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ABSTRA CT

A linear daisy chain of processors where processor load is
shared among the processors is examined. It is shown that two or
more processors can be collapsed into a single equivalent processor.
This equivalence allows a characterization of the nature of the
minimal time solution, a simple method to determine when to dis-
tribute load for linear daisy chain ~etworks of processors without
front end communication sub-processors and closed form expressions
for the equivalent processing speed of infinitely large daisy chains of
processors.

I. Introduction

Parallel computation has been of great interest in recent years. A parallel
machine consists of a number of processors and an interconnection network to tie
them together. This paper examines a specific parallel processing problem on a
specific architecture that allows the study of the integration of communication
and computation. While these two issues are often studied separately, a com-
bined study is rare.

The situation to be considered involves a linear daisy chain of processors, as
is illustrated in Figure 1. A single "problem" is solved on the network at one
time. It takes time wi Tep to solve the entire problem on processor i. Here wi is
inversely proportional to the speed of the ith processor and Tep is the normalized
solution time when wi=1. It takes time ziTem to transmit the entire problem
problem representation (data) over the ith link. Here zi is inversely proportional
to the channel speed of the ith link and Tem is the normalized transmission time
when Zi= 1.

It is assumed that the problem representation can be divided amongst the
processors. That is, fraction Q i of the total problem is assigned to the ith proces-
sor so that it's computing time becomes QiWiTep. It is desired to determine the
optimal values of the Q i'S so that the problem is solved in the minimum amount
of time. The situation is non-trivial as there are communication delays incurred
in transmitting fractional parts of the problem representation to each processor
from the originating processor.
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This framework is different from the usual multiprocessor scheduling problem
[5,6,7] where a number of jobs of known fixed solution time are assigned to pro-
cessors with each job assigned to only one processor. In this paper one has a single
job that can be arbitrarily partitioned among a number of processors. The frame-
work being described is particularly germane to processing involving large data
files (so that communication delay is non-negligible), such as sensor data process-
ing, signal processing, image processing and Kalman filtering, where the data can
be divided among multiple processors.

Two cases will be considered: processors that have front end communications
sub-processors for communications off-loading so that communication and compu-
tation may proceed simultaneously and processors without front end communica-
tions sub-processors so that communication and computation must be performed
at separate times.

A timing diagram for a linear daisy chain network of four processors with
front end communications sub-processor (as in Figure 1) is illustrated in Figure 2.
There is one graph for each processor. The horizontal axis is time. The upper
half of each graph indicates communication time and the lower half indicates
computation time. It is assumed that the problem (load) originates at the left,
first, processor.

At time 0, processor 1 can start working on its fraction, aI, of the problem
in time al wI Tep. It also simultaneously communicates the remaining fraction
of the problem to processor 2 in time (a2+a3+a4)zl Tern. Processor 2 can then

begin computation on its fraction of the problem (in time a2w2 Tep) and com-
municates the remaining load to processor 3 in time (a3+a4)z2 Tern. The pro-
cess continues until all processors are working on the problem.

A similar, but not identical, situation for a linear daisy chain network with
processors that do not have front-end communication sub-processors is illustrated
in Figure 3. Here each processor must communicate the remaining load to its
right neighbor before it can begin computation on its own fraction.

In [1] recursive expressions for calculating the optimal ai's were presented.
These are based on the simplifying premise that for an optimal allocation of load,
all processors must stop processing at the same time. Intuitively this is because
otherwise some processors would be idle while others were still busy. Studies of
such load sharing for other interconnection topologies appear in [2,3,4].

In this paper the concept of collapsing two or more processors and associated
links into a single processor with equivalent processing speed is presented. This
allows a complete proof (an abridged one appears in [1]) that for the optimal,
minimal time solution all processors must stop at the same time. Moreover, for
the case without front end communications sub-processors it allows a simple algo-
rithm, described in section III, to determine when it is economical to distribute

load amongst multiple processors. Finally, in section IV, the notion of equivalent
processors will enable the derivation of simple closed form expressions for the
equivalent speed of a linear daisy chain network containing an infinite number of
processors. This provides a limiting value for the performance of this network
architecture.
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II. Equivalent Processors

Consider a linear daisy chain network of N processors as in Figure 1. Two
adjacent processors may be combined into a single "equivalent" processor that
presents operating characteristics to the rest of the network that are identical to
those of the original two processors. Two cases, processors with and without front
end communication sub-processors, will be considered.

