X}E+ {CX} = {X}H(Bq+l)3 ~:~
l

[

3
= {X}E - 2 {X}E+b(A+B)-{X}H(Bq+l)

1

+ {[{X}E+b(A+B)-{X}H(Bq+l)3]2_4b(A+B){X}E}~)'
(4-16 )

In Figs. 4 and 5, we present the results of our theory

0 3
(4-16) for the case~l = 0.4 and p = q . To emphasize the region

of small value of q = crll/cr22 the trends are plotted against q

instead of q-l, along with the results of the other theories that

we have considered: Enskog theory and hydrodynamic theories based

on the conventional BC and the generalized BC with and without

modification of the parameters. Although the ad hoc assumption

concerning our choice of b is hard to fully justify or test in the

absence of MD results for mixtures, our results seem to yield an

adequate description for the approach to the Enskog theory and to

the hydrodynamic description around the points q = 1 and q = 0,

respectively. Furthermore, our result supports the expectation that

the Enskog theory is more likely to be exact for larger value of q.

Noting that {n}E + -00 as q + 00 for 0 > Q (where0 was defined

through p = q~, (4-14) in this limit results in

{C } + 64/25 ,n (4-17)
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which is negligible compared to {n}E' Since the divergence of {n}E'

which is found to go as q3 for 0 > 0 in the limit q + 00, does not

lead to a singular behavior but to finite value in the change of the

viscosity ~n = n{n}~2 in light of the fact that ~2/~1 = (n2/nl)q-3,

{C } itself gives a vanishingly small contribution. Thus, in the
n.

region 1 < q < 00, the correction to the Enskog value of {n}

approaches to asymptotically zero as q become large. This is

striking and encouraging because in deriving (4-14), (4-15), (4-16)

no attempt has been made to match the two theories in the region

0 < q < 00. For bulk viscosity, our result shown in Fig. 5 also

displays similar trends. However, the bulk viscosity exhibits

different limiting behavior in the limit q + 00, i.e. it goes to

.. .
f . . ~o +3 d h {C } d h f,.posltlve ln lnlty as q , an t us oes not approac a lnlteK

value. Therefore our choice of b appears to be too simple to yield

a fully accurate description of {C } and {K} over the full range ofK

q. Nevertheless, it does give the desired feature of {K} for a

wide ranged values of q not too large as shown in Fig. 5. Further-

more, our finding that {C } is smaller than {C } in the vicinity ofK n

q = 1 supports the MD result12 for a pure fluid, which has shown that

C is very close to unity.K

Another interesting feature predicted by our results is the

remarkable validity of {n}H and {K}H' the conventional hydrodynamic

results .over a large domain of q. For diffusivity this feature has

already been observed in paper 1,3 and the unreasonable adequacy of
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hydrodynamic results in general has been previously observed by

many others. 12 We find here that the resulting intrinsic shear and

bulk viscosity are numerically approximated by the conventional

hydrodynamics within error of 15% or so as long as °22/°11 > 1.5.
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FIGURE CAPTIONS

Figure 1. Intrinsic shear (A) and bulk viscosities (B) vs.

-1
/cr

q = cr22 11

-{X}E :

-{X}hcr:

{X}H :

at ~~ = O.~ in the case (cr22/cr11)3= m2/m1'

Enskog theory

Extended hydrodynamic theory (with the

effective contact radius cr)

Conventional hydrodynamic theory

Figure 2. As in Figure 1, except ~~ = 0.2.

Figure 3. As in Figure 1, except ~~ = 0.4.

Figure 4.

Figure S.

Intrinsic shear viscosity vs. q = cr11/cr22at ~~ = 0.4, in

3
the case (cr22/cr11) = m2/m1'

-{11}

_o-'-{l1}h :

-'-'-{l1}hcr:

-'---{l1}H :

{l1tE :

Our final result

Extended hydrodynamic theory without

modification of parameters (HKW).

Extended hydrodynamic theory with the

effective contact radius cr

Conventional hydrodynamic theory

Enskog theory

As in Figure 4, except for intrinsic bulk viscosity

-
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