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Abstract. The development of a general theory of clustering, is sketched. The
primary focus is on the use of the pair connectedness function in problems of corre-
lated clustering and on the Ornstein-Zernike formalism that has been developed to
evaluate this function and relate it to observed mesoscopic and macroscopic proper-
ties. The treatment stresses applications and potential applications that are directly
relevant to colloid problems, especially percolation in microemulsions and gelation

in polymer solutions.

1. Introduction

This contribution will be concerned with a general and quite abstract theory of clus-
tering, but we shall emphasize here work that has already been found by colloid experimen-
talists such as S.H. Chen and his coworkers to be useful in interpreting microemulsion data,
as well as some immediate extensions of that work that also promise to be of use to colloid
and polymer scientists. This paper complements a recent article by the author [1] sharing
the same theoretical approach but focused upon a somewhat different set of applications
that have proved especially relevant to composite-media problems.

There is a well-developed and comprehensive theory of percolation going back to pi-
oneering work of Broadbent and Hammersley and some others in the 1950’s [2]. It describes
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various aspects of connectivity on a regular lattice. But percolation, and more generally, clus-
tering, is clearly not a notion that intrinsically requires the presence of a lattice structure
in order to make sense. Moreover, there are significant features of real clustering phenom-
ena that do not naturally lend themselves to a lattice description. There are important
antecedents among earlier studies by physicists and chemists that already provide a basis for
a lattice-free theory of percolation, beginning with the work in the 1930’s of Bijl [3], Frenkel
[4] and Band [5] concerning nucleation and condensation of gases into liquids. Subsequent
work by Hill [6,7] to develop a general systematic treatment of the clustering of interacting
particles and by Stillinger [8] to embed the earlier work of Frenkel and Band [4,5] in an exact
statistical mechanical formalism were also carried out on a lattice-free basis as was some
further work on percolation such as that of Essam, Coniglio, Zwanzig, and their coworkers
[9-14]. In the 1980’s the author and his colleagues developed a general lattice-free theory of
percolation that began by extending the results of Coniglio et al. [11]. It is this theory that

will be summarized here.

A great deal of the lattice-based research in percolation theory that followed the
initial work of Broadbent and Hammersley (as well as some of the continuum work) has
been concerned with what can be characterized as random percolation — this notion will be
made more precise in the following sections — in which there are no interparticle forces acting
to produce interparticle correlations with respect to position. On the other hand, most of
the off-lattice work on condensation that we mentioned above has been focused on systems
of particles that are assumed to be interacting with non-negligible interparticle forces, giving
rise to non-negligible interparticle correlation. Such theories are concerned with correlated
percolation, in the terminology of the subject. The theory given here has been applied to
random [15-17] as well as correlated percolation, but it is the latter that will be stressed here,
since it is correlated percolation that must be used to describe effects in colloids and other
real systems of interacting particles. It is worth pointing out that the formalism developed
here, although not lattice based, is immediately applicable to lattice models of percolating
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systems, where it has already yielded new insights and approximations [14,18,19).

2. Theoretical Background

Much of our work centers upon the pair-connectedness function and the Ornstein-
Zernike (OZ) formalism that has been developed to evaluate it and relate it to observed
mesoscopic and macroscopic properties of real systems. The pair connectedness function can
be thought of as being part of the pair-distribution function g(12) that has long been used
in liquid-state statistical mechanics. The OZ percolation formalism is correspondingly part
of a more general OZ formalism that describes g(12) and its relation to a direct correlation
function ¢(12). We therefore begin our theoretical development with a description of the
family of correlation functions to which g(12) and c¢(12) belong and their relation to each
other and to other key functions that describe the thermodynamics and structure of a many-
particle system in thermal equilibrium. A key function is the pair probability density po(12)
associated with finding a particle in volume element dr; and r; and another particle in drp
at ro. This is one of a family of s-particle density functions ps(12...s) similarly defined,
which includes p1(1), a local one-particle density that reduces to p, the expected number
density, in a spatially uniform system. In [20] a general formalism relating these functions
is discussed in great detail. Other treatments of ours, each emphasizing a special aspect or
application of the formalism, are [21], [22], [23], as well as [1]. An early but still very valuable
formal treatment of the p, is found in (7).

When the distance r between particles at r; and ro becomes large, one expects po(12)
to approach p;(1)p1(2) as long as a system is in a single thermodynamic phase. It is hence
useful to introduce the difference between po(12) and p1(1)p1(2), sometimes referred to as

the two-particle cluster function or Ursell function, as a measure of interparticle correlation

u2(12) = p2(12) — p1(1)p1(2)- (2.1)

Also useful are the pair-distribution function g(12) and the pair-correlation function h(12),
which are dimensionless functions expressing intrinsic pair correlation, from which the one-
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body effect of density inhomogeneities has been divided out,

9(12) = p2(12)/p1(1)p1(2) (22)
h(12) = u2(12)/p1 (1), (2) = g(12) - 1. (2.3)

When p approaches zero, g(12) approaches the two-particle Boltzmann factor
e(12) = exp [-Bp2(12)] (2.4)

associated with the pair potential ¢2(12). Here 8 is 1/kT, with k Boltzmann’s constant and
T absolute temperature. Two other important functions are the Mayer f-function associated
with e(12),

7(12) = e(12) - 1, (2.5)

and the “cavity function” y(12) associated with g(12),

9(12) = e(12)y(12). (2.6)

The y(12) is the pair distribution between two particles that each interact with a full ¢
with respect to all other particles that are ideal with respect to each other [i.e., p2(12) = 0].
In other words, they behave as cavities with respect to each other. Another two-particle
function that will play a crucial role in our development is the direct correlation function

c(12), related to h(12) and p;(1) by the Ornstein-Zernike (OZ) equation

h(12) = c(12) + / h(13)p1(3)c(32)d3 @7)

Here [ d3 represents the volume integral [ dr3. In the case of a uniform system, p;(3) = p,
and (2.7) simplifies to
h(12) = c(12) + p / h(13)c(32)d3. 2.8)

In this uniform-system case, the OZ equation is of very simple form in 3-dimensional Fourier

space. Introducing a(k), the 3-dimensional Fourier transform of a(r),

a(k) = (—27155 / dr a(r)e~ ik 2.9)
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we can write (2.8) in Fourier space as
h(k) = c(k) + ph(k)c(k) (2.10)

If a(r) depends upon r only through |r|, denoted here as r, then a(k) dpends upon k only
through |k|(= k) and a(k) can be expressed as a scalar integral

sin kr
a(k) = (2 )3 / dr ra(r )( ) (2.11a)
S0
ka(k) = %5 /(; > dr ra(r)sin kr (2-11b)

In terms of the structure factor S(k) and its inverse, X (k),

S(k) =1+ ph(k), (2.12)
X(k) =1 - pc(k) (2.13)

the OZ equation (2.8) becomes
S(k)y =1/X (k). (2.14)

In real space, pS(r), the transform of pS(k), is the function p6(r) + p2h(r) or
< Ap(r)Ap(0) >, where pb(r) is the “self” or “ideal” part of pS(r).

For given p, (2.8) represents one equation with two functions, h and c, to be deter-
mined. A second independent relation is needed in a full theory. One such relation can be

written as

c(12) = —Bp9(12) + R(12) (2.15a)

where R(12) is a functional of h and a function of p. There is a local part of R(12) expressible
in terms of h at r and a nonlocal part b(12), expressible in terms of an infinite series of cluster

integrals over products of h-functions
R(12) = h(12) — In[h(12) + 1} + b(12), (2.15b)

b(12) = é / d3d4h(13)h(23)h(34)h(32)h(42) + . .. (2.150)
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The integral exhibited here is of order 8% and p?. This is the lowest-order contribution to
b(12) with respect to order in both p and 8.

Alternatively c(12) can be expressed as a functional of f(12) and a function of p by
means of a sum of cluster integrals over products of f functions, which can in turn be written

in terms of y(12) and a cluster sum d(12) [21],
¢(12) = £(12)y(12) + d(12), (2.160)

or equivalently, as
c(12) — f(12)[9(12) — ¢(12)] + e(12)d(12) (2.16b)

where d(12) is of order 8* and p*:

d(12) = 322- / d3daf(13)£(14) £ (32) £ (42) + é / d3d4£(13)£(14) £ (34) £ (32) F (42) + . .
(2.16¢)

In order to introduce some appropriate approximations, it is necessary to first consider
the form of ¢2(12) we shall be using in our molecular modelling. When introduced to
describe solute-solute correlation the functions introduced above are typically used in a
solvent-averaged (McMillan-Mayer) description [24] in which the solute-solute potential ¢
is actually a solute-solute potential of mean force at infinite solvent dilution. In particular
this is true in discussing colloid-colloid interactions. The resulting o will in general be 3
dependent as well as p dependent, and in the case of colloid interactions these dependencies
can be very pronounced.

In principle, n-particle potentials of mean force at infinite solvent dilution for n > 3
should be taken into account as well as 2. This can be accomplished through the in-
troduction of n-particle f functions associated with such potentials [20,25], but often the
continuum-solvent approximation is made (although sometimes not explicitly) in which the
solvent is regarded as a structureless continuum. For such a solvent f, = 0 for n > 3. When
one is not making the continuum-solvent approximation, the f,, n > 3, can be incorporated
into 9, an effective 9 that carries further state-dependence as a result of the effects of the
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fn, n > 3, being projected into its behavior via an additional averaging procedure. This can
be effected systematically through a comparison the one-species solute-solute OZ formalism
we have introduced here (with the fn, n > 3 included) and the multi-species OZ formalism
given in terms of the true solute-solute, solute-solvent and solyent-solvent pair interactions,
rather than mean-force quantities. The resulting formalism — a marriage of McMillan-Mayer
and OZ theory — was first considered systematically by Adelman for non-ionic fluids [26]
and discussed more recently for ionic systems by Hgye and the author [27].

