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THE GAUSE:

(ATIOH AND SPARSE SYSTEM

* .
. T o o a2
_R. P. Tewarson .

Kostract. The problem of minimizing the number of new non-zero
elements created during the forward course (no new elements are created in
the back substitution) of the Caussizn Elimination forbthe.solution of
sparse equations is discussed. A plvo4 choice that leads to the mindmum- i
number of new non-zero eléments under a convexity assurmption is given. Some ' e

other methods for the determination of near optimum pivot choices are also

described.

1. Introduction. ZLet us consider the solution of the system of '
simultaneous linear equations.
ix = b, , () | |
where A 1s a non-singular matrix of order n, x and b are n element column

vectors. An excellent introduction to the various metlods of solving (1.1)

is given in [1]. For a more detailed treatment the reader is referred to

[2]. The case of ill-conditioned systems of the type (1.1) is discussed in

{31 If the system (1.1) possesses any number of the following properties:

A is rectangulsr, rank of A less than n,,ﬁhe_right hand side b does not lie
in the column space (the réngé #(A)) of A; then [L] can be used, e.g., if
the generalized least square solution of (1.1) is desired.

ke
In this paper we will assume that A 1s sparse and nou-singular

.. and some sort of row-column scaling has already been done in (1.1). A
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.3 1 . -
ole method for scal

iven in [1, pp. 37-L67. ¥ore efficient, but

L A .
in [5,6,7]. We will discuss the Gaussisn

Elimination (GE) for the solution of (1.1) because it is mot only simple
to implement on a computer but also gives fairly good reuultu for the a-

mount of computational work that is requlred [2, pp 2hh 2l 6]
In general, during the forward course of the Gaussian Elimination

neyw non-zero elements are created. The back substitution part of the GE

A oes not lead to ew Y new nozﬁ~ze1~6 e]l,ements. Our problem is to minimize the
total number of such non-zero elements created during the entire forward
course of the GE. I‘Lll’l'LI"! zing the number of non- zero elements created dur-
ing the forward course of GE leads not only to less roundoff errors (since
computations involving zero are exact in most computers) but also saves
the computer storage. Because, usually the storage released by the column
being elininated at a pafticular stage of the GE, is not sufficient to
store the additional non-zero elements created in the remaining columns.
Minimizing the numbsr of such new non-zero elements decreases the round-
Q;f‘f error not only in the forward course bﬁt also in the back substitution
Part of the GE, since whenever there is a.zero element in ‘the column under
consideration no opsrations are performed on the corresponding element of
the right hand side.

2. Main Results. Let A(k) be the! square svb-matrix obtained

from A after bh.e GE has bmen peI‘f’Ol’I"led on k - l CO].UJ’II’I.‘:., Wfl@:(‘e k 1,2,“«;3’1.

Cleerly AU’) is an mm matrlzx, whﬂre m=n-k+ j— an:i A< = A, Let the

(k) 117
matriz B, be obtained by replacing each non-zero element of A RASS

. . (k) enotes
Bk is called the incidence matrix associated with A* 7. If Uk denoven @

L)

« T Vg ,or
colunn vector of m ones, then we can define an m element column vectc




(c alled the row count vector) as

0 - B

and also the m element row vector ¢ (k) (called the column vector) as
ot " TR

where the transpose of U is denoted by UTk . Note that'r(k) (the ith

element of r<K)) gives the totel number of non- zero elerwents in the ith

r ow of A( ); also Cg ) (the ;Jth element of c( >) gives the total number

) th

of non-zero elements in the j~° column of A( ). In order to get A(k+1)'

fronm 'A(k), a suitable pivot, say a(gz], is chosen in A(k> and after trans-

(k) th
iqg °

th

forming all a # p to zero by elementary row operations, the p

row and the g~ column are dropped. The pivotAposition (p,q) is saved,
which makes it unnecessary to move the pivot to the top left hand corner
before performing the GE. The following theorem is useful in minimizing

(%)

the number of additional non-zero elements created when A is trans-
formed to A(k+l).
Theoren 2.1. The total number of new non-zero elements that are

creagted in the kth step of the GE if a(k)'is chosen as a pivot is equal to

- the corresponding element gl()g) of the matrix G(k) , where
(k) = AT AT = T - BT .
G B B B, with B _,UkUk .

k
Proof The total number of elemenbs of A( ) both zero and

C e k) (k k
non- zero, for 'Wh_LCh agg) # O cmd a}g}f) 7‘ C is equal to r( ( ) If af}q)

(2

is the total number of non-zero elements amorgst the above, then

g(¥) = <k> () - k)
Pa bg

(2.2)

(2.3)

e




. k) .
gives the number of new non-zero elements created when a( ) is chosen as

rg
a pivet. If Bij denotes the i'h TOW'jth column element of By, then
! 14l
AV = 5 r e be
Pg i=l j=1 PJ 1J 19
and therefore
(k) k) (k n o
g - 5 )C( = 2 .z B B B -
Pg P g i=1 J=1 pj ij iq

By using (2.1) and (2.2) in the above equation, we can write it in the

matrix form

(k) T T
G = BUU,B - BB B
_ m T 2T
= B (UU, - By )B, B, B, B .

In view of the above theorem, it is evident that in order to
minimize the number of new non-zero elements created at the kth stage of
the GE, we must choose for the pivot
g(¥) = pin g(K) for 2111, 3with () zo. (2.1)
pg i, 1 1J
If we make the tacil assumption that the growth of new non-zero elements
" -is convex, then for each k if we choose the pivot according to (2.&) viz.,
iocal minimum, then we will get the glabai ninