Department of Electrical Engineering
College of Engineering and Applied Sciences
State University of New York at Stony Brook

Stony Brook, New York 11794-2350

An Illustration of Neuro-Control
with
Backpropagation of Utility

by

K. Wendy Tang

Technical Report{# 711

March, 1995

An Illustration of Neuro-Control
with Backpropagation of Utility

K. Wendy Tang
Department of Electrical Engineering
SUNY at Stony Brook, Stony Brook, NY 11794-2350.

ABSTRACT Backpropagation of utility is one of the five methods for neuro-control. [ts
goal is to provide a series of control signals to mazimize a utility function over time. In this
paper, we demonstrate how to use the basic backpropagation and backpropagation through
time algorithms as fundamental building blocks for backpropagation of utility. Basically,
the algorithm is composed of three subnetworks, the action network, model network, and an
utility network or function. Fach of these networks includes a feedforward and a feedback
component. Pseudo-computer codes for each component and a flow chart for the interaction
of these components are included. To further illustrate the algorithm, we use backpropagation
of utility for the control of a simple one-dimensional planar robot. We found that the success
of the algorithm hinges upon a sufficient emulation of the dynamic system by the model
network. !

1 Introduction

Neurocontrol is defined as the use of neural networks to emit control signals for dynamic
systems. Neural networks offer several advantages over conventional computing architec-
tures [1]. Calculations are carried out in parallel yielding speed advantages and programming
is done by training through examples. These networks are characterized by their learning
and generalization capabilities and éan be deployed as “black boxes” that map inputs to out-
puts with no explicit rules or analytic function [2]. The neural network “learns” the system
model by training through a set of desired input-output patterns. Their inherently parallel
architecture and trainability make neural networks attractive candidates for fast, real-time

control with unknown dynamic models.

The maost dominant form of neural networks used is the multi-layer backpropagation

network [3, 4, 5]. It is a hierarchical design consisting of fully interconnected layers of

'The author acknowledges and appreciates discussions with and contributions from Paul Werbos. This
research was supported by the National Science Foundation under Grant No. ECS-9407363. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the author and do
not necessarily reflect the views of the National Science Foundation.

neurons [6]. The weights associated with each neuron are updated by taking the gradient of
the total squared error with respect to the weights and performing a gradient search of the
weight space [7]. Errors are propagated backwards through the network, hence the name
back-propagation. Despite its popularity, the main drawback of the basic backpropagation
algorithm is its slow convergence rate. Various efforts are made to increase the rate of
convergence, e.g., the Delta-Bar-Delta Rule [8]. By incorporating memory from previous
time periods into current outputs, Werbos developed a more sophisticated version of the
basic backpropagation algorithm, known as backpropagation through time [9]. In our previous
work, we found that by combining the backpropagation through time algorithm with the

Delta-Bar-Delta rule, the neural network provides more robust and faster learning [10].

Almost all neural network applications in robot control involve the incorporation of one
or more backpropagation (basic or through time) neural networks into the controller [11]-
[21],[22] -[26]. Different approaches exist in the method of incorporating the neural network
into the controller and of training and adaptation [11]. Among these approaches, there are
five basic schemes: the supervised control, direct inverse control, neural adaptive control,
back-propagation of utility, and adaptive critic networks. Werbos [27] provided a detailed
summary of the five schemes including the pros and cons of each method. In this report, our
objective is to illustrate the theory of Backpropagation of Utility through a simple example,

the control of a 1-D planar robot.

This report is organized as follows: Section 2 is a review of all the basic equations for the
backpropagation algorithms (both the basic and the through time versions), including the
delta-bar-delta rule for speeding up convergence. A simple network with six neurons is used
to illustrate the validity of the equations. Then in Section 3, we show how these equations are
used as fundamental building blocks for the Backpropagation of Utility algorithm. Section 4
illustrates h!(?w the algorithm is used for the control of a 1-D planar robot. It includes first a
failed attempt and later a successful one. Finally, conclusions and a summary are included

in Section 5.

2 Basic Equations

In this section, we present the basic equations for backpropagation and backpropagation
through time algorithms. A simple example is used to illustrate the validity of these
equations. For expository convenience, we assume there are m inputs, n outputs, H hid-
den nodes, and T training samples. The training inputs are presented to the network as
Xi(t), i=1,...,m, t=1,...,T and the corresponding desired outputs are Y;(t), :=
1,...,n, t=1,...,T. The detailed of the algorithm can be found in [9]. For the reader’s

convenience, they are also summarized here.

2.1 Basic Backpropagation Algorithm

The backpropagation algorithm is simply a tool for calculating the derivative of a function.
The network equations consist of the feedforward and feedback components. During the
feedforward mode, the network calculates an estimated output ¥ as a function of the in-
puts and the weights associated with the neurons. An error function is then produced by
comparing Y with the desired output Y. In the feedback mode, the gradients of this er-
ror with respect to the weight space are identified. Subsequently, the weights are updated
through the steepest decent method. More specifically, for training samples, ¢t = 1,...,T,

the feedforward equations are:

()= Xi(t) 1<i<m (1)

fortr=m+1tor=m+ H +n,
i1

neti(t) = W,-J-xj(t)
X @
z;(t) = s(netit))
. Yz(t) = $m+H+i(t) 1<:<n (3)

The error of the network is obtained by comparing the actual and the desired outputs.

