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ABSTRACT

It is argued that one should expect a fluid of symmetrically charged hard spheres (the

restricted primitive model) to have an Ising-like critical point. It is further noted that the

presence of a repulsive r-4 ion-ion interaction term, of the sort found in real ionic systems

as a result of solvent-averaged ion-dipole-ion interaction, will prevent such a critical point

from developing.
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Some time ago, on the basis of general arguments as well as a systematic investigation

of several approximation schemes, we concluded 1 that the restricted primitive model (RPM)

of an ionic fluid exhibits phase separation in the fluid state, with a fluid-state critical point

at very low density. Further work by others2, including very recent computer simulations3,

have borne out this conclusion, and have led to a considerably more precise and accurate

estimate of the location of the critical point and fluid-fluid phase boundary.

We further concluded in a later study4 that the RPM was in the same universality class

as the Ising model with respect to the critical point. Our published remarks in this connection

were brief, however, and we gave few technical details concerning the argument that led us

to this conclusion. In light of the rapidly-growing current interest, both experimentalS-7

and theoreticaI8-1O, in the critical behavior of three-dimensional ionic fluids and ionic-fluid

models such as the RPM, it seems useful to give the argument here, especially since its

conclusion appears to be somewhat controversial. 11, as does the experimental picture12.

In ref. [4] we also asserted that if attractive i~n induced-dipole r-4 are added to

the RPM Hamiltonian, the thermodynamic critical behavior would become mean-field like,

referring to earlier work13 of ours on the effect of power-law potentials on critical behavior

as the basis of our assertion. Here we shall discuss the much more spectacular effect of

a repulsive r-4 term. We conclude that when added to the RPM Hamiltonian such a

term can be expected to suppress the critical point and phase separation, giving rise instead

to a different kind of singular behavior that can be thought of as the fluid analog of an

antiferromagnetic Neel point associated with a transition to a spatially ordered state. Models

in which such a repulsive r-4 term is present have a well-established place in ionic-solution

theory.14-16ITthe critical properties of real ionic solutions were well described by such models

that share the critical properties of the RPM with an added repulsive r-4 term, our assertion

here would require a major reassessment of the thermodynamic singularities in such systems.

In discussing the singular thermodynamic behavior of the models we consider, we note some
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of the issues that we feel must be better understood before one can be confident that one

comprehends real ionic-fluid behavior in this connection.

We begin our technical discussion with the RPM, which we shall describe in 3 dimen-

sions classically (nonquantally and nonrelativistically) in the thermodynamic limit. It is a

system of charged hard spheres of equal diameter u in which the potential energy associated

with n-particles is a sum of pair-potential terms of the form cpij(r) = 00 for r < u and

cpij(r) = 8i8ju(r) for r ~ u where

u(r) = q2/fr (1)

with species indices i and j either 1 or 2 and charge numbers 81 = -82, with the electroneu-

trality condition 81Pl + 82P2= 0 where Pi is the number density of species i. Thus Pi = P2

with total density P = Pi + P2' The f in (1) is the dielectric constant (relative to that of the

vacuum) of the uniform structureless continuum solvent in which the spheres are immersed

and q is electronic charge. The r is distance between ion centers.

It is useful for certain purposes to regard (1) as a limiting case of a more general

model, the Yukawa RPM, in which the u(r) of (1) is replaced by q2e-z"/fr. When z -4 0 we

are back to the RPM. It is also useful to consider the discretized (i.e., lattice-gas) version

of this system, in which r becomes the vector describing the relative position of two lattice

sites (or equivalently, the centers of two lattice cells) of, say, a simple cubic lattice with

lattice spacing u. In this case it is technically convenient to use the Green's function for

the discretized Helmholtz equation instead of the continuum equation V'2q,+ Z2q, = o. In

the Z -4 0 limit one goes over to the Green's function of the discretized Poison equation.

For a closed-packed lattice, for which pVo= 1 and P1VO= 1/2, where Vo is cell volume, the

discretized model is simply the Ising model with exchange interaction equal to -u( r ).
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One has an Ornstein-Zernike (OZ) equation relating the total correlation functions

hij (r) to direct correlation functions Cij(r )

hij(r12) = C;j(r12) + 'EI:PI:J h;l:(r13)cl:j(r32)dr3
(2)

. and a second independent relation expressing C;j(r) - 4)ij (r) as a functional of Pi and h;j

(and no other functions) as well as a function of rl where 4);j(r)= -{3cpij(r), {3= (kBT)-l,

T = temperature and kB = Boltzmann's const:

C.. (r) = 4)..(r ) + D..(r.h.. P.)I; I; .I."i; ; In I . (3)

We have the boundary condition h;j(r) = -1 for r ~ u and so only need (3) for r > u.

For our purposes it is convenient to introduce the sum and difference combinations

of hij that describe density and charge fluctuation respectively. The former fluctuations

prove to be responsible for setting up the critical point and we focus on them. We have

h8 = (hll + h12)/2, hD = (hll - h12)/2. (Note that hll = hs + hD and h12 = hs - hD, with

hll = h22 and h12 = h21 by symmetry). Similarly one has Cs and CD,Rs and RD and 4)s and

4)D, with 4)8 = o. The pair hs and Cs satisfy and OZ equation induced by (2) as do hD and

CD. For the former

hS(r12) = CS(r12) + PJ hS(r13)CS(r3ddr3
(4)

where

Cs = Rs[hih p;] (5)

We drop the argument r in (5) and below for notational simplicity. Notice that 4);j does

not appear in (5) since 4)5 = O. This is important, and is a major reason for the absence of

significant density-fluctuation differences between a simple one-species fluid and the RPM

or Yukawa RPM. A related remark of importance is that in the equation of state that yields

the pressure via integration with respect to P of the inverse compressibility as a function of
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(3and p is wholly determined by hs and p. On the other hand the configurationalinternal

energy is wholly determined by hD and p. See [4]for details.

Our strategy now is to call upon some techniques and results of [17] and [18], extended

from the simple fluid and lattice-gas case to the RPM and its discretized version. In the

case of a simple one-component fluid one has a single OZ equation -satisfied by an hand e,

and a single e - ~ = R. In the analysis of [17]we note that in the critical region h(r ), e(r),

and R(r) can each be regarded as the sum of a homogeneous function of rand K, an inverse

correlation length, and the rest - a part which is either short ranged or, if homogeneous,

is of higher degree than the dominant homgeneous term. We use a superscript N to denote

this second term. Thus h(r) = hH(r) + hN(r) with hH = fh(Kr)/r1+", e(r) = cH(r) + ~(r),

~(r) = fc(Kr)/r1+., R(r) = RH(r) + RN(r), RH =~. Summarizing, and extending

somewhat, the analyses of [17] and [18] we find that it is the functional dependence of RH

upon hH that determines the universality class one has, and hence the value of the critical

exponents. (A key point in this connection, important in our argument to follow, is that

RH[hH] is insensitive to the form of hN, which is model dependent even among models in

the same universality class). In particular we have, as K -t 0

e = ~ + RH[hH] (6)

eN = <I>+ RN (7)

RH[hH]= A2(hHY+ A3(hH)3+ ..., r » 0", Kr » 1 (8)

RH[hH]= B(hH)6+ ..., r » 0",Kr « 1 (9)

(If we consider a lattice gas with hole-particle symmetry about the critical isochore, then

A2 = 0 along that isochore.)

We note that these results, as well as the assumptions that have gone into them,

are consistent with the assumptions and results of renormalization group theory developed
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subsequent to the work of [17]. Similarly consistent is the conclusion that it is the functional

dependence of RH upon hH that determines the universality class one has, and hence the

values of the critical exponents in particular. As it stands, the analysis of ref. [17] is not

powerful enough to find those exponents, and we do not attempt to extend it in a way

that would permit their ab initio determination here. Instead we ~ompare the Cs of the

RPM with the c of the simple fluid to determine whether the two systems have the same

exponents. To do this, we turn to the RPM equation (5). We assume hs = h: +hlJwherethe

density correlation function hs also can be decomposed into a dominant homogeneous part

h: = fs(Kr)/r1+fIand the rest, hIJ,with K -+ 0 at the critical point. The charge correlation

function hD on the other hand does not have a homogeneous part with respect to K of

degree 1 + TJthat is co-dominant with h:. Instead it can be expected to have a dominant

homogeneous part (of Yukawa form at low densities) with respect to an inverse shielding

length r that is only very weakly sensitive to the singularity in density fluctuation associated

with K -+ O. (At low densities r will just be the inverse Debye length (47rp{3s~q2/t)1/2).In

particular r =f 0 at the critical point we are considering. One also expects a short-ranged

model-dependent term in hDo

Thus we have hs = h: + h~, hD= h~, hl1= h: + h~, and h12= h: + h~o This

induces a decomposition of Rs, and hence Cs, into a dominant homogeneous term with

respect to K plus the part RN that includes the nonhomogeneous shorter-range terms:

Cs = Rs[hih p] = R~ + R:[h:] (10)

In order for there to be a critical point of the form we seek in the first place, R~ must be

predominantly positive (at the very least have a positive volume integral) and this is consis-

tent with the results of our analysis, from which we can easily extract the exact low-density

behavior of Rs through O(p). In fact at low density, for r » u, we find R~ dominated by

a term of the form ~h~, with hD = -{3s~q2e-rr/tr. (Such low-densityinformation is useful,
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since the RPM critical point appears to occur at very lowdensityl-3.) The R:[h:J appears

to have the same form as a functional of h: that RH[hH]has as a functional of hH.