In both cases it is assumed that the load originates at the left most processor
(processor 1). If the load originates at an interior processor one can use the same
methodology to collapse the processors to the left and the right of the originating
processor into equivalent processors and then collapse the remaining three proces-
sors into a single equivalent processor.

Front End Communications Sub-Processors

We will start with the N-1st and Nth processors, as illustrated in Figure 4.
The figure begins at the moment when load has finished being transmitted to the
N-1st processor from the N-2nd processor. As in [1], the N-1st processor keeps
aN -1 fraction of what it receives and transmits the remaining 1- aN -1 fraction
to the Nth processor. The total load received by the N-1st processor from the N-
2nd is (O!N -1 + O!N). The time each is active, from the figure, is:

TN -1 = aN -1 (0:'N -1 + 0:' N) W N -1 Tep (2.1)

TN = (2.2)

(I-aN -1)( O:'N-1 +O:'N)ZN-1 Tern + (I-aN -1)( O:'N-1 +O:'N)WNTep

To prove that the minimal time solution occurs when both processors stop at
the same time, the possibilities TN -1 > TN and TN -1 < TN must be examined.
If TN -1 > TN, simple algebra results in

A ZN-1 Tern + wNTep
O!N-1 >

- WN-1 Tep + ZN-1 Tern + wNTep
(2.3)

with equality occurring when both processors stop at the same time. Minimizing
the solution time, Tsol= TN -1, clearly requires

minTsol = (min aN-d(O:'N-1+O:'N)WN-1 Tep (2.4)

so that the optimal value of aN -1 occurs for equality in (2.3). The quantity
(O!N-1 +O:'N) is not involved in the minimization since the value of O:N-1 is
unaffected by the total load, (O:'N-1 +O:'N), delivered to the N-1st processor. Put
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another way, the optimization involves the fraction of load being allocated
between PN -1 and P N, not the total load allocated to these two processors. The
other half of the proof, for TN -1 < TN, is similar.

The two processors with front end (fe) communications sub-processors can be
replaced by a single processor with equivalent speed constant:

wfe - eXN -1 (Q' N -1 +Q' N)wNITeq - ep - A

(Q' N -1 +Q' N) Tep - Q' N -1 wN -1
(2.5)

Here eXN-1 is given by (2.3) with equality. The solution time is divided by
the normalized computation time to yield the equivalent speed constant. Thus,
starting with the N-1st and Nth processors, the entire linear chain of processors
can be collapsed, two at a time, into a single equivalent processor. Thus one can
recursively show that for a network of N processors the optimal solution occurs
when all processors stop at the same time.

No Front End Communications Sub-Processor

Again, consider the N-1st and Nth processors in a linear chain. Figure 5
starts from the moment when load has finished being transmitted from the N-2nd
to the N-1 st processor. Again, as in [1], the N-1st processor keeps eX N -1 fraction
of what it receives and transmits the remaining 1-eXN-1 fraction to the Nth pro-
cessor. From Figure 5, the time each is active is:

TN -1 = (2.6)

(1-eXN-1)(Q'N-1 +Q'N)ZN-1 Tem + eXN-1 (Q'N-1 +Q'N)WN-1 Tep

TN = (2.7)

(1- eX N -1) (Q' N -1 + Q' N)ZN -1 Tem + (1- eX N -1 )(Q' N -1 +Q' N) W NT ep

Once again, to prove that the minimal time solution requires both processors
to stop at the same time, the cases TN -1 > TN and TN -1 < TN can be con-
sidered. For TN -1 > TN, simple algebra results in

WN
A >
Q'N-1 - WN-1 + wN

(2.8)

with equality occurring when both processors stop at the same time. From (2.6)
the solution time can be rewritten as:
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Tsol = TN-1 = (2.9)

(0:N -1 +0: N)ZN -1 T em + aN-1 (0:N -1 +0: N)(W N -1 Tep - ZN -1 Tem)

The sign of the term (WN-1 Tep-ZN-1 Tem) now b~comes important. If it
is positive, minimizing Tsol is equivalent to minimizing 0:N -1 and the optimal

solution occurs at equality for (2.8). In other words, if wN-1 Tep > zN-1 Tem,
communication is fast enough relative to computation that the distribution of

load is economical. Again, (0: N -1 +0: N) is not involved in the minimization.