Almost all molecules and ions have highly repulsive intermolecular cores as do their

constituent atoms. We can model such core terms with a hard-sphere interaction
HS .
' °(12)=0cc for r<o,0 for r>0o (2.17)

For some systems of interest, the attractive part of ¢9(12) outside the core term can

be reasonably modelled by a Yukawa term,
0(12) = H5(12) — Age=—"=9) /r, (2.18a)

or a linear combination of Yukawa terms. We shall refer to (2.18a) as the Yukawa-sphere
potential. In certain colloid problems (one of which is discussed in Section III), it seems
equally reasonable to approximate the Mayer f function by a hard-sphere f plus a Yukawa

term

£(12) = {5 - Boe==0)r, (2.18b)

or a linear combination of Yukawa terms. We shall call (2.18b) the hard-core Yukawa f-
function potential.

Another form that has been found to be useful in approximating potentials with strong
short-range attraction is the Baxter sticky-sphere potential [28], which is most conveniently

expressed in terms of its Boltzmann factor

e(12) = ef15(12) + -I%T-a(r - o) (2.19)
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where 6(r — o) is a Dirac delta function loaded at » = o. The sticky-sphere e(12) can be
regarded as an limiting case of the e(12) for a square-well potential, in which the well width

w goes to zero as the well depth goes to infinity. When the square-well e(12) is written as

e(12) = ef15(12) + W (12)

(2.20)
wto forr<o+w;0forr>0c4+w

SwW
12) =
e (12) 127w

the sticky-sphere limit is w — 0. Because of its analytic convenience, (2.19) has come to be
widely used as an approximation to (2.20) [29], but it turns out that (2.19) is problematic if
taken literally. As the author showed some time ago [30], a monodisperse system of sticky-
sphere particles has no state of thermal equilibrium — the free energy per particle is not
finite. We shall return to this point at the end of this section. We note that one can also
regard the sticky-sphere limit as a limiting case of (2.18) with SA or B — oo, o — co with
BA/a or B/a constant [31].

Ionic solutions are often modelled as fluids of charged hard spheres in a structureless
medium of dielectric constant €. One has for the potential between ions of species a and

species 8

0ap(12) = 95 (12) + qagp/er (2.21)

where g, is the chz;.rge of an ion. For a binary mixture of ions, @ = +,— and 8 = +, —. This
¥ap is often referred to as the primitive-model potential. The restricted primitive model
(RPM) refers to the symmetric case go = —gg with all core diameters equal, ‘pg; (12) =
pH5(12).

For the sorts of ¢2(12) just listed, the formally exact results embodied in (2.15) and
(2.16) immediately suggest some approximations. Consider the form of ¢(12) exact through
first order in B or, equivalently, the strength of ¢9(12) — this defines a linear-response theory
in potential strength. From (2.15) on has simply

¢(12) = —Bpa(12) (2.22)
8



This is a useful approximation outside the repulsive interparticle core over a broad range
of thermodynamic states for which S8 times the potential strength is relatively small. It
becomes increasingly accurate as r increases since the magnitude of By decreases. But in
the core region, where —f8p2(12) is huge, Eq. (2.22) is wildly inaccurate. There, however,
the condition g(12) = 0 is nearly exact. In our hard-core models, it is fully exact, so we can
set

c(12) = —Byp(12) for r >0, g(12) =0 for r< o (2.23a)

Used with the OZ equation (2.8) or (2.10) these boundary conditions define the mean spher-
ical approximation (MSA). Although exact through first order in 3, (2.23a) is not an exact

low-density limit, given by
c(12) = f(12) for r >0, g(12) =0 for r < 0, (2.23b)

which represents an approximation that is exact when p — 0 as well as being exact through
O(B2). We denote this approximation the f function mean-spherical approzimation (FMSA).

A widely used approximation that is exact outside the core through the first four
orders in the strength of Sy2 is the hypernetted chain (HNC) approximation, obtained by
neglecting 5(12) in Eq. (2.15b). Another widely used approximation can be motivated by
considering (2.16). Whenever there is a discontinuity in ¢2(12) (or, equivalently, in f(12))
the discontinuity in ¢(12), Ac(12), is given exactly by

Ac(12) = [AF(12)]y(12) (2.24)

where A f(12) is the discontinuity in f(12), since y(12) is continuous, with Ay(12) = 0,
through finite jumps in f(12). One might therefore expect the expression that arises when
the function d(12) is neglected in (2.16a),

c(12) = f(12)y(12) (2.250)

to be good for potentials that change only discontinuously where they change at all (i.e., for
hard-sphere and square-well ¢7). Equation (2.25a) is one way of expressing the Percus-Yevick
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(PY) approximation, which has indeed been found particularly useful for such potentials.
For the hard-sphere potential, ¢(12) = 0 for r > ¢ in both the PY approximation and MSA,
the two approximations yield identical expressions for g and c¢ for a hard-sphere system.

It is worth noting that for hard-core potentials, Eq. (2.25a) will yield a very poor
approximation to y(12) for r near zero when used with the PY ¢(12). As discussed by the
author in detail elsewhere [21], it is better to regard the PY approximation as being given

by the expression that follows from neglecting d(12) only outside the core region, yielding

c(12) = £(12)[g(12) — c(12)] (2.25b)

which is equivalent to (2.25a) outside the core region but reduces to g(12) = 0 inside the
core. Equation (2.25b) is silent with respect to the value of y(12) inside the core, in contrast
to (2.25a). A similar pair of alternative formulations exists for the HNC approximations
[21].

Approximations such as the MSA and the PY and HNC approximations are not
accurate enough to give thermodynamic results from the relation for the isothermal com-
pressibility K

pKT/B=1+p / h(12)d2 = 1~ p / c(12)d2] ! (2.26)

that are fully consistent with the expression for internal energy per particle U/N

U/N = —;-p / 0(12)09(12)d2 (2.27)

or the virial-theorem expression for pressure p

By = p— @nB%/3) / 0(12)[By2(12) /Br]rdr (2.28)

The author and his colleagues have developed a family of more accurate self-consistent mean-
spherical approximations (SCOZA) that insure self consistency in this regard [32-36).

The location of the coexistence curve and the values of the critical exponents associ-
ated with liquid-gas or liquid-liquid pha(se separation described by approximations that have
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not been tailored to be self-consistent typically depend upon which of the equations (2.26)-
(2.28) are used to describe the thermodynamics, as well as whether one is using a lattice-gas
or continuum-fluid version of the approximation. For example, the continuum MSA and
FMSA critical exponents are those of the spherical model (y=2;6=5,8=1/2,v=1,9=
0) when the compressibility relation (2.26) is used, but mean-field-like (y = 1,6 = 3,0 = 1/2)
when the energy or virial-theorem routes are used. The latter routes yield different critical-
point locations, too, at which h(12) does not have the undamped critical-point form it has at
the critial point defined by (2.26). For that reason correlation exponents like v and 7 are not
well-defined via (2.27) and (2.28). However, for a simple lattice gas, the MSA and FMSA
exponents are those of the spherical model for both the compresibility and energy routes and
they describe the same critical point. (In the lattice gas, there is no simple relation corre-
sponding to (2.28) because of the spatial derivative of 9 that appears in that equation.)
Somewhat surprisingly, the PY critical behavior is quite different when assessed via (2.26).
For a rather broad class of models, it appears to be mean-field-like, with v = 1, § = 2,
B=1/2,v=1/2, n =0, as a result of an artificial asymmetry in density about p = pc,
the critical density, which leads to different values for the critical amplitudes of h(12), S(k),
and KT above and below p.. The asymmetry was explicitly demonstrated by Baxter for
the PY sticky-sphere solution [28] and by Parola and Reatto [37] for the PY solution for
nearest-neighbor lattice gas. Reatto and his coworkers went on to demonstrate that the same
asymmetry could be expected in the PY approximations for a broad class of fluid models [38].
If it were not for the asymmetry, the PY behavior would be spherical-model-like, because
the PY approximation has both the core-condition (mean-spherical constraint) and short-
ranged c(12) that give rise [39] to spherical-model behavior in the absence of other special
symmetries or constraints. The contrast between the MSA behavior for the Yukawa-sphere
model and the PY behavior for the sticky-sphere model, discussed in Cummings and Stell
[40], persists more generally for a wide variety of models when one compares PY behavior

to MSA or FMSA behavior.
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In the case of the sticky-sphere limit, approximate solutions of the PY or MSA type are
artificial in a profound way that has to do with the singular nature of the square-well model as
the sticky-sphere limit is approached. As discussed in [30], when one takes the sticky-sphere
limit w — 0 in Eq. (2.20), the energy per cluster necessary to break up clusters of twelve or
more connected particles in three dimensions becomes inﬁnitel, cuasing the free energy per
particle to diverge and the pair correlation function A(12) to develop an infinite number of
values of r at which it is nonintegrable. On the basis of exploratory studies [41], however, it
appears that the energy per cluster only begins to be anomalously large for extremely small
values of w/o — probably very much less than 10~2 for all densities of interest, although
a relaible assessment of this threshold value, w*/o, remains to be made. The PY, MSA
or FMSA approximations for g and g+ do not show any evidence of the singular nature of
the w — 0 limit and its consequential loss of thermodynamically stable states, because such
approximations omit all of the highly connected cluster-integral contributions to g~ and g+
that give rise to the singular behavior of g and g¥. As a result, such approximate results

and the exact result become more and more disparate as w — 0.