Thus the RPM appears to have a critical point in the same universality class as the

Ising model. The result hinges on the following key observation, which is simple but striking:

Compare the "hN-free" part of the h-bond, p-vertex representa-
tion of R[h, p],obtained by replacing h by hH, with the "hN-free"
part of the hirbond, Pi-vertex representation of Rs[hih Pi], ob-
tained by replacing each hij with h:. One finds that one has
identical functionals of hH and hff, respectively.

(11)

The meaning of the result clearly transcends the particular cluster-sum representation

we have used to obtain it. If one has a binary mixture of two species of particles and the

two species become identical to give a single-species fluid, then the thermodynamics of the

mixture becomes identical to the thermodynamics of the resulting single-species fluid. This

will naturally be reflected in all cluster sums, functional Taylor series, etc., that describe

the mixture. If the two species instead become asymptotically identical in some way, then

the mixture thermodynamics can only be identified with pure-fluid thermodynamics in an

appropriate asymptotic sense. That is what is happening here in the critical region, and it will

be reflected in cluster sums, functional Taylor series, etc., in that region. The asymptotically

important parts of both hll and h12 (the h~ and h~, respectively, in our notation) become

identical to hH, the asymptotically important part of the single-species hH. However, because

<I>s = 0 in our problem, the non-asymptotic parts of hll and h12 have to induce correlation

to set up a critical point in the first place. The correlation is R!J, which plays the role of an

effective one-species potential and drives the system to singular behavior (a "fixed point" in

renormalization-group language). Since the effective potential R!J is attractive and relatively

short-ranged, the fixed point will look like a critical point driven by such a potential.

Several comments on these RPM results are worth making:
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(i) The OZ formalism lends itself to making contact with important limits, models,

and approximations and it is worthwhile to note a few of these here. One obtains the

mean spherical approximation (MSA) by setting Rj = 0, and hence Rs = 0, for r >

u. Thus Cs = 0 for r > u and hs is the pure hard-core result, with no trace of any

critical behavior in hs, Cs, or the density fluctuations associated with Jhs(r)dr. However,

the MSA is thermodynamically inconsistent, and by first assessing the internal energy via

"£i<jPiPj J9ij(r)cpij(r)dr,9ij = hij + 1, and then integrating up with respect to f3 to get f3f, f

= free energy per particle, one will pick up mean-field critical behavior (correct through order

f33/2,it turns out). One gets the Gaussian approximation also by setting Rj = 0 for r > 0

but replacing the exact boundary condition 9ij = 0, r < u, with the condition that Cij= c{fs

for r < u, where c{fs is the unperturbed hard-sphere result. In the mean spherical and

spherical lattice models, which should be kept conceptually distant from the MSA, one also

has Rj = 0 pointwise for all r > u, but one picks up long-range correlation in the hij from

the spherical constraint, or an equivalent extra term in the fluctuation equations associated

with the mean spherical constraint, which is just the. lattice core condition19 9ij = 0 for

r = O. The removal of the constraint yields the Gaussian model.

(ii) The above analysis hinges on the separate behavior of rand K,with r remaining

nonzero as K 0, so that there is a critical region in which K « r. As one goes to the

zero-density limit, P 0, one loses the coulombic shielding, r O. Since the critical

density of the RPM appears to be low one can expect the complication of crossover effects in

a regime in which K and r are comparable. The notion that one is in a domain that appears

mean-field-like when r is very small and hD very long ranged (and that this might explain

some of the mean-field-like behavior observed in some real ionic systems) is appealing, but

requires further study before being either accepted or rejected.

