Fault-Tolerant Broadcasting Algorithms in Two
Dimensional Circuit-Switched Torus Network

N.W. Lo, Bradley S. Carlson and D.L. Tao

The Department of Electrical Engineering
State University of New York at Stony Brook
Stony Brook, NY 11794-2350
Fax: (516)632-8494
Phone: (516)632-8474
Internet: bcarlson@jessica.ee.sunysb.edu

Technical Report: #745

Abstract

In this paper optimal fault tolerant broadcasting algorithms for 2-dimensional synchronous
circuit-switched torus network are presented. In the presence of up to three faults in a 2—D
torus network the proposed algorithms can perform one-to-all broadcasting to all fault-free pro-
cessors, provided that the minimum number of broadcasting steps are used.

Keywords: circuit-switched broadcast, 2-D torus, fault tolerance

1 Introduction

New transmission protocols, enhanced communication technology, and new transmission medium
together provide multicomputer systems a very good candidate to achieve cost-effective high-
performance computing tasks. Multicomputer systems are composed by a set of microprocessor
systems in which each node has its own local memory and computing power. Point-to-point network
is used to connect nodes and message-passing mechanism is implemented to exchange information
between nodes. The performance of message-passing distributed memory multicomputer systems
is dependent on the network topology and the routing mechanism.

A broadcasting problem is to distribute original information from a source node to all
other nodes under a fixed network topology and specific routing mechanism. Among several dif-
ferent network topologies [?] and routing schemes [?], a 2-dimension torus network along with
circuit-switched routing mechanism appears to be a very popular and efficient combination for
today’s multicomputer systems [?, ?]. The low degrees and symmetric geometry characteristics of
2-dimension torus make this topology easy to construct under any interconnection networks. On
the other hand the circuit-switched routing provides a contention-free distance-insensitive routing
mechanism [?, ?]. The analysis shown in [?] indicates the general transmission times for the two
different circuit-switched routing types, direct-connect routing and wormhole routing, are similar.

Recently the adoption of parallel algorithms onto existent multicomputer systems to achieve
high-performance computation is a popular research area. In order to preserve the computation
power and the correctness of computing results, the fault tolerant capability of nodes of a multi-
computer system is an important factor [7, ?].

In this paper new fault tolerant broadcasting algorithms based on Peters and Syska’s [7]
optimum broadcasting algorithm are developed for a 57 x 5° (p € Z1) 2-dimension synchronous
circuit-switched torus network. In this paper the direct-connect routing model is adopted for its
simplicity and synchronous characteristics. In the presence of up to three faults in a 2—D torus
network the proposed algorithms can perform one-to-all broadcasting to all fault-free processors,
provided that the minimum number of broadcasting steps are used.

The remainder of this paper is presented as follows. The communication model is described
in Section ??. The optimal broadcasting algorithm derived by Peters and Syska [?] is reviewed
in Section ?7. Our fault tolerant broadcasting algorithms and relative implementation issues are

described in Section ?7 and the paper is concluded in Section 77.

2 Communication Model

A 57 x 57 2-dimension torus network 7" = (V, E') where V represents the nodes in the torus and £
contains all corresponding link edges between nodes is defined as V = {(4,5) |0 < i, < 57 - 1,p €
Zt} and F = {((v1,v1),(uz,v2)) | u1 = (ug £ 1) mod 5 and v; = v OR wy = uy and vy =
(vo £ 1) mod 57 V(uy,v1),(uz,v2) € V,p € Z+}. We assume the node (0,0) is in the left-bottom
corner of a torus graph and the other three corner nodes are labeled (0,5 — 1), (5? — 1,57 — 1), and

(57 — 1,0), respectively. The assumptions for network characteristics are the following:

o Link-bounded model: a node (processor) can read and write through all its communication

links simultaneously.

e Communication link is in full-duplex mode, i.e., both directions can be used to transfer data

at the same time.

e A node can pass an incoming message from one of its input ports to one of its output ports.
Up to four messages can be switched through a node at the same time when no two incoming

messages are directed to the same output port.

e Circuit-switched routing (direct-connect): before transferring any message a connection request
header must be sent from the source node and received by the destination node to establish
the communication path between the source node and destination node. After receiving a
connection request the destination node sends an acknowledgement header back to the source
node to confirm the path is established. By adopting the direct-connect routing type we avoid

the contention and deadlock problems in wormhole routing mechanism.

We only consider permanent node failures which also indicates all four corresponding links
of a faulty node are inoperable. Under the assumption that only one fault occurs at any given time
we can broadcast the address of the faulty node from one of its alive neighbor nodes to all other
fault-free nodes in the network by applying our fault tolerant broadcast algorithms. Therefore, we
can assume the addresses of faulty nodes are known by every non-faulty node. In other words,
every healthy node contains global information about the locations of faulty nodes in the torus
network.

In a stable interconnection network environment the number of faulty nodes (processors) in
a reasonable period of time should not be more than 1% of the total number of nodes. Our 3—fault
tolerant algorithms presented in Section ?? is mainly suitable for the multicomputer with its total

number of nodes up to several hundreds.

&
[
]
]

Jg U U u U

i
B
i
B

Figure 1: The 5 x 5 torus graph.

T
—j}
—ﬁ}
——(‘ﬁ
__Ci

~Adol ko
o ol—ol—ol 4l

3 Optimal Broadcasting Algorithm for 2-D Torus

In [?] Peters and Syska presented a 2-dimensional torus broadcasting algorithm in a fault free
network and proved their algorithm is optimal from their theorem 2. For the sake of simplicity
Peters and Syska’s broadcasting algorithm is denoted as the PSB algorithm from now on. The PSB
algorithm can be viewed as a recursive tiling of a torus. To illustrate their algorithm we consider
the example of a 5 X 5 2-dimensional torus shown in Fig. 7? and assume the node located at the
left-bottom corner is labeled (0,0). Fig. ?? shows two phases of the PSB algorithm in a 5 x 5
2-dimensional torus. The black node in the center of the graph is assumed to be the source node
with label (2,2). In the first phase the source node broadcasts the message to the four black nodes
with labels (4,1),(1,0),(0,3), and (3,4) via four disjoint paths marked with large arrows. In the
second phase each black node (u, v), including the source node (2, 2), sends the message to its four
immediate neighbors (v + 1,v), (¢ — 1,v),(u,v+ 1), and (u,v — 1). If we unwrap the 5 X 5 torus
carefully, we can get a mesh-form diagram shown in Fig. 77.
Definition 1: A cross unit is defined as one node and its four neighbor nodes connected together
with its four links. A basic group unit, a mesh-form diagram of 5 X 5 torus, is composed of 5 cross
units. A level-2 cross unit contains five basic group units that one basic group unit is positioned
at the center with the four other basic group units connected along each edge.

By adopting the recursive tiling scheme into the PSB algorithm a broadcast can be completed
in 2p broadcasting steps from an originator (source node) in any 2-dimensional torus graph of size
N = 5P x 5P. Fig. 7?7 shows a 25 X 25 torus drawn as a mesh form which is composed of five level-2

cross units (subgraphs). Some of the details of the PSB algorithm are omitted from the four outer

4 @ —>Q)
3 ol o<
2
1 O
0 O] O
v
0 1 2 3 4

Figure 2: Broadcasting in a 5 X 5 torus graph.

Figure 3: A broadcast process on a 5 X 5 torus which is composed of 5 cross units drawn as a mesh
form.

Figure 4: A broadcast process on a 25 X 25 torus drawn as a mesh form.

level-2 cross units to simplify the diagram. The recursive tiling scheme can be observed in this
example. During a broadcast process the center source node in the center subgraph first sends the
message to each center node of the other four subgraphs. Each subgraph is composed of 5 basic
group units. Then at the second step every center node of these 5 subgraphs sends the message to
the center of the other four basic group units in its own subgraph simultaneously. Before the third
broadcasting step, each basic group unit in the 25 X 25 torus has the message in its center node.
After two more steps are applied in each basic group unit (as shown in Fig. ??7) the broadcast task

is complete.

4 Fault Tolerant Algorithms for 2-D Torus

Without loss of generality we assume the originator is located at the center of the 57 X 5P torus
network with label (z,y) = (¥, %) on itself and the left-bottom corner node is labeled (0,0).
For consistency we adopt the same notation to represent a 2-D torus in the rest of this paper.

Definition 2: In a basic group unit the root node is the center node of the center cross unit. A

branch node is one of the four center nodes of surrounding cross units. A pre-branch node is one
of the four nodes in surrounding cross units with its X -axis or Y-axis position labels equal to the
ones of the root node. The rest of nodes in a basic group unit are defined as leaf nodes.

As shown in Fig. 7? and Fig. ?? in a basic group unit the root node is the black node at the
center of these diagrams. Branch nodes are black nodes around the root node. Pre-branch nodes
are painted in gray color. All white nodes denote leaf nodes.

Definition 3: An embedded torus G C T is defined as G = (V, E) such that
. . — P
1. The broadcasting center node is labeled (a,b) = (%52, 852).

2. V={G4)||i—a|=5m,|j—b|=5n,0<m,n<|53FL], p>2}

3. E = {((u1,v1),(u2,v2)) | 1 = (ug £ 5)mod 5” and v; = v OR u; = uz and v; = (vy %
5) mod 57 Y(uy,v1),(ug,v2) €V, p > 2}

Definition 4: A node set, L(V) C T(V), is defined as the nodes in T'(V') located on any link edge
in G.

The idea to tolerate up to three faulty nodes in a 57 x 57 2-dimensional torus network 7T is to
separate the nodes of the torus graph into two subsets, G(V) and T(V) — G(V'). The subset G(V)
contains all nodes that will receive the message during the first 2(p— 1) broadcasting steps while no
node is failed and the PSB algorithm is applied. Notice that all nodes in G(V') form a 57~1 x 5P~1
2-dimensional torus G(V, E)into torus T. We apply a new algorithm called find_pseudo_source_node
algorithm to find a fault-free pseudo-source node to substitute the originator if either one or both

of these two cases listed in the following encounter:

¢ One of the faulty nodes is a branch node of a basic group unit where the root node of this

basic group unit is in G(V).
¢ One of the faulty nodes is located in G(V)U L(V).

After applying the find_pseudo_source_node algorithm all the first 2(p — 1) stages of the PSB
algorithm are able to send the message successfully without any transmission failure because of a
faulty node on the transmission path and in the worst case only one faulty node is a branch node of
some basic group unit in which the root node of this basic group unit is in the new G(V') constructed
from the pseudo-source node. In other words, the new source node spans a new embedded torus
G’ such that all nodes in G'(V) U L'(V) are fault-free.

Because there are at most three faulty nodes under our assumption and each node can find
four disjoint paths to communicate with another node in the torus network, we can always find

at least one fault-free connected path from the originator to the non-faulty pseudo-source node.

OOOOOO;}OOOOOOOOO Oj0000O0O0

[0}
®
©
L

=

T
©
D

OOOOOOQ}OOOOOOOOO [e]{oNoNoNeo N}
@

Figure 5: Broadcasting in a 25 x 25 torus graph.

A simple greedy algorithm similar to the dimensional routing scheme can be applied to perform
the transmission task as follows. For simplicity, assume the message is sent from the orginator
through its X-axis output port. The algorithm transmits the message along the X-axis direction
until the Y-axis coordinates of the destination node and an intermediate node are matched. Then
the message is transmitted from the Y-axis output port of the intermediate node along the Y -axis
direction to its destination (the pseudo-source node). Since the originator knows the locations
of the faulty nodes in advance, during the connection request the algorithm can bypass the faulty
nodes in front of the connection path by changing the path direction before encountering any faulty
node and switch back to the original direction later.

In Fig. 2?7 we show an embedded 5 x 5 torus G (all black and gray nodes) in a 52 x 52
torus network T'. Assume node (u,v) € T(V) — G(V). From observation, node (u,v) must fall in
a 5 X 5 square grid partitioned by the embedded torus G. For example, the dotted square region
of Fig. 7?7 shows a 5 X 5 square grid constructed by a 5 x 5 embedded torus in a 52 X 52 torus
network. Consider a 5 x 5 square grid shown in Fig. ??. If we assume the originator labeled (z,y)
is located at the left-bottom corner of the square grid in Fig. 77, then the 4 gray nodes with labels
(z+1,y+2),(z+2,y+4),(z+3,y+1),and (2 +4,y+3) are indicated as the corresponding branch
nodes of the 4 black nodes in G(V'). Because a torus network is totally symmetric, the whole torus
network 7" can be partitioned into multiple identical 5 X 5 square grids as the one shown in Fig. 77,

We define a 5 x 5 virtual square grid as the mapping square grid. All square grids partitioned in

r—ﬁ
Y+ | =<4

!
Y+3 |L<

!
Y+2 Iéé

I]
Y+1

| \
e

I

X X+1 X+2 X43 X+4

Figure 6: The 4 gray nodes represent the branch nodes of the 4 black nodes located in G(V'); the
range of a 5 X 5 square grid is indicated by dashed lines.

a 2-D torus can superimpose to the mapping square grid. If we select the root node and the four
branch nodes in a square grid, when we move around the embedded torus we can observe that these
five nodes fall into different relative positions with respect to their new corresponding square grids.
Mapping all different square grid partition patterns of these five nodes into the mapping square
grid, it is observed that the elements (nodes) in the mapping square grid can be partitioned into 5
groups with 5 elements in each of them as shown in Fig. ?7. In general, there are 5 x 5 different
relative positions for an embedded torus G to move to and become a new embedded torus G'. That
is, a total of 25 different embedded torus networks can be formed in any 57 X 5P torus network.
Notice that a 5 X 5 torus (p = 1) itself is a square grid. Therefore, the find_pseudo_source_node
algorithm can be applied to a 5 X 5 torus as well. We denote two link edges passed through the
left and bottom sides of a square grid in G as the left and bottom boundaries of a square grid,
respectively. We apply the characteristics of the square grid to define the left and bottom boundary
offsets of a node (u,v) as follows.
Definition 5: A left boundary offset of a node (u,v), LB(u,v), is the distance between the node
(u,v) and the left boundary of the 5 x 5 square grid which contains the node (u,v).
Definition 6: A bottom boundary offset of a node (u,v), BB(u,v), is the distance between the
node (u,v) and the bottom boundary of the 5 x 5 square grid which contains the node (u, v).
Assume the original source node is labeled (z,y). To compute boundary offsets of a node a

simple algorithm is derived as follows.

N
W
Y+4 A
Y+3 S
Y42 >7
Y+1 e
v D~

X X+1 X+2 X+3 X+4

Figure 7: Five different groups in the mapping square grid.

o A left boundary offset of a node (u,v) can be computed as (u—~2) mod 5 if u—z > 0; otherwise,

the value is equal to 5 — (z — u) mod 5.

e A bottom boundary offset of a node (u,v) can be computed as (v — y)mod 5 if v — y > 0;
otherwise, the value is equal to 5 — (y — v) mod 5.

Consider three possible faulty nodes (fz1, f11), (fz2, fy2), and (fzs, fys). Define the corre-
sponding left and bottom boundary offsets of the three faulty nodes as LB(fz1, fy1), BB(fz1, f11),
LB(fz2, fy2), BB(fza, fy2), LB(fz3, fys), and BB(fzs, fys). Let the set F = {(fz1,fy1),
(fz2, fy2), and (fzs, fys)}. Let the set R = {(LB(u,v), BB(u,v)) | (u,v) € the branch nodes
of the left-bottom root node in the mapping square grid } = {(1,2),(2,4),(3,1),(4, 3)} represent
the relative positions between the branch nodes and the left-bottom node in a square grid, i.e., the
four gray nodes shown in Fig. ?7?. Define the final X and Y -axis offsets between the originator and
the selected pseudo-source node as T,ffset and Yossset Where 0 < Zofrset, Yorfser < 4. In order to
trace the relative positions between the faulty nodes and the left-bottom node of their new corre-
sponding square grids in accord with a possible pseudo-source node (z + Zoffsets ¥ + Yof fset)s We
define a relative distance operator, RDO(a,b) in which 0 < @,b < 4, such that if a — b < 0, then
RDO(a,b) = a — b + 5; otherwise, RDO(a,b) = a — b. Notice that in the find_pseudo_source_node
algorithm the operands of RDO (relative distance operator) can be a pair of LB(u,v) and . fset
variable to reference a new left boundary offset or a pair of BB(u,v) and y, s, variable to reference
a new bottom boundary offset in which (u,v) € F.