In colloidal applications of the square-well potential, the w/o that has been considered
is typically greater than 102, and it is possible that in all such applications, one will remain
comfortably above the threshold value of w/¢. In colloidal applications there is another
reason that the problem of thermodynamic stability may not be an important issue. Many
colloids are polydisperse in size. As discussed in [30], a continuous distribution of hard-
sphere sizes will prevent the formation of a finite concentration of the close-packed clusters
that require infinite energy to decompose. Presumably, this would remove the divergence
of the free-energy density. One has two natural length ratios in the problem, w/é and the
normalized dispersion [m]l/ 2/5, where a bar denotes an average value. If the w/5
is small compared to the dispersion, one would not expect the anomalous small-w behavior
characteristic of the monodisperse case even if w/& were below the threshold value w* /o of
the monodisperse case. (It should be mentioned, however, that the results of an analysis
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of this problem by J.S. Groeneveld leads him to believe [42] that the sticky limit may be
pathological even in the polydisperse case.)

Although the HNC approximation has proven valuable in understanding the structure
and thermodynamics of a number of the models that have been discussed here, it does not
lend itself to sharp analysis involving closed-form expressions or simple quadrature. Moreover
it has proven to be highly unreliable in describing phase boundaries between fluid phases
[43,44,45).

All of the approximations that have been discussed are faithful to the core condition,

9(12) = 0 when ¢2(12) = 0. Suppose the condition is relaxed — for example, by asking that

c(12) = —P¢2(12) forr > ¢ (2.29q)
or
c(12) = f(12) forr > o (2.29%)
but
c(12) = cHS(12) forr<o (2.29¢)

where cf5(12) is the hard-sphere reference-system c(12) that one has when 9(12) is turned

off outside the core, or, equivalently, when § — 0. Then ¢(12) for r < ¢ will no longer be

identically zero inside the core although it will approach zero there in the limit 8 — 0, at

which ¢(12) given by (2.29) reduces to the the PY/MSA cH5(12). 1t is easy to show that

the critical exponents from (2.29) will be mean-field-like. In fact, if the PY/MSA cH#5(12) is

used, Eq. (2.19s) and (2.19¢) immediately yield, via (2.26), the van der Waals type equation
pp = (B9)"S - pai?,

2a = / ¢§OFT (12)d(2) = ¢§OFT(0) (2.30)

where ¢§OFT (12) = ¢2(12) for r > o and <p‘290FT (12) =0 for r < 0. Via (2.13) and (2.14),
(2.19a) and (2.19¢) give the structure factor

S7Hk) = X (k) = 1 — pe"5 (k) — pp OF T (k) (2.31)
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while (2.19b) and (2.19c¢) yield the same set of relations with ¢ everywhere replaced by f.
There are both disadvantages and advantages to the use of (2.19) instead of (2.23).
The major disadvantage is the violation of the core condition, but for some purposes, this will
not be important. In particular, one would not expect it to degrade the small-k quality of
S(k) in a significant way, because the small-r error will be reflected primarily in some shifts
that are pointwise small and distributed over all k. An advantage is analytic simplicity,
which is obvious from (2.30) and (2.31). Compared to the PY approximation, an advantage
is the absence of the artificial PY asymmetry about p.. Compared to the MSA, an advantage
for p = pc and T > T is the somewhat more accurate temperature dependence of K7 and
universe correlation length x given by the mean-field behavior. On the other hand, the
mean-field description of the critical isotherm and of the correlation length at T = T is

decidedly less accurate than their MSA description.

3. Connectedness and Clustering

A. A formalism induced by connectedness [1,46,47)

Suppose we introduce a connectedness probability H(12) that defines the probability
that in the p — 0 limit, two particles are connected for a given r. (In this limit, any two
particles can be regarded as isolated.) For all p, H(12) will also define what we mean by
two particles being directly connected. The form of H will be dictated by the connectedness

process we are trying to model:

Ezample A
H(12)=1forr<D, 0 for r>D (3.1)

Here we call two particles whose centers are closer than a distance D connected.

Ezample B

— Ap—ar —-ar P for r<D
H(12) = Ae™® or Ae™ " /r or {0 for r>D (3.2)

Here two particles are “connected in probability” rather than in an all-or-nothing way [47].
The first two forms are appropriate in modelling “hopping probabilities” of various sorts, in
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which an excitation passes from one particle to another with a probability that increases as
r decreases. The third is a generalization of the all-or-nothing criterion in Example A to a

“something-or-nothing” criterion that retains a geometrically sharp notion of connectedness.

Ezample C

0 fi e 12) >0
Haz)= {I‘[37r2,r—ﬂ$22((12))]/1‘(3/2) for 3 ¢2(12) < 0 33)

Here I'{a, }] is an incomplete I function. This H is a function defined by the condition that
the relative energy of the pair of particles in negative. (Relative energy is potential energy

plus relative kinetic energy.) It was introduced systematically by Hill [6,7].
Given H(12) we can introduce et and e*, the connectedness” and “blocking” parts

of e(12) [6,7],

et(12) = H(12)e(12), (3.4)
e*(12) = e(12) — et (12), (3.5)
The corresponding breakup of f into f* + f* with f* = et and f* = e* — 1 enables one
to decompose the f-bond, p-vertex cluster expansion of u2(12) into the subsum u'2" (12) in

which there is at least one unbroken path of f* bonds between the vertices representing 1

and 2 and the remaining subsum, u3(1,2),
ug(12) = u (12) + u3(12). (3.6)

This immediately yields [11] a corresponding breakup of h(12), p2(12), and g(12), with
gt =ht and g* — 1 = h*,
9(12) = g*(12) + g*(12). (3.7)

In extending Hill’s terminology for e* and e*, the g% has been called the pair-connectedness
function and g* the pair blocking function. More generally, however, one can think of g* as
the intercluster part of g and g* as the intracluster part.

In the case of H(12) = [P for r < D, 0 for r > D) the notion of a cluster is
geometrically sharp — it is a set of particles connected via directly connected pairs, where

15



two particles are directly connected if their centers are a distance less than D apart. In
this case the decomposition of g into g% and g* can be easily defined without recourse to
the cluster-sum decomposition involving f*-bond paths. In the case of more general H(12),
however, a formal procedure such as the cluster-sum decomposition appears to be necessary
to define g* and g* precisely.

Given ht and H as well as g one can immediately find mean cluster-size S as well as

g one can immediately find mean cluster size S and mean coordination number z. One has

- S=1+4p / ht(12)d2, (3.8a)

2=p f g(12) H(12)d2 (3.85)
Equation (3.8a) is closely analogous to the thermal relation (2.26). The decomposition of
1 + ph into an intercluster part ph* and intracluster part 1 4+ ph™* in Fourier space yields
a corresponding decomposition of the structure function S(k), which is a key function in
the description of scattering from a sample of the system. The f*-bond, p-vertex cluster
expansions of g+, g*, immediately provide power-series representations in p of those functions
and of S as well, through (3.8a), while the f-bond, p-vertex expansion of g yields the
expansion of z in p through (3.8b).

There is an OZ equation for h*[= g*]
hH(12) = cH(12) + p / h+(13)cH(23)d3 (3.9)

obtained by using the relations h = h* + h*,c = c* +c* in (2.8). No correspondingly simple
relation emerges between h* and c*. Instead the OZ equation for h* is in terms of ¢* and

convolution integrals involving h*, h™, ¢* and c¢t. In analogy with (2.16) one also finds

ct = flgt ~ct)+ fYg* - c*] +etdt +etd* +e*d (3.10a)
* = f*lg* - '] +e%d* (3.100)

where
d=dt +d* (3.10c)
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so that a formally exact OZ theory can be given through the f +-bond, f*-bond, p-vertex
expansions of d* and d*. By setting d* = 0 and d* = 0 one obtains PY-type approximations
for g and g* as well as recovering the PY approximation for g. We shall refer to these as
“PY approximations”. Equations (3.8a) and (3.10) were first derived by Coniglio et al. [11],
who also introduced the f*-bond, f*-bond, p-vertex expansions of A*, h*, and c* as well as
the PY approximation for ¢t. Stell [46] extended the work to obtain the OZ equation for
h* along with (3.10).

B. Some models, approximations, and applications

In Section II we have already introduced a number of models pertinent to colloid
modelling. We did not dwell on an ideal gas of point particles, because its thermal description
is trivial, with g = 1, h = 0, and ¢ = 0. Even for the simplest form of H(12) given by Example
A, Eq. (3.1), however, the clustering properties of the ideal-gas system are highly non-trivial
and describing them accurately represents a theoretical challenge. In particular, the behavior
of gt and ¢ is not known exactly, nor is that of the mean cluster size S. The ideal gas of
point particles with the H of Example A is sometimes referred to as the randomly-centered
sphere model, or just random-sphere model, which represents the simplest off-lattice example
of uncorrelated percolation. This was solved in the PY approximation by Chiew and Glandt
[48]). Using the same H of Example A along with the hard-sphere 9 gives rise to what has
been called both the extended-sphere model and the penetrable concentric-shell model In

that model a PY approximation for At can be given that reduces to
ct=0forr>D,ht=hPY for r<D (3.11)

where hFY is the PY approximation for h. This approximation was solved analytically by
DeSimone et al. {49].

In work with L. Blum [50] and with J.J. Salacuse [51], the author introduced the
permeable-sphere model defined by setting ¢2(12) = 0 for r > o with 5(12) such that
g(12) = 1 — e for r < o, where ¢ is a fixed permeability parameter. In the same references,
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the permeable-sphere model was solved in the PY approximation. Chiew and Glandt [48]
extended Stell’s solution to the PY approximation for g*, using the H of (3.1) with D = g.
They also extended Baxter’s solution of the PY equation for the & of a sticky-sphere fluid
to the PY equation for g%, using the same H with D = o™ (i.e., D = o + € for € arbitrarily
small.) /

The natural extension of the MSA to gt depends on the type of H(12) being consid-
ered. The MSA is defined in terms of a hard-core region, outside of which ¢ is approximated
and inside of which g is exactly prescribed. When H is given by the step function of (3.1) it
is natural to regard r > D as the “core region” appropriate to the clustering problem and to
prescribe ¢t as zero outside this region (since et = 0 there) as well as to require g* = g for
r < D, since this is an exact core condition. (For such H, the MSA and PY approximation
for ¢t become identical, just as the MSA and PY approximation for ¢ becomes identical for
hard-sphere fluids.) Since g for r < D is typically not known exactly in this case, it is also
appropriate to use the MSA for g to complete the MSA approximation for g*. For H not
given by (3.1) it is instead natural to use the hard-core diameter in formulating an MSA for
g1 by using the exact relation g7 = 0 for » > ¢. For r > ¢ the approximation most directly
analogous to the MSA statement ¢ = —fy9 = Ine would be ¢t = Inet = In f*. However,
in percolation problems it is not the magnitude of In f but of f¥ itself that is the most
natural perturbation parameter, so that the appropriate linear-response approximation to
use in completing the percolation MSA is ¢t = ft for r > 0. Hence, in the terminology of
Section II, when the core region for g% is taken to be r > ¢, the natural version of the MSA
for gt is the FMSA. For models with such a percolation core, the PY and FMSA results are
different, and the percolation-singularity description for g* might well be different in the
two approximations, just as it is for g. However the PY approximation is not analytically
solvable for such models and all PY results as yet considered for gt can equally well be
regarded as MSA results.

For the Yukawa sphere system, Xu and Stell [47] solved the MSA /PY approximation
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for gt for the step-function H of Eq. (3.1). They also obtained g and g% by setting
c= Koe~*(=) /r (3.12a)

¢t = Ktge= ¥ (r=9) /p (3.12b)

for r > 0, which yielded a second set of results, Eq. (3.12a) can be used as a MSA for the
Yukawa spheres of (2.18a) with K = —(A or as an FMSA for the Yukawa f-function of
(2.18b) with K = —B. Eq. (3.12b) can be used analogously with ¢t identified as either
—BypT or f1, respectively. Xu and Stell considered two sets of relations among K+, 21, K
and z; Korlipara and Stell [52] considered still another relation among these quantities.

For the RPM, the step-function H of (3.1) has been used in characterizing ionic
clustering since the pioneering work of Bjerrum [53]. The RPM g;”ﬁ has been obtained in
the MSA by Given and Stell [54] , who also obtained QZ[; in the more accurate generalized
MSA developed earlier for the RPM g, g by Stell and Sun [33]. The PY and MSA results for
the random-sphere, permeable-sphere, sticky-sphere, and Yukawa-sphere systems all show
a percolation transition at which the mean cluster size S computed through (3.6) becomes
infinite. The PY, MSA, and GMSA critical percolation exponents that characterize the
behavior of S, g, and related quantities at the percolation threshold are not exact, but
are quite accurate. In particular wherever the mean-field results deviate substantially from
the best estimates of the exact values, the PY/MSA results are much closer to the exact
values. In the standard notation of the subject, the PY/MSA values are y = 2,7 =0, 6 = 5,
B = 1/2 while the exact values are estimated to be v =~ 45/24, n =~ —1/21, § ~ 53/10,
B =~ 5/12. The mean-field values are y=1,9=0,6 =3, §=1/2.

Remarkably enough, when one scrutinizes the analytic structure of the exactly solv-
able approximations for ¢ and gt that we have been discussing here one finds that the
analytic solutions can be extended to the polydisperse case in which there is a distribution
of hard-core radii and also a distribution of potential strengths found outside the core (e.g.,
a distribution of charge number in the case of charged spheres). Not surprisingly, the extent
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to which the extension can be made in terms of explicit closed-form results depends upon the
distributions chosen and also upon the assumed relation between potential strengths ;;(12)
and ¢;;(12) found outside the core. The PY/MSA treatment of the distribution functions
9i7(12) and structure factors S;;(k) of a hard-sphere system was initiated by Vrij [55] and
independently by the author with Blum [50] and with Salacuse [51]. The Blum-Stell results
for the structure factors were used by Griffiths et al. [56] to get explicit results for the gamma
(Schulz) distribution of radii.