(iii) In generalizing our treatment from the RPM to the Yukawa RPM and its lattice

analog we see no striking changes emerging in the critical region, but this issue also requires

further study. An increase in z will be accompanied by an increase in the inverse correlation
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length r associated with hD, which one can still expect to have Yukawa form for low /3p,

but with r -+ z instead of 0 as p -+ O. When one leaves the critical region by increasing

/3p, the pole associated with r in hD(k), the Fourier transform of hD(r), can be expected to

bifurcate off the imaginary axis in complex k space to become if 1:f:if R, with r 1subsequently

decreasing as /3pfurther increases. This scenario seems to be indepen,dent of whether z is zero

or not. In the lattice-gas version, one expects r 1 -+ 0 as /3 increases at close-packing density,

PVo= 1, to determine the Neel point /3Nof the Ising model. The z dependence of /3Nis of

particular interest, as is what happens as one backs away from close packing, especially in

connection with the interplay and relative dominance (for each z) of the spinodal instability

K,= 0 and the Neel instability r R = 0 as one goes down in density to a critical point.

(iv) In real ionic systems, there are terms in the Hamiltonian not included in the

RPM. These include polarization terms in the ion-ion pair potentials and solvent-averaged

potentials that have a large-r spatial dependence of the form r-4. Such terms - for example,

those arising from the polarizability of the ions thermselves - can be attractive, resulting in

a contribution to ~s(r) of the form /3ar-\ a > O. In [4] we noted that these terms will give

rise to mean-field or "classical" thermodynamic behavior in a neighborhood of the critical

point, the size of which depends upon the magnitude of a. This result emerges from our

OZ-equation analysis, as discussed in some detail in [4], and we shall add nothing to that

treatment here. Instead we note that one can also expect repulsive solvent-mediated r-4

terms in ionic solutions.14-16.2oSuch terms are often called cavity terms because they are

present in a well-known "cavity model" 14,16consisting of charged hard spheres immersed in a

structureless continuum solvent of dielectric constant € that does not permeate the spheres,

each of which is thought of as bearing a dielectric constant co, with c > co. (We shall consider

spheres of equal diameter and charge magnitude.) One then recovers the RPM when co = c,

which can be thought of as the case in which the solvent can freely and uniformly penetrate

the spheres. In the cavity model the ion-ion pair potential consists of the RPM term plus a
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sum of contributions of the form

""
( )

-4 + -6 + -7 +'Pij r = a4r a6T a7r ... (12)

For the dominant first term of this sum, often called the cavity term, one has

a4 = (S~U3+ S](3)(C - co)q2/16(2c + co) (13)

Under the usual assumption that co < c, we have a4 > 0, but if the ions were characterized

by a dielectric constant somewhat greater than the solvent, one would have a4 < o. For a

solvent of nonpolarizable dipolar spheres, rather than a continuum, Jepsen and Friedman2°

found a cluster-integral contribution to the solvent-averaged ion-ion potential that is of the

form a4r-4, a4 > 0, with a4 a function of the ion-solvent potential parameters that exactly

coincides with (13) for solvent c approaching 1, with fo = 1.

Adding a cavity term to the RPM pair potential will have a striking effect on the

critical behavior of the model, which can be best understood by considering the inverse

structure factor S(k)-l, which is 1 - pcs(k). At critical one must have for smalllkl, k real,

S(k t1 = c2-'1lkI2-'1+ . . ., C2-'1> 0, (14)

In the RPM, we expect a very small Ising-like T}~ 1/20, so that S(k)-l as a function of k

will look very smooth and very nearly parabolic at the origin. Adding the cavity term to

'Ps(r) will add to S(k)-l a dominant small-k contribution given by the Fourier transform of

-p~s(k), which has the form -,8p7r2a4Ikl at small k. Hence the smooth nearly parabolic

profile of S(k)-l in the neighborhood of k =0 will develop a sharp dimple centered at k = 0

that movesthe minimum of S(k)-l from k =0 to some nonzero ko, the magnitude of which

depends upon a4 and goes to zero as a4 does. Thus the singularity defined by S(k)-l = 0

can no longer be a critical point associated with zero S(O)-l, which is 8,8pI8p. Instead it is a

singularity associated with an oscillatory term in hs (r ), presumably of the form A cos kor1r.

The presence of the higher inverse-power terms in (12) cannot be expected to alter

the effect of the r-4 term significantly. The intrinsic n-body potential terms for n > 3
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in the cavity model cannot be expected to dominate the r-4 term either, although one can

imagine them being co-dominant, so their signs and relative magnitudes deserve to be studied

carefully.

The cavity term can be exactly recovered from a model with a dipolar molecular

solvent that is taken to the continuum-solvent limit.22 Taken together with the fact that the

cluster-integral contribution found by Jepsen and Friedman also yields the cavity term for

small solvent dipole moment without taking that limit, it seems hard to escape the conclusion

that such a term is present in real ionic solutions. However, the competition between the

repulsive cavity term and all possible attractive r-4 terms arising from polarization effects

in real solutions remains to be quantitatively assessed.
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