We now present the find_pseudo_source_node algorithm to tolerate at most three faulty nodes.

find_pseudo_source_node algorithm(){
if (3(LB(u,v), BB(u,v)) € R OR 3LB(u,v) == 0 OR IBB(u,v) == 0, where (u,v) € F)

set Zof5set = 0 and F1 = {};
while (zoffser < 4) {
if (ALB(u,v) == Zofsset, Where (u,v) € F) {
Toffset = Toffset + 1;

continue; /* start another while loop for z,fsset */

}
if (%ffset == 0)
set Yoffset = 15
else
set Yoffset = 0;
while (yofsset < 4) {
if (3BB(u,v) == Yoffset, Where (u,v) € F) {
Yoffset = Yofsset +1;

continue; /* start another while loop for yofsser */
}
let W = {(4,7) | (RDO(LB(u,v), Zoffset), RDO(BB(u,), Yoffset)), where(u,v) € F};
if (V(3,5) € W, (5,5) ¢ R)
goto FOUND;
else if (the number of faults == 3)
F1=F14{(z+ Zoffset, Y + Yoffset)};
Yoffset = Yoffset + 13
} /* the end of while loop for yof et */
Toffset = Toffset T 1;
} /* the end of while loop for z,ffset */
select one element from set F1 as the pseudo-source node (2',y') and stop;
FOUND:
set the pseudo-source node (z/,y') = (¢ + Toffsets ¥ + Yoffset);
} /* the end of if-then-else statement */

The find_pseudo_source_node algorithm selects a pseudo-source node such that the faulty

node will neither be the branch node positions of any square grids partitioned by the new embedded

10

torus G’ nor locate onto any edges or nodes of G'. Notice that by applying the simple greedy
algorithm mentioned before, only one broadcasting step is required to transmit the message from

the originator to the selected pseudo-source node.

Lemma 1 A non-faulty pseudo-source node can always be found in the 5 X 5 mapping
square grid with the originator located at the left-bottom corner of the grid by applying the
find_pseudo_source_node algorithm in the presence of r (1 < r < 3) faulty nodes such that

1. No faulty node is located on the new embedded torus G'.

2. When r (1 < r < 2) faulty nodes ezist, no branch nodes of basic group units with respect to G’
are faulty.

3. When r = 3 faulty nodes exist, in the worst case only one branch node in a basic group unit

with respect to G' can be faulty.

Proof: Assume the position of the selected pseudo-source node is (¢,) and the new embedded
torus is denoted G’, respectively.

Part (1): Every time the find_pseudo_source_node algorithm selects a possible candidate of
the pseudo-source node from the rest 24 positions in the mapping square grid, the algorithm checks
that whether the faulty nodes are on the links/nodes of the new embedded torus G’'. In the worst
case when three faulty nodes are all located on different rows and columns with respect to the
mapping square grid, there are still 4 out of 25 positions can be selected as the pseudo-source node
(3,7) after eliminating all the possible nodes in the same column or row of the faulty nodes. So we
can always select a pseudo-source node (¢,7) to form a fault-free embedded torus G’.

Part (2): Consider the case that at most two faulty nodes are detected. From part (1) we
know that in the worst case here only 9 out of 25 possible positions in the mapping square grid can
be selected as the pseudo-source node (¢, 7). From the observation of Fig. 7?, we learn that the 9
possible positions are always distributed into 5 different groups. If a faulty node is mapping to one
position in the same group (5 nodes) of the node (i,), this indicates one branch node of a basic
group unit with respect to the G’ is faulty. In the worst case that two faulty nodes belong to two
different groups we still have the available nodes of 5 — 2 = 3 groups from which the pseudo-source
node (7, 7) can be selected. Therefore, a suitable (4,) can always be selected to form a G’ and no
branch nodes of basic group units with respect to the G’ are faulty.

Part (3): Now consider the case where 3 faulty nodes exist. From part (1) we know that only
4 possible positions in the mapping square grid are available to be selected. From the observation

of Fig. 77 we know that the 4 possible positions are always distributed into 3 different groups.

11

That means in the worst case we cannot find a group without a faulty node located on a branch

node position. a

4.1 Fault Tolerant Algorithm for Two Faults

The 2-Fault Tolerant PSB Algorithm for 2-dimensional torus is shown in the following.