T T =n

E=Y E(t)=Y Y 05[¥i(t) - Y1)’ (4)

t=1 t=11=1

where Y;(t) is the output of the neural network and Y;(t) is the desired outputs. This error
is feedback to the network. The error gradient F'_-W,; with respect to each weight, W;; is
calculated with the feedback equations:
For training samples, t = 1,..., T, the feedback equations are:
. oF - :
FYi(t) = —— =Yi(t) - Yi(¥) i=1,...,n (5)

forc=m+H+ntor=m+1,

. m~+H+n
F_:Ei(t) = F-Y,'_m_H(t) + Z Wji * F-netj(t) (6)
j=i+1

F neti(t) = s§'(net;)* F_zi(t)
T
FW; =Y Foanet(t)*xz;(t) i,j=1,....m+H+n (7)
t=1

where s(z) is the sigmoidal transfer function and s'(z) is the derivative of s(z). Also,

s(z)=1/(1+¢e77) (8)

s'(z) = s(z) * (1 = s(2)) (9)
Once F_W,; (the gradient of E with respect to W;;) is calculated, each weight is updated

" according to:

NeWVV,'j=VV,'j—-a*F_VV,'j i,j:l,...,m+H+n (10)

where «a 1s a constant called the learning rate.

2.2 An Example

In this section, we use a small network to illustrate the equations presented in Section 2.1 and
to demonstrate that the backpropagation algorithm is simply a tool for derivative calculation.
Consider tlre network with m = 1 input node, n = 1 output node, and two hidden layers
each with two neurons. The network is layered and there is no connections for nodes of the

same layer. The network with the weights associated at each node is shown in Figure 1.

According to Equations 2, the feedforward equations are:

4

w53

zi(t) = Xq (1)
netg(t) = W1 * z4(1) z,(t) = s(netq(t))
nets(t) = Wa x 21(t) z3(t) = s(nets(t))
net4(t) = W42 * $2(t) + W43 * .’Eg(t) IIIq(t) = S(n€t4(t))
nets(t) = wsy * £2(t) + Wiz * z3(1t) zs5(t) = s(nets(t))
nete(t) = Wes * z4(t) + Wes x z5(t) z6(t) = s(nets(t))
Yi(t) = ze(t)

The idea of backpropagation is to adjust the weights Wy, W3y, ..., Wey, Wes such that
Y (t) is close to the desired Y (¢). To achieve this goal, we need to find the gradient of the

error function with respect to the weights. From Equation 4, the error function is:

E =3 [%(t) - Vi)

Using the Equations 6, for ¢t = 1,...,T, the backward equations are:

Yi(t) - Ya(t)
F_z¢(t) = F.Y; 1(t)
F nete(t) = s'(nets) * F_z4(t)

F_z5(t) = Wes * F netg(t)
F _nets(t) = s'(nets) * F_zs5(t)

F_E4(t = 64 * F-nete(t)

)
)
(
)
(
)
F nety(s'(nety) * F_z4(t)
)
(
)
(
)
1

F_Y(t

o~

F_z3(t) = W43 + Fnety(t) + Wss * F_nets(t)
F nets(t) = s'(net3) * F_z3(t)

F xo(t) = Wye x F_neto(t) + w52 x F_nets(t)
t) = s'(nety) * F_z,(t)

Fx(t) = W21 * F_net,(t) + Wa; * F_nets(t)
t) = s'(nety) * F_z,(2)

F net,

F _net

5

Once the F_net; are known, the error gradient with respect to the different weights are:

T
F-W21 = Z F..Tletz(t) * $1(t)

t=1

T
F W3 = Fonets(t) = xq(t)

t=1

T
F Wiy =) Fonety(t) * za(t)

t=1

T
F _ Wey = Z F_netg(t) * z4(t)

t=1

F Wes = ZFnets) * z5(1)

The weights are then adjusted according to

NewW}jzl/V,-j—-a*FJfV,-j, i,j=1,2,...,6

To verify that F_W,; indeed corresponds to 53~ aw , we calculate the gradient directly from the

_3E

forward equations. As an example, consider zz~,

) I 9E aYi(t)

Wn S y(t) OWn
where o)
SACHEES [Y:(?) = Yi(t)] = F_Y1(2)
o, (¢ _ _8Yi(r)_ Bnetg(t)
oWy T Onetg(t IWay
e
s'(netg(t))

dnetg(t) __ [Bnets(t)] x4 (t) + Bnets(t) Bzit)]
dzy Wy dzs dWqy

Wes Wes
dz4(t) Ozt Onety(t) dzs(t) . Bzs(t) Inets(t)
AWy, T Onety(t AW Wy 8'n.et5(t) AWs
N e’ N —
s'(nety(t)) s'(nets (t))

Anety(t) [Bneu(t)] 8z (t) Bnetq,Lt) axdt)]
Ws, Wy dz3 W2,
\.N—/

W Wys
dzy(t) Bzt Onety (t) dza(t) dz3(t Jnets(t)
dWo, — Onety t) 21 3W2] 6net3 3 21
S’ W—/
s'(neta(2)) zi1(t) (netg(t)) 1‘1(t)

(11)

(12)

Hence substituting Equations 12 to Equation 11, we have

T
%’4—% = Z f‘_Yl(t) s'(nete(t)) | Wea s'(nety(t)) Waa s'(neta(t)) z:1(t)
v=1 F_nets(t)
+W65 Sl(net5(t)) W52 .s'(net2(t)) .’I,'l(t)]
F_z4 F _xx

T N SS— P
= Z [F_Tlets(t) W64 Sl(net4(t)) W42 + F_nete(t) W65 Sl(n€t5(t))JW52] .9’(net2(t)) ;El(t)
=1 F_neta(t) F_nets(t)
T
= Z [F-net4(t) W42 + F-nets(t) W52] s'(netg(t)) Jll(t)
t=1 L
F_xz(t)
T
= > F_zy(t) s'(neta(t)) z1(t)
v=1 F_nets (1)

I
NE

F_netg(t) (El(t) = F-Wzl

o
Il
A

The rest of F_W,; can be proved similarly. From these equations, we can see that the
backpropagation algorithm is simply a tool for calculating the gradient of the error function

with respect to the weight space.

2.3 Backpropagation Through Time Algorithm

Backpropagation through time was first proposed by Werbos [9]. It is basically an extension
of the basic backpropagation algorithm but consider also memory from previous time periods.
Mathematically, this is implemented through the introduction of a second set of weights W”.
In our version of the backpropagétion through time algorithm, we associated a weight W’ at
each hidden and output node. A more general version that includes a W’ for each connection
can be found in [9]. In our version, the second equation of the feedforward equations (Eq 2)
is replaced by:
i-1
neti(t) =Y Wiz;(t) + Wizi(t —1), m<i<m+H+n (13)
j=1

And the second equation of the feedback equations (Equation 6) is replaced by:

Fzi(t)= F.Yip_nu(t) + Zj"f__*;fl*’" Wi * F_net;(t) +W!«* F_net;(t +1)

(14)
t=m+H+n,.... m+1

For adaptation of the W’,

FW! =35I Fonett) * zi(t) (15)
New W/ =W/ — B+ F_W! i=m+1,...,m+H+n 0

where 3 is the constant learning rate for W'.

2.4 Delta-Bar-Delta Rule

To improve the convergence speed of the steepest decent/ascent method, Jacob proposed
the delta-bar-delta algorithm [8]. Basically, the algorithm is a special case of the Adaptive
Learning Rate (ALR) discussed in [27]. Every weight of the network is given its own learning

rate and that the rates changes with time. According to [8], the learning rate update rule is:

K if Sij(t - 1)(5,‘j(t) >0
Aa,'j(t) = —(ﬁa.,;j(t - 1) if &'j(t - 1)61'j(t) <0 (16)
{ 0 otherwise.
where
b;(t) = F.W, _
6ii(t) = (1—0)8;(¢) +06:;(t — 1)

aii(t) = aii(t — 1) + Day(t)

In these equations, 6;;(t) is the partial derivative of the error with respect to W;; at time ¢
and é;;(t) is an exponential average of the current and past derivatives with 6 as the base and
time as the exponent[8]. If the current derivative of a weight and the exponential average
of the weight’s previous derivatives possess the same sign, the learning rate for that weight
1s incremented by a constant . If the current derivative of a weight and the exponential
average of the weight’s previous derivatives possess opposite signs, the learning rate for the

weight is decremented by a proportion ¢ of its current value [8].

As discussed in [14], we found the best result comes from a combination of the back-
propagation. through time algorithm with the delta-bar-delta rule. In this case, 5;(t), the
learning rate for W/ also changes with time. More specifically,

{ . if 7:(t — Ly(t) > 0

Api(t) = —dBi(t-1) if %t —1)v%(t) <0 (17)

0 otherwise.

where

F.W!
(1 —0)%(t) +63(t—1)
Bi(t — 1) + ABi(t)

=2

—~~~
T

S

2
S
—~~~
o~
Nt N
fl

3 Backpropagation of Utility Algorithm

The backpropagation of utility was first proposed by Werbos [28]. The objective of the algo-
rithm is to provide a set of action or control signals to a dynamic system to maximize a utility
function over time. The utility function can be total energy, cost-efficiency, smoothness of
a trajectory, etc. For expository convenience, we assume the notation X(t) for system state
at time ¢, u(t) for the control signal, and U(t) for the utility function which is usually a

function of the system state.

The system is composed of three subsystems, an Action network, a Model network, and
a Utility network, which can often be represented as a performance function. The Action
network is responsible for providing the control signal to maximize the utility function.
This goal is achieved through adaptation of the internal weights of the action network. Such
adaptation is accomplished through steepest decent with iterations. For each iteration, there
~are the feedforward and feedback components. In the feedforward mode, the Action network
outputs a series of control signals, u(t),t = 1,...,T whereas adaptation of the internal

weights is accomplished through the feedback mode.

The Model network provides an exact emulation of the dynamic system in a neural
network format. Its function is two folded: (i) in the feedforward mode, it predicts the
system state X (¢ + 1) for a given system state X(t) and control signal u(t) at time ¢; and
(i) in the feedback mode, it inputs the derivative of the utility function U(t) with respect
to the system state X (t) and outputs the derivative of the utility with respect to the control
signal, i.e., %(ei)) which is used for the adaptation of the action network. The Utility network,

on the other hand, provides a measure of the system performance U(t) as a function of the

system state, X(¢). In the feedforward mode, it calculates a performance value U(¢) and in

the feedback mode, it identifies g%% which is used by the Model network.

System State
A X+ Gelity Function

|

|

|
Control Signal '

Action ll(t) » Model - - ———— a
Network lg————_ | Network
]
|
i
* X(t) System State
Model
Network

Figure 2: A Backpropagation of Utility System.

The basic idea is that assuming we have an exact model of the system formulated as a
neural network (the Model network), we can use the backpropagation method to calculate the
derivative of the utility function with respect to the control signal from the action network,
e, Fu(t) = %ll—{(%z. Such derivative is then used to calculate the gradient of the Utility
with respect to the internal weights of the action network. Figure 2 shows a block-diagram
representation of the system. The dashed lines represent the feedback mode, or derivative

calculations.

The successful application of backpropagation of utility hinges upon an accurate Model
network that represents the system. The establishment of such a Model network is accom-
plished through training with the basic backpropagation and backpropagation through time
algorithms. Once an accurate Model network is obtained, the internal weights of the Action
network is adapted to output a series of desired control action, according to the flow chart in
Figure 3. In this flow-chart, Action, Model, Utility represent the feedforward components
of the corresponding networks whereas F_Utility, F_Model, F_Action are the feedback
components. The details of the construction of the Model network and the adaptation of

the Action metworks are included in the following subsections.

10

3.1 Training of the Model Network

The establishment of a Model network that represents the system is accomplished through
training with either the basic or the backpropagation through time algorithm combined with

Jacob’s delta-bar-delta rule discussed in Section 2.3.

First, a sufficient number of training samples, Tps must be obtained. These training
samples consists of mas inputs (Xan(t), ¢=1,...,mpy, t=1,...,Ty), and np desired
outputs (Ya(t), ¢=1,...,nnm, t=1,...,Ty). Theobjective of a trained Model network
is to emulate the dynamic system. In the feedforward mode, it outputs the system state
X(t+1) at time t + 1 for a given system state X(¢) and control signal u(t) at time t. That is
, Xa(2) consists of X(t) and u(t) and Y (¢) is composed of the system state X (¢+1) at time
t + 1. For expository convenience, we assume there are Hjs hidden nodes. A pseudo-code
for training the Model network with backpropagation through time algorithm is presented
in Table 1. The version for the basic algorithm can be obtained by setting W’ = 0 for all

nodes at all times.

3.2 Adaptation of the Action Network

Upon completion of training of the Model network, we are ready for the adaptation of the
Action network. In this stage, we adapt the weights of the Action network to output a series
of desired control action u;(t), ¢ = 1,...,n for time period t = 1,...,T. Again, the system
state is X;(), ¢ = 1,...,m and the initial system state X;(t = 1) is known for all 7. This
adaptation process is accomplished through a number of iterations and is best described

through the flow-chart shown in Figure 3.

There are basically six fundamental building blocks, Action, Model, and Utility in
the feedforward mode; and F_Utility, F_Model, and F_Action in the feedback model.
For each iteration, in the feedforward mode, a series of predicted control signals u(t) for

t =1,...,T are provided by the Action routine. These control signals are inputs to the

11

Assume mag, nar, Nag, Hyg, Try X, Yar as defined in Section 2.
Fors,j=1,...,Ny+np

W,;, are randomly distributed between £1, 6;; = 5,-j = 0.

Also, W;; = 0 for nodes 4, j in the same layer and is fixed for all iterations.
Initialize, W/ = v, =3, =0fori=mp 4+ 1...., Ny + npr.

for (Iteration =1 to Maximum Iteration)

{
Step 1: for (t =1 to t = Thy)
for(i=1toi=mp) zami(t) = Xnmi(t)
for (i = mpr to i = Ny +)
netyi(t) = 52 Waijem;(t) + Wigeaa(t - 1)
Tpr:(t) = s(nehtMi(t))
for (i=1toi=mnp) Ymi(t)= Tymer+i(t)
Step 2: Compute the Error, E)yy.
Tam Ty np R
Ey = Z EM(t) = EZ 0.5[YM,'(t) — Y]\,{,‘(t)]2
t=1 t=1 =1
Step 3: for (t =Ty tot = 1)
[for (i=1toi=np) FYri(t)=Yait) - Yai(t)
for (i = Ny + mar to i = mpyp + 1)
) m+H+n
F_.(L‘M ,'(t) = F_YM (i—-m—H)(t) + Z WM (Jz) * F_netM j(t)
J=i+1
+ Wi, * Fonetay i(t + 1)
{ F_netpy i(t) = s'(netM,-) x F_zp ,'(t)
Step 4: Fori,j = 1,..., Npr + npg, compute
T K if (E,'jé,‘j >0
() F-Wy (i5) = 6,']' = z F_nety ,‘(t) * zMj(t); (n) Aa,‘j = —qba,']- if 5,']‘(5,’1' <0
t=1 . 0 otherwise.
(iii) 5,']' = (1 - 0)5,']' + 95,'1' and (iv) a;; = a5 + Aa,‘j
Step 5: Fort =m+1,...,m+ H + n, compute
Tu K if %7 >0
(G F Wiy, =7= Z Fonetpri(t) *zpri(t); () ABi=< —¢0; if %71: <0
t=1 0 otherwise.
(1) %= (1 - 0)vi+ 6% and (iv) ;i = B; + DB
Step 6: New WM(ij) = WM(ij) — Qyj * F-WM(,'J') ,=1,....m+H +n
New W} P = Wllwi—ﬂi*F'WII\li t=m+1,..., Ny + npy
}