The Blum-Stell work exploited the technique developed in earlier work by Blum and
Hgye [57] on the MSA for a mixture of charged hard spheres. Although the Blum-Hgye
work was not couched in the language of polydispersity, it immediately yields the MSA
solution for a polydisperse distribution of sphere sizes and sphere charges. Blum and his
coworkers have continued to extend their MSA results for polydisperse systems, including a
mixture of sticky charged hard-spheres and dipolar hard spheres [58], sticky charged hard
spheres polydisperse in size, charge, and stickiness (with the stickiness treated in the PY
approximation and the charge in the MSA) [59], and sticky Yukawa spheres (polydisperse
in size, stickiness, and Yukawa strength) in the MSA [60] Robertues et al. [61] had earlier
given the PY solution for sticky-sphere system polydisperse in size. Ginoza [62] gave an
elegant MSA solution for Yukawa spheres polydisperse in Yukawa strength, and Blum et
al. [63] subsequently considered linear combinations of Yukawa potential polydisperse in
size and strength. Zhu and Rasaiah [64] have given a detailed analysis of a polydisperse
mixture of charged spheres with a sticky interaction between particles of unlike charge, with
a Coulomb interaction treated in the MSA and the stickiness treated in both the PY and
HNC approximations.

All of the polydisperse work we have just mentioned has been concerned with ap-
proximations for g;;(12), S;;(k) and related thermodynamic approximations. As yet, little
or no corresponding work on g%'- (12) and associated percolation quantities has been pub-
lished, although Hgye and Stell have considered g;'J'-(12) for polydisperse sticky spheres in
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as-yet unpublished work.

The three-component water-in-oil microemulsion system consisting of AOT/water/
decane is a good candidate for the application of the theory discussed here. Results for
this system were recently reviewed and summarized by Chen et al [65]. Over a range of
molar ratios of water to AOT the system consists of microdroplets of water coated by a
layer of the AOT surfactant molecules immersed in an oil solvent. The surfactant gives
rise to a short-ranged solvent-averaged attractive droplet-droplet interaction between the
microdroplets. At the well-studied molar water/AOT ratio of 40.8, the droplets have an
effective diameter of about 60 A and a polydispersity of about 30 %. The system has
become a laboratory in the investigation of correlated-percolation phenomena in a fluid; it
shows both the phase coexistence and a locus of conductivity singularities that represent
a percolation line. When the solvent-averaged interaction is modelled as a narrow-well
square-well interaction, the effective ratio, w/@, has been found to be around 2 x 10~2 with
the effective well depth of the f function, ¢/kT, around 46. The effective solvent-averaged
droplet-droplet interaction is extremely state-dependent (i.e., T and p dependent). Whereas
a state-independent ¢ (in the absence of ¢n, n > 3) with a repulsive core and short-range
attractive tail would give rise to a p — T diagram (p abscissa and T ordinate) with an upper
critical point characteristic of simple fluids and a percolation line emergency with positive
slope from a convex-up coexistence curve, the AOT/water/decane p — T diagram shows
temperature inversion — the coexistence-curve is concave up with a percolation line below

it, emerging from the vicinity of its minimum with negative slope.

There are at least two independent factors that go into the pronounced state depen-
dence of the effective 73 found in the AOT/water/decane system. The first is the state
dependence of the solvent-averaged pair potential between isolated microdroplets. The sec-
ond factor stems from the fact that the system has been considered in the context of a
treatment in which the solvent-averaged ¢n, n > 3, have not been explicitly taken into ac-
count. Formally speaking, this means that in making contact with experiment, the effects
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of the pn, n > 3, are implicitly being projected into the effective %2 considered by Adelman
[26] that has state dependence beyond the McMillan-Mayer 5.

Two of the approximations we have discussed have already been used in analyzing
both the phase separation and the percolation line. Cametti et al. [66] have used the Xu-Stell
results with Eq. (3.12a) as an approximation for Yukawa spheres and (3.12b) parameterized
for a Yukawa f+. The temperature dependence of the K of (3.12a) was determined by the
results of an earlier study [67) that had been made to find the substantial T-dependence of
the effective solvent-averaged pair potential $3. Agreement between theory and experiment
was strikingly good.

A subsequent analysis of the same system was made more recently by Chen et al. [65]
using the sticky-sphere approximation for a square-well system. In order to accommodate
the state dependence of %3, a temperature-dependent particle diameter was introduced. A
simple relation between the inverse stickiness parameter 7 and temperature T was deter-
mined that accommodates both the T dependence of %5 and the effect of size polydispersity.
The resulting theoretical description of the coexistence and percolation curves in the p — T
plane match the experimental results very well, providing a second theoretical model for the
analysis of the p — T results.

Another system that seems well suited to analysis using continuum percolation theory
is the gelation/water/methanol system studied by Tanaka et al. [68]. In this system there
is also phase separation and percolation. Here the percolation manifests itself as gelation
accompanied by a singularity in viscosity. Tanaka et al. provided a Flory-type mean-field
theory of the phase separation and gelation to analyze their experimental results; Coniglio
et al. [69] also developed a comprehensive lattice-based mean-field theory to describe the
polymer gelation and phase separation in such systems. However, the continuum theory we
have discussed here does not seem to have been used yet in discussing the reversible gelation

found in such systems.
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