On the other hand, if (WN-1 !ep-ZN-! Tem) is negative, then minimizing
Tsol is equivalent to maximizing O:N-1 at O:N-1 =1. That is, communication
speeds are slow relative to computation speed so that it is more economical for
processor N-1 to process the entire load itself rather than to distribute part of it to
processor N.

The case where TN-1 < TN proceeds along similar lines. Again, the ability
to collapse processors into equivalent processors allows one to extend the proof
that two processors must stop at the same time for a minimal time solution to N
processors.

III. When to Distribute Load

A practical problem for the case without front end communications sub-
processor is to compute the equivalent computation speed of a linear daisy chain
network when, in fact, the optimal solution may not make use of all processors,
because of too slow communication speeds. Again, if the load originates at the left
most processor, this can be done by collapsing the processors, two at a time, from
right to left in Figure 1, into a single equivalent processor. However, when look-
ing at two adjacent processors, say the i-1st and the ith (where the ith is an
equivalent processor for processors i, i+ 1, ...), one must determine whether or not
it is economical to distribute load. That is, one seeks the faster of either the solu-

tion with both processors, Tboth, or with just the single i-1st processor, Tsingle:

Tboth=

(1-ai-1)(O:i-1 +O:i)Zi-1Tem + O:i-1(O:i-1+O:i)Wi-1Tep

(3.1)

Tsingle = (O:i-1 +O:i)Wi-1 Tep (3.2)

Here fraction 0:i -1 of the total load, (0:i -1 + 0:i), is assigned to processor i-I
and fraction 1- ai is assigned to processor i. If Tsingle < Tboth then the ith pro-
cessor is removed from consideration and the equivalent processing speed con-
stant, with no front end (nfe) communication sub-processor, is:

W nfe - (O:i-1 +O:i)Wi-1 T
eq - ep -

(0:i -1 +0:i)Tep - Wi-1
(3.3)
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If Tsingle> Tboth then load distribution is economical and the two processors
are collapsed into a single equivalent processor with speed constant:

nfe - (l-O:i-I)Zi-1 Tcm+O:i-1 wi-I Tcp
Weq -

Tcp
(3.4)

From (2.8):

Wi

O:i-I = wi-I +Wi
(3.5)

Note that in (3.4) factors of (O:i-I +O:i) cancel in the numerator and
denominator.

By keeping track of which of (3.1) and (3.2) is smaller, it is possible to deter-
mine which processors to remove from the final network.

Note that the above procedure can also be applied to the situation when the
load originates at a processor which is locat€d in the interior of the network. The
parts of the network to the left and to the right of the originating processor can
be collapsed, into equivalent processors, following the previous procedure. The
remaining three processors (left, originating, right) can then be further collapsed
into a single equivalent processor. Naturally, it must be checked whether the
inclusion of the left and/or right equivalent processor leads to a faster solution.

IV. Infinite Number of Processors

A difficulty with the linear network daisy chained architecture is that as
more and more processors are added to the network, the amount of improvement
in the network's equivalent speed approaches a saturation limit. Intuitively, this
is because of the overhead in communicating the problem representation down
the linear daisy chain in what is essentially a store and forward mode of opera-
tion.

It is possible to develop simple expressions for the equivalent processing
speed of an infinite number of homogeneous processors and links. These provide a
limiting value on the performance of this architecture. The technique is similar to
that used for infinitely sized electrical networks to determine equivalent
impedance.

Let the load originate at a processor at the left boundary of the network
(processor 1). The basic idea is to write an expression for the speed of the single
equivalent processor for processors 1,2...N. This is a function of the speed of the
single equivalent processor for processors 2,3...N. However these two speeds
should be equal since both involve an infinite number of processors. One can sim-
ply solve for this speed.

