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Abstract

A recursive method for solving for the equilibrium state probabilities of a three

tandem queue network with limited buffer space is presented. A set of 4x4 linear equations

is solved at each step of the recursion, resulting in large computational savings. Such tandem

networks are useful for modeling packets or calls flowing over sequential paths.
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1 Introduction

In [2,4] two classes of non-product form, continuous time, queueing networks defined by their

state transition diagram (lattice) topology for which it is possible to solve for the equilibrium

state probabilities in an exact, decomposed and recursive manner were presented. This is

of interest as many practical performance measures are simple functions of the equilibrium

state probabilities. The use of recursions in non-product form networks was first studied

systematically in [1]. A matrix based interpretation of such recursions is also possible [3].

Among the examples in [2,4] were recursive expressions for two Markovian queues in

tandem (series) where one had a buffer size of one and the other had a finite sized buffer. In

this letter a network consisting of three tandem Markovian queues operating in continuous

time are considered. Two of the queues have a buffer size of one and the other has a finite

sized buffer and will be referred to as the multi-buffer queue. Arrivals follow a Poisson

process and service times are independent random variables following negative exponential

distributions. Such tandem networks are useful for modeling calls or packets flowing over

sequential paths.

The state transition diagrams of the networks considered here possess the Type A

structure of [2,4]. The state probabilities, relative to a reference state, can be solved for in

sets of four states at a time. Thus each step of the recursion procedure involves the solution

of a set of four simultaneous linear equations. Assuming that linear equation solution time is

proportional to the cube of the number of equations (N), then such a recursive procedure is

i:,2 times faster than the direct solution ofthe entire set of global balance equations, though

execution overhead may reduce the magnitude of this speed-up. In the following, recursive

solutions are presented for two different orderings of the queues in the three queue tandem

network.

2 Source Model

In the first model to be considered the multi-buffer queue is placed immediately after the

input and is followed by two servers of buffer size one. This is illustrated in Fig. 1. The
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state transition diagram appears in Fig. 2. The reference state is state (0,0,0), that is the

state with all buffers empty. The states are solved in sets of four starting in the vicinity of

the reference state and moving from left to right in the state transition diagram.

Three sets of linear equations are presented below. Each equation is some state's

global balance equation. The first set (initial set) is for the first four states near the reference

state. The second set (recursive set) is used recursively for four states at a time in the

diagram, selected from left to right. The last set (final set) is for four states in the vicinity

of the right boundary of the state transition diagram.

Initialization

p(O, 0, 0) = 1.0 (2.1)

-\

p(O,O, 1) = t3p(O,O,O)
(2.2)

-\(-\+/3)
p(O,l,O) = . n p(O,O,O) (2.3)

Initial Set:

3

-(-\ + JL(l)) /3 0 0 p(l, 0,0) --\p(O, 0,0)

JL(l) 0 /3 0 p(l,O,l) (-\ +a)p(O,l,O)-
0 -(-\ + /3+ JL(l)) 0 a p(O,l,l) --\p(O, 0,1)
0 JL(l) -(A + /3) 0 p(l, 1,0) 0

(2.4)



Recursive Set i=2,3 ... M-l

-Ap(i - 1,0,0)

(A+ a)p(i - 1,1,0) - Ap(i- 2,1,0)

- Ap(i-I, 0, 1)

- Ap(i - 2, 1,1)

(2.6)

-Ap(M - 1,0,0)

(A+ a)p(M - 1,1,0) - Ap(M - 2, 1,0)

-Ap(M - 1,0,1)

-Ap(M - 2,1,1)

and

. A

p(M, 1,1) = (3p(M - 1,1,1)
(2.7)

Here M is the maximum size of the multi-buffer queue. Naturally the solutions

produced by this recursion must be scaled so that the sum of the state probabilities equals

one.

4

-(A + Jl(i)) (3 0 0 p(i,O,O)

Jl(i) 0 (3 0 p(i,O,l)
1= (2.5)

0 -(A + (3+ Jl(i)) 0 a p(i-I, 1, 1)

0 Jl(i) -(A + (3) 0 p(i, 1, 0)

Final Set

...
-Jl(M) (3 0 0 p(M,O,O)

Jl(M) 0 (3 0 P(M, 0,1)
1=

0 -({3 + Jl(M)) 0 a p(M - 1, 1, 1)

0 Jl(M) -(A + (3) 0 p(M,l,O)



These equations were found to agree to 12 significant digits with the "complete"

solution found by solving all the global balance equations simultaneously.