Table 1: A Pseudo-Code for Training of Model Network.

12

Initialization

Iter>Max ++Iter

for (Iter =1 to Max)

ﬁ

feedforward mode

X (t+1)

U (X(t+1))

i Rk

l Delta Bar Delta Rule]

+ New W, W?

’ F_W,F_W’=0
Y

Figure 3: A Flow-Chart for Adaptation of Action Network.

13

Figure 4: A 1-D Planar Robot.

Model routine which outputs the next system state X (¢ + 1). This system state is then

used to calculate the Utility function.

In the feedback mode, the training samples are traversed backward. Since the Utility
function is normally an explicit function of the system state, we can usually obtain Fx(t) =
%’% analytically. The value Fx(t) is then input to the routine F_Model which corresponds
to the feedback component of the Model network. F_Action is the next routine which
takes the output F_u(t) = Z—Z% from the F_Model routine to calculate the gradient of the
Utility function with respect to the weight-space, i.e., F.W;; = %%3 and F_.W/ = %Uévi,l for
all weights W;; and W/ of the Action network. Once the effect of all training samples are
accounted for in F_.W and F_W’', delta-bar-delta rule is used to update the weights, W and

"W’ and the system is ready for the next iteration.

Note that, for simplicity, in Figure 3 we use a predefined value Max to determine the
number of iterations. However, this is not always the best strategy, other stopping criteria
such as a predefined utility value can also be used to determine the number of iterations.

Pseudo-codes for these building blocks are included in Tables 2 to 5.

4 An Example: 1-D Robot Control

As an example, we consider a simple planar manipulator with one rotational joint (Figure 4).
We assume, without loss of generality, that the robot links can be represented as point-masses

concentrated at the end of the link. The link mass and length are respectively: M = 0.1 kg,

14

Assume m inputs, n outputs, H hidden nodes, T samples, and N = m + H.
Inputs: X;(t) system state at timet i€ {1,...,m}

W;; internal weights i,je{l,...,N +n}
W! internal weights Lie{m+1,..., Ny +nnm}
Outputs: z;(t) internal state € {1,...,N + n}

Yi(t) = ui(t) control signals ¢ € {1,...,n}

Action(X (1), W, W’ x(t), Y(t))

{
Step L: for (i = 1 to i =m)
zi(t) = Xi(1)
Step 2: for (i=mtoi= N +n)
{ neti(t) = Li2) Wiszs(1) + Wizi(t - 1)
z;(t) = s(net;(t)
Step 3: for (1 =1 to i = n)
} Yi(t) = ui(t) = T(meh44)(1)

Table 2: A Pseudo-Code for Subroutine Action.

Let m,n,T, X(t), u(t) be defined in Table 2.
Assume mps = m + n inputs, nps = m outputs, Hasr hidden nodes, and Npr = Hpr + nay.
Inputs: Xpri(t) contains X (t) and u(t) i€ {l,...,mm}
War i;) resultant weights after training 4,7 € {1,..., Ny +np}
Wi resultant weights after training i,7€ {m+ 1,..., Ny +npm}
Outputs: zpri(t) internal state of Model network 7€ {1,..., Ny + npr}
Ymi(t) outputs to Utility function 1e{1,...,nm}

Model(X p(t), War, Wiy, 2p(t), Yar(t))

Step 1: for (i =1 to i = mpy)
zari(t) = Xari(t)
Step 2: for (1 = mps to 1= Nps + npyy)
{ netmi(t) = iy Waiiam;(t) + Wigemn(t — 1)
epi(t) = s(neta(t)
« Step 3: for A(i =1tot=mnpnp)
Yumi(t) = Tr(men+i)(t)

Table 3: A Pseudo-Code for Subroutine Model.

Let m,n,T, X(t),u(t) be defined in Table 2, and mp = m + n, npy = m.
Assume Hps hidden nodes, and Nar = Hpyr + npyg-
[nputs: F_X;(t) from F_Utility ie{l,...,npm}
zpi(t) internal state of Model network i€ {1,...,Np + nas}
Wi (ijy resultant weights after training 4,5 € {1,..., Ny + npr}
Wi, resultant weights after training ¢,7€ {m+1,...,Ny+ nnp}

Outputs: F_u;(t) = % ie{l,...,n}

F_Model(F_X (t), War, Wiy, zm(t), Fui(t))

{
Step 1: for (i=1to ¢ = Nps) F_zpi(t) =0.0
Step 2: for (i =1to i = np) F_zpr N4y (1) = F_X(2)
Step 3: for (i= Ny +nptoi=1)
Npy+npe
Fayit) = Faumit)+ Y, Waiy* Fneta (1)
j=i+1
+ Wiy, % Fonetpr (8 + 1)
Fonetpri(t) = s'(netari)* Fzpri(t)
Step 4: for (1=1to ¢ = n) Foui(t) = Fap mti
}

Table 4: A Pseudo-Code for Subroutine F_Model.

Let m,n, T, X(t), u(t) be defined in Table 2.
Assume Hps hidden nodes, and Nps = Hpar + npr.

Inputs: F_u;(t) from F_Utility i€ {1,...,n}
z;(t) internal state of Action network i€ {1,...,N + n}
W(; internal weights hje{l,...,N+n}
w! internal weights ,je{m+1,...,N+n}

Outputs: F_W;;(t) = %’é}‘_ﬂ i,jE{l,...,N+n}
Fwity=2E ie{1,...,N+n})

F_Action(F_X(t), W, Wllm zm(t), F-ui(t))

{
Step 1: for (i=1to ¢t = N) F_z;(t)=0.0
Step 2: for (i =1 to i =n) Fz(nyi)(t) = Fui(t)
Step3: for (i= N +ntoi=1)
N+n
F zi(t)= Fzi(t) + z Wiy Fnet;(t) + W+ F_nety(t + 1)
ij=i+1
F_net;(t) = z;(t) * (1 — z;(t)) * Fz(t)
FW;;=FW;+ F_net(t) *zj(t) ji=1,...,n
Step 4: for (i=1to ¢ = n) Foui(t) = Foopmmti
}

Table 5: A Pseudo-Code for Subroutine F_Action.

16

L =1 m. This simple dynamic system is governed by the equation:
r(t) = M L*(t)+ M g L cos(6(t)) (18)
where ¢ = 9.81m/s? is the gravitational constant.

For illustration purpose, we further simplify Equation 18 by substituting
8(t)—6(t=1)

&t

e(t) ~ é!t!—é!t—l!

5t

/Si‘
&

into the equation. The resultant equation is a non-linear function of 4(t) only, assuming

6(t — 1) and (¢ — 1) are known at time ¢t. More specifically,

ey ML*9(t—1) ML*6(t—1) M L*6(t)
(1) = 7(¢) + 7% + 51 R 30

+ Mg L cos(t) (19)

We emphasize that Equation 19 is a simplified representation of the actual system. It
reduces the system into a function of a single variable, §(¢). Such simplification allows us
to gain insights in the theory of Backpropagation of Utility. Our objective is to produce
a forecast of control signals, 7/(¢) and eventually 7(¢) for the dynamic system described in
Equation 19 to move from some initial angle, 8, to the final position, 8¢, in a specific amount
of time with sampling period 6t = 0.2 seconds. We assume the initial joint velocity and
acceleration are §(t = 0) = f(t = 0) = 0. The desired trajectory 0d(i) at various sampling

points is specified by the user.

Since our objective here is tracking control, we use the utility function

ty 1
U@ =Y 5 (00) - 00)) (20)
t=1
where 6(t) is the actual joint angle at time ¢ and is also the system state X(¢). In other
words, m ='n = 1. As described in Section 3, application of the Backpropagation of Utility
algorithm involves first, training of the Model network and then adaptation of the Action

network. In the training of the Model network, 7/(¢) is the input and 6(¢) is the output.

That is, mpy = npy = 1.

17

3.5 T T T T T
3 .
2.5 .
2 b .

6(t) (radians)

15 -
1+ -
0.5 .

0 L 1 1 1 1

1 2 3 4 5 6

7'(t) (Newtons)

Figure 5: The Inverse Dynamic Equation (0(t) vs. 7'(t)).

For adaptation of the Action network, there are the feedforward and feedback components
(Section 3.2 and Figure 3). In the feedforward mode, the input of the Action network is
X (t) = 0(t), its output is u(t) = 7'(t) which is used for the Model network to determine the
system state at timet+ 1, i.e., X(t+1) = 0(¢ +1). After a series of u(t) is produced, in the
feedback mode, the gradient of the Utility with respect to system state is:

Uty aU(t)
ax(t) = daq) 0 ().

This result is used by the Model network (F_Model routine) to determine

oU(t) _ dU(t) d8(t)
du(t) — 96(t) ar'(t)

(8(t) — 0u(t)) F-u(t)

which in turn is used to determine %ﬂ, the gradient of the utility with respect to the weight
iy

space, Wi; in the Action network.

In the implementation of the Backpropagation of Utility algorithm, we found that the
success of the algorithm hinges upon how accurate the Model network can emulate the inverse
dynamic system given by Equation 19. To gain insights in the problem, Figure 5 shows the

inverse dynamic system by plotting 6(¢) as a function of 7’(¢). Once trained, the subroutine

18

Model will provide 6(t) for any given 7'(¢) in the feedforward mode. In the feedback mode,

Fu(t) = % = 535,%1) is identified by the Model network through the subroutine F_Model.