Consider, first, the case where each processor has a front-end communication
sub-processor. Let wi=w and zi=z. Let the network consist of PI and an



- 7 -

equivalent processor for processors 2,3...N. Then:

fe A

Weq = a1 W (4.1)

But from (2.3) with equality, and making the above assumption,

Wfe - ZP+ wfeeq - eq
W + ZP + fe WWeq

(4.2)

where p = Tern/ Tep. Solving for w{~ results in:

fe - -zp+/(zp)2+4wzp
Weq- 2 (4.3)

The solution time for such an infinite network is simply given by

Tsol = w{~Tep'
In a similar manner, an expression for the equivalent processing speed of a

linear daisy chain network with an infinite number of processors with no front end
(nfe) communication sub-processors can be determined. Again, the load ori-
ginates at processor 1 at the left boundary of the daisy chain.

W~~e = Vwzp (4.4)

The solution time for this infinite network is simply given by
T nfe Tsol = Weq ep'

This last expression is quite intuitive. Doubling w an<}...zdoubles w~~e. Dou-
bling either w or z alone increases w~~e by a factor of ";2. These results agree

very cl°j,elYwi~ numerical results presented in [1]. It is straight forward to show
that We~< w~/. Thus, in this limiting case, solution time is always reduced
through the use of front end processors.

It is also possible to use the above results to calculate the limiting perfor-
mance of an infinite sized daisy chain when the load originates at a processor at
the interior of the network (with the network having infinite extent to the left and
the right). Expressions (4.3) or (4.4) can be used to construct equivalent proces-
sors for the parts of the network to the left and right of the originating processor.
The resulting three processor system then can be simply solved [1].
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V. Conclusion

The concept of collapsing two or more processors into an equivalent processor
has been shown to be useful in examining a variety of aspects related to these

linear daisy chain networks of load sharing processors. Expressions for the perfor-
mance of infinite chains of processors are particularly useful as if one can con-
struct a finite sized system that approaches the performance of a hypothetical
infinite system, one can feel comfortable that performance can not be improved
further.

Acknowledgements

The research in this paper was supported by the National Science Founda-
tion under grant no. NCR-8703689 and by the SDIOjIST and managed by the
U.S. Office of Naval Research under grant no. NOOOI4-85-K0610.

References

[1] Cheng, Y.-C. and Robertazzi T.G. (1988) Distributed Computation with
Communication Delays. IEEE Transactions on A erospace and Electronic
Systems, AES-24 (Nov. 1988) 700-712.

Cheng Y.-C. and Robertazzi, T.G. (1990), Distributed Computation for a
Tree Network with Communication Delays. IEEE Transactions on
Aerospace and Electronic Systems, AES-26 (May 1990) 511-516.

Bataineh, S. and Robertazzi, T.G. (1991) Distributed Computation for a Bus
Network with Communication Delays. Proceedings of the 1991 Conference
on Information Sciences and Systems, The Johns Hopkins University, Bal-
timore MD (March 1991) 709-714.

Bataineh, S. and Robertazzi, T.G. (1991) Bus Oriented Load Sharing for a
Network of Sensor Driven Processors. IEEE Transactions on Systems Man {3
Cybernetics special issue on distributed sensor nets, Vol. 21, No.5 (Sept.
1991).

Leung, J. Y.-T. and Young, G.H., (1989) Minimizing Schedule Length Sub-
ject to Minimum Flow Time. SIAM Journal on Computing, Vol. 18, No.2
(April 1989) 314-326.

Coffman Jr., E.G. and Gavey, M.R. and Johnson, D.S. (1978) An Applica-
tion of Bin Packing to Multiprocessor Scheduling. SIAM Journal on Comput-
ing, Vol. 7, No.1, (Feb. 1978).

Coffman Jr., E.G. and Sethi, R. (1976) Algorithms Minimizing Mean Flow
Time: Schedule Length Properties. Acta Informatica, Vol, 6, (1976) 1-14.

[2]

[3]

[4]

[5]

[6]

[7]



- 9 -

Figure Captions

Fig. 1: Linear Chain of Processors

Fig. 2: Timing Diagram; Network with Front End Communications Sub-
Processors

Fig. 3: Timing Diagram; Network without Front End Communications Sub-
Processors

Fig. 4: Timing Diagram for N-lst and Nth processors with Front End Com-
munications Sub-Processors

Fig. 5: Timing Diagram for N-lst and Nth processors without Front End
Communications Sub-Processors
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