Scaling problems are possible with the use of this set of equations. To see why

this happens, consider the multi-buffer queue by itself. Treating it as a state independent

MIMl1 queueing model means that the equilibrium probability at the ith state is equal to

)..1fl times the equilibrium probability of at the (i-1)st state. Here).. is the arrival rate and

fl is the service rate. Thus, for instance, the probability that there are a hundred customers

in the buffer is ()..Ifl)100 times the probability that the buffer is empty. This can naturally

lead to scaling problems.

However because the marginal probability of the number of customers in the multi-

buffer queue is either monotonically increasing or decreasing in the number of multi-buffer

queue customers and because this is the same order in which the previous equations are solved

the necessary scaling can be performed automatically. Basically a check is performed at

each iteration to see if the state probabilities are approaching the upper limit of the machine

register size. If this is so, all state probabilities calculated so far are scaled downward by a

common factor. This technique was used successfully for the previous equations over a wide

range of parameter values.

The great advantage of the use of these equations is their speed. This is illustrated

in the following table, The results were computed on a VAX 11/780 where the IMSL routine

LEQT2F was used as the linear equation solver.
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3 Destination Model

In this model arrivals proceed sequentially through two single buffer servers and then enter

the multi-buffer queue (Fig. 3). The state transition diagram appears in Fig. 4. Because of

the state transition diagram topology it is now necessary to let the reference state be state

(O,l,M).

Again, three sets of linear equations are presented. The first set (initial set) is for

four states near the reference state. The second set (recursive set) is used recursively for

four states at a time in the diagram, selected from right to left. The last set (final set) is for

four states in the vicinity of the left boundary of the state transition diagram.

Initialization

p(O,1, M) = 1.0 (3.1)

p(l, 0, M) = A + JL(M)p(O,1, M)
Q' (3.2)

A

p(l, 1, M) = JL(M)P(O,1, M)
(3.3)
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# of States Buffer Size Complete (sec) Recursive (sec)

24 5 .5 .3

44 10 1.9 .4

84 20 10.7 .8

124 30 34.8 1.2

164 40 76.1 1.7

204 50 150.5 2.0

244 60 248.8 2.4

284 70 381.9 2.8

324 80 569.5 3.2

404 100 1056.6 4.1



Initial Set

0

(a + J1(M))p(I,O,M)

-J1(M)p(O, 1, M)

-J1(M)p(l, 1, M)

Recursive Set i=M-l,M-2, ... 3,2.

-J1(i + l)p(O,O,i + 1)

(a + J1(i))p(l,0, i) - J1(i+ l)p(l, 0, i + 1)

-J1(i)p(O,1,i)

-J1(i)p(l, 1,i)

Final Set

(3.6)

-(,\ + J1(M)) 13 0 0 p(O,O,M)

,\ 0 13 0 p(O, I,M -1)
1=

0

-('\+iJ+I'(M-l)) 0 "j lp(l,l,M-l)0 ,\ -(13 + J1(M - 1)) 0 p(I,O, M -1)
(3.4)

-(,\ + J1(i)) 13 0 0 p(O, 0, i)

,\ 0 13 0 p(O,I,i -1) I - (3.5)
0 -(,\ + 13+ J1(i - 1)) 0 a p( 1, 1, i-I)

0 ,\ -(j3+J1(i-l)) 0 p(l,O,i-l)

-(,\ + J1(I)) 13 0 0 p(O,O,I)

,\ 0 13 0 p(O,I,O)
1=

0 -(,\ + 13) 0 a p(l, 1,0)

0 ,\ -13 0 p(I,O,O)
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-J.L(2)p(0, 0, 2)

(a + J.L(l))p(l,O,1) - J.L(2)p(1,0,2)

-J.L(l)p(O,1, 1)

-J.L(l)p(l, 1, 1)

and

J.L(l)

p(O,0,0) = TP(O, 0,1) (3.7)

Again, M is the size of the multi-buffer. The results of these equations also agree to

12 significant places with the results of a complete solution found by solving all the global

balance equations simultaneously. The same sort of automatic scaling discussed for the

source model was also used successfully for this model. Computationally, these equations

are as efficient as those for the source model.

4 Conclusion

Whether or not such recursions can be found for more general tandem models is an open

question. However it is interesting to note that if the multi-buffer queue is put in the central

position (preceded and followed by single buffer servers) then the topology of the resulting

state transition diagram appears to preclude a recursive solution. Fortran implementations

of the recursive source and destination model equations are available from the author at

tom@sbee.sunysb.edu.
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Figure Captions:

Fig. 1: Source Model Queueing Schematic

Fig. 2: Source Model State Transition Diagram (M=4)

Fig. 3: Destination Model Queueing Schematic

Fig. 4: Destination Model State Transition Diagram (M=4)
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