2-Fault Tolerant PSB Algorithm(){

1. Construct the embedded torus graph G from the original source node (z, y).
2. Apply the find_pseudo_source_node algorithm.

3. Apply the PSB algorithm and stop.

}

Theorem 2 In the presence of r (1 < r < 2) faulty nodes at most one additional step is required by
the 2-Fault Tolerant PSB Algorithm to perform a one-to-all broadcast in a 5P X 57 circuit-switched

torus network.

Proof. The possible additional steps of the 2-Fault Tolerant PSB Algorithm compared to the
PSB Algorithm are a result of the find_pseudo_source_node algorithm. From lemma ?7 it is observed

that at most one broadcasting step is performed by the find_pseudo_source_node algorithm.]

4.2 Fault Tolerant Algorithm for Three Faults

We now describe in detail the 3-Fault Tolerant PSB Algorithm to tolerate at most three node

failures.

3-Fault Tolerant PSB Algorithm(){

1. Construct the embedded torus graph G from the original source node (z, y).

2. Apply the find_pseudo_source_node algorithm.

3. If the pseudo-source node (z’,y’) € F1, apply the Prebranch.Broadcast PSB algorithm and
stop. Otherwise, goto STEP 4.

4. Apply the PSB algorithm and stop.

Here a new algorithm called the Prebranch_Broadcast PSB algorithm is introduced to resolve
the broadcast problem that one branch node of a basic group unit in torus 7 is faulty after selecting
a pseudo-source node. Fig. 7?7, 77, and ?? profile this algorithm in detail. One basic group unit
is outlined by the dotted line with the center root node labeled H. All black nodes indicate the

branch nodes in the basic group unit. The node F is the faulty branch node and node P is the

12

corresponding pre-branch node of node F. Three leaf nodes of the branch node F are labeled A,
B, and C. All gray nodes represent the possible positions of the two other faulty nodes. Notice
that this condition only occurs when no two faults are located on the same row or the same column
of torus T. Leaf nodes A, B, and C must be fault-free because of the position of the faulty branch
node F. This guarantees a fault-free path can be established from the three default routing paths
shown in Fig. 22, 7?2, and 7?7 to send the message from the pre-branch node P to the leaf node C in
one broadcasting step because two faulty nodes at different row and column positions cannot break
all three default routing paths simultaneously. At the same time the pre-branch node P sends the
message to the leaf nodes A and B through the L-type paths also.

When compared to the PSB algorithm, the Prebranch_Broadcast PSB algorithm requires the
same number of broadcasting steps. The only difference is that every node in the torus 7 must load
the information of those predefined relative routing paths before applying the Prebranch_Broadcast

PSB algorithm. The Prebranch_Broadcast PSB algorithm is presented in the following.

Prebranch_Broadcast PSB Algorithm(){
1. Apply the PSB algorithm at the first 2p — 2 broadcast steps in a 57 X 5P torus.

2. Send the message from each root node of a basic group unit to the corresponding fault-
free branch nodes. If a branch node is faulty, then send the message to its corresponding
pre-branch node.

3. In the last broadcast step if the message is in a branch node, then apply the PSB algorithm
and stop. Otherwise, goto STEP 4.
4. Apply L—type routing paths to transmit the message from the pre-branch node P to leaf

nodes A and B. At the same time observe and select one fault-free routing path out of
three possible default paths to broadcast the message to the leaf node C.

Theorem 3 In the presence of r (1 < r < 3) faulty nodes at most 1 additional step is required by
the 3-Fault Tolerant PSB Algorithm to perform a one-to-all broadcast in a 5P x 5P circuit-switched

torus network.

Proof. Consider the worst case: three faulty nodes exist in the torus network and the
Prebranch_Broadcast PSB algorithm is executed. From lemma ?7 it is proved that if necessary, we
always can find and select a pseudo-source node by applying the find_pseudo_source_node algorithm
and only one step is needed to transmit the message from originator to the selected pseudo-source
node. Since the Prebranch_Broadcast PSB algorithm does not need any extra steps to broadcast a
message when it is compared to the PSB algorithm, we can conclude that at most 1 additional step
is sufficient for the 3-Fault Tolerant PSB Algorithm to perform a one-to-all broadcast in a 5P x 5P

circuit-switched torus network. O

13

O0000000O0O0

O00O0O0 o
O0O0O00000O0O0

OO0 O0OO00O0O0O0OO0O0

Ie
®
O

(@)

Figure 8: The first possible routing path from the pre-branch node P which substitutes its corre-
sponding branch node F' to broadcast the message to the leaf node C.