In our initial attempt, we tried to train the Model network very accurately for a few
points to emulate the function depicted in Figure 5. More specifically, we use a two-layer
Model network with Hpry = Hpr2 = 5 neurons in each layer. The input and output layer
each has my = npy = 1 neuron. We use the basic backpropagation algorithm outlined in
Table 1 (with W’ = 0 for all nodes at all times) for training the Model network with 7' =5
sampling points equally spaced over §p = 0.1 to §; = 7 radians. Since the sigmoid function
(Equation 8) is used as transfer function, the desired outputs must be between 0 and 1.
From our experimentation, we found that learning is more efficient, if the desired output is
scaled between ymin = 0.1 and ymaz = 0.9. That is, for training of the Model network, the
input and desired output sampling points are:

Xn(t) = ME0(t) + M g L cos(6(t))

Yu(t) = %%i—"(ymam — yman) + ymin
where 8(t) = 6 +t*db, t =0,...,T — 1 and d8 = (0; — 6o)/(T — 1). With this small
number of training samples (T = 5), the network is able to train very accurately in the
forward mode. However, when we use this trained Model network to calculate the feedback
| component F_u(t) = %f(:) = 58%((% (using the F_Model routine), we found that the results

are not accurate and consequently, the backpropagation of utility algorithm does not work.

We attribute this failure to insufficient sampling points.

To obtain an adequate representation of the system, we need to train the Model network
with sufficient number of sampling points and good accuracy. In this case, we use a bigger
network with two hidden layers and 30 hidden nodes in each layer. Figures 6 and 7 show the
results for training with T = 100 samples over the entire possible range of 7'(¢). Both the
forward andl backward components have good accuracy. Figure 6 plots the error |64(¢) —6(2)|
vs. 7'(t). This error ranges from approximately, 107* to 107¢. The error for the backward
component |F _udesired — F'-Uactual| is the difference between the output of the F_Model
routine and that of the desired value. Such error versus 7/(t) is plotted in Figure 7. Again,

the accuracy is good. The error ranges, approximately, from 1072 to 107°.

19

0.001 ¢ T T T T T

0.0001 _—/\ 3
|64 —8l []

(radians)
le-05 3

le-06 F

L 1 L

1 2 3 , 4 5
T () (Newtons)

Figure 6: Error in the Feedforward Component of Model Network (100 Training Points).

0.01 : T 1 T L T
3]
8 w
A
‘; = 0.001 3 3
I 8 < P
= 3 1
lﬁ % h
£ 8
w0
£ 3 oooom | -
e]
=I]
3

1e-05:-

1 2 3 4 5 6

T (t) (Newtons)

Figure 7: Error in the Feedfback Component of Model Network (100 Training Points).

20

dn- TO

0.1 7

(Newtons)

Yt
t

0.01 k \ .

P 1 1 P | i

le+02 le+03 le+04 le+05 le+06

Iterations

Figure 8: Adaptation of Action Network.

With the Model network successfully trained, we are ready for the adaptation of the
Action network as outlined in Figure 3. As an example, we adapt the action network to
generate a series of control signal 7'(¢) to drive the 1-D robot from 6y = 0.1 to 6y = 7 in
4 seconds with a sampling period of 0.2 second. That is, a total of 20 control signals 7/(t)
are required. We use a two-layer Action network with 10 nodes in each hidden layer and the
backpropagation through time algorithm (with adjustment of the W’ weight in the Action

network).

Figure 8 shows the total error Y"i=3 , |7/(¢) — 74(t)| (7'(2) is the predicted valude from the
Action network and the 7;(t) is the desired value) versus the number of iterations. Figure 9
plots the difference between the desired and the actual 7/(t) generated by the Action network
over the entire period. Note that, unlike basic supervised control, the Backpropagation of
Utility algorithm does not require the desired value 7)(t) be available to the Action network.
They are used here only to illustrate the performance of the action network. These figures
show clearly that the weights of the action network is adapting to generate a forecast of
the desired control signals based soley on the feedback signals F_u(t) from the F_Model

routine.

21

0.1] T T] T T T

001 F

0.001 ¢

] T:j - T,(l)l
(Newtons)

0.0001 F

le_os [l A he R L 1 I

Time (Seconds)

Figure 9: Errors in Control Signals.

5 Conclusions

Backpropagation of Utility is one of the five methods for neuro-control. Its goal is to provide
a series of control signals to maximize a utility function. In this paper we demonstrated how
to use the basic backpropagation and backpropagation through time algorithms as building

blocks for the backpropagation of utility algorithm.

Basically, the algorithm is composed of three subnetworks, the Action network, Model
network and the Utility network which sometimes can be represented as a simple Utility
function. Each of these networks has the feedforward components Action, Model and
Utility and the feedback components F_Action, F_Model and F_Utility, respectively.
The interaction of these components can best be described in the flow chart of Figure 3. To
further illustrate the algorithm, we use the algorithm to control a 1 — D planar robot. We
showed that the success of the algorithm hinges upon a sufficient emulation of the dynamic
system by the model network (both the Model and F_Model routines). Pseudo computer-

codes for all routines and basic equations for each building block are also included.

22

References

1]

[2]

3]

4]

[3]

[9]

[10]

[11]

[12]

Richard L. Lippmann. “An Introduction To Computing With Neural Nets”. [EEFE
ASSP Magazine, pages 4-22, April 1987.

Judith E. Dayhoff. Neural Network Architectures. Van Nostrand Reinhold, New York,
1990.

W. Horne, M. Jamshidi, and N. Vadiee. “Neural Networks in Robotics: A Survey”.
[EEFE Journal of Intelligent and Robotic Systems, 3:51-66, 1990.

Paul J. Werbos. “Backpropagation and Neurocontrol: A Review and Prospectus”. In
International Joint Conference on Neural Networks, pages 209-216, Washington, DC,
June 18-22 1989.

Paul J. Werbos. “Backpropagation: Past and Future”. In IEFFE International Confer-
ence on Neural Networks, pages 343-353, San Diego, CA, July 24-27 1988.

D. Rumelhart and J. McClelland. Parallel Distributed Processing, volume 1. MIT Press,
Cambridge, MA, 1986.

B. Widrow and M.A. Lehr. “30 Years of Adaptive Neural Networks: Perceptron, Mada-
line, and Backpropagation”. Proceedings of the IEEE, 78(9):1415-1442, September 1990.

Robert A. Jacobs. “Increased Rates of Convergence Through Learning Rate Adapta-
tion”. Neural Networks, 1:295-307, 1988.

Paul J. Werbos. “Backpropagation Through Time: What It Does and How to Do It”.
Proceedings of the IEEFE, 78(10):1550~1560, October 1990.

K. W. Tang and H-J Chen. A Comparative Study of Basic Backpropagation and Back-
propagation Through Time Algorithms. Technical Report TR-700, State University of
NY at Stony Brook, College of Engineering and Applied Sciences, November 1994.

D. Psaltis, A. Sideris, and A. Yamamura. “A Multilayered Neural Network Controller”.
IEEFE Control Systems Magazine, pages 17-21, April 1988.

W.T. Miller, R.P. Hewes, F.H. Glanz, and L.G. Kraft. “Real-time Control of an Indus-
trial Manipulator using a Neural Network Based Learning Controller”. IEEFE Journal
of Robotics Research, 6(2):84-98, 1987.

23

(13]

[14]

[17]

(18]

[19]

[20]

21]

[22]

(23]

24]

W. T. Miller. “Real-time Application of Neural Networks for Sensor-Based Control of
Robots with Vision”. IEEE Transactions on Systems, Man and Cybernetics, 19(4):825-
831, July/August 1989.

J. Tanomaru and S. Omatu. “Towards Effective Neuromorphic Controllers”. In IEFCON,
pages 1395-1400, Kobe, November 1991.

M.B. Leahy, M.A. Johnson, and S.K. Rogers. “Neual Network Payload Estimation for
Adaptive Robot Control”. IEEE Transactions on Neural Networks, 2(1):93-100, 1991.

A. Guez, J.L. Eilbert, and M. Kam. “Neural Network Architecture for Control”. IEEFE
Control Systems Magazine, pages 22-25, April 1988.

A. Guez et al. “Neuromorphic Architectures for Adaptive Robot Control: A Preliminary
Analysis”. In IEEFE International Conference on Neural Networks, pages 567-572, 1987.

A. Guez et al. “Neuromorphic Architectures for Fast Adaptive Robot Control”. In
IEEFE International Conference on Robotics and Automation, pages 145-149, 1988.

L.G. Kraft and D.P. Campagna. “Comparison of CMAC Architecture for Neural Net-
work Based Control”. In The 29th Conference on Decision and Control, pages 3267-
3269, Honolulu, Hawaii, December 1990.

A.Y.Zomaya and T.M. Nabhan. “Centralized and Decentralized Neuro-Adaptive Robot
Controllers”. Neural Networks, 6:223-244, 1993.

B. Bavarian. “Introduction to Neural Networks for Intelligent Control”. IFEE Control
Systems Magazine, pages 3-7, April 1988.

K.S. Narendra and K. Parthasarathy. “Identification and Control of Dynamical Systems
Using Neural Networks”. IEEE Transactions on Neural Networks, 1(1):4-27, March
1990.

Paul J. Werbos. “Neural Networks for Control: An Overview”. In 1990 American
Control Conference, pages 983-984, San Diego, CA, May 23-25 1990.

Paul J."Werbos. “An Overview of Neural Networks for Control”. IEEE Control Systems
Magazine, 11(1):40-41, January 1991.

Paul J. Werbos. “Neural Networks for Robotics and Control”. In Wescon/89, pages
684-688, San Francisco, CA, November 14-15 1989.

24

[26] Paul J. Werbos. “Neural Networks for Control and System Identification”. In [FEE
Conference on Decision and Control, pages 260-265, Tampa, FL, December 13-15 1989.

[27] Paul J. Werbos. Neurocontrol and Supervised Learning: an Overview and Evaluation.
In D.A. White and D.A. Sofge, editors, Handbook of Intelligent Control, pages 65-89.
Van Nostrand Reinhold, 1992.

(28] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA, November 1974.

[29] J. J. Craig. Adaptive Control of Mechancial Manipulators. Addison-Wesley Publishing
Co., New York, NY, 1988.

25