0O00O0O0

O0O00O00OO0O0O0O0

C
O
ol .
oe-4-0/0l0
O
O

O0O0OO0OO0O00O0O0O0
OO0 O0OO0OO0O0O00O0O0

O0O0O0

O O
O 0

Figure 9: The second possible routing path.

14

00000

O0O0O0O0000O0O0

(OONONOONONONOINONG,
O

OO0 O0OO0OO0O00OO0OO0O0

0000

Figure 10: The third possible routing path.

Theorem 4 The 3-Fault Tolerant PSB Algorithm ¢s an optimal fault tolerant algorithm compared
to the PSB algorithm.

Proof. Assume the originator is (z,y) and one of the four neighbor nodes of (z,y) is faulty.
After applying the PSB algorithm one fourth of the total number of nodes in the 2-D torus network
cannot receive the broadcast message from node (z,y). It is obvious that at least one additional
broadcast step is required to allow one fourth of the nodes to receive the message in the presence
of one faulty node. Because the 3-Fault Tolerant PSB Algorithm only needs one more broadcast
step to tolerate up to 3 node failures while compared to the PSB algorithm, the 3-Fault Tolerant
PSB Algorithm is optimal. O

5 Conclusion

In this paper we have derived a fault tolerant broadcasting algorithm for a 57 X 57 2-dimension
circuit-switched torus network to tolerate up to 3 permanent node failures. Because there is at
most one additional step needed in our algorithm to accomplish a broadcasting task compared to
the optimal broadcasting algorithm derived from Peters and Syska [?], our fault tolerant algorithms
are optimal and the complexity of this algorithm is O(logs N) in which N is the total number of
nodes in a 2—D torus network.

The future work is to consider the multiple node (> 3) failure problem and the dynamical
link /node failure problem. Both problems can form an incomplete 2-dimensional torus with complex
irregular shape. It will also be interesting to develop fault tolerant algorithms on n-dimensional

torus network in the presence of at most 2n — 1 faults in which n > 3.

15

References

[1] Joseph G. Peters, and Michel Syska. “Circuit-Switched Broadcasting in Torus Networks,”
IEEFE Tran. on Par. and Dis. Sys., vol. 7, NO. 3, pp. 246-255, 1996.

[2] Ju-Young L. Park, and Hyeong-Ah Choi. “Circuit-Switched Broadcasting in Torus and Mesh
Networks,” IEEFE Tran. on Par. and Dis. Sys., vol. 7, NO. 2, pp. 184-190, 1996.

[3] Yih-jia Tsai, and Philip K. McKinley. “A Broadcast Algorithm for All-Port Wormhole-Routed
Torus Networks”, IEFFE Tran. on Par. and Dis. Sys., vol. 7, NO. 8, pp. 876-885, 1996.

[4] Ju-Young L. Park, Sang-Kyu Lee, and Hyeong-Ah Choi. “Fault-Tolerant Broadcasting in
Circuit-Switched Mesh”, Proc. SIAM Conf. on Parallel Processing for Scientific Computing,
pp- 22-24, Mar., 1993.

[5] W.J. Dally, and C.L. Seitz. “Deadlock-free Message Routing in Multiprocessor Interconnection
Networks”, IEEE Tran. on Computers, vol. 36, NO. 5, pp. 547-553, 1987.

[6] S. H. Bokhari. “A Network Flow Model for Load Balancing in Circuit-Switched Multicomput-
ers”, ICASFE Report 90-38, May 1990.

[7] S. H. Bokhari. “Communication Overheads on the Intel iPSC-2 Hypercube”, ICASE Interim
Report 10, May 1990.

[8] P. Fraigniaud, and E. Lazard. “Methods and Problems of Communication in Usual Networks”,

Discrete Applied Math., vol. 53, pp. 79-133, 1994.

[9] D.K. Pradhan. Fault Tolerant Computing, Prentice/Hall International, Englewood Cliffs, New
Jersey, 1986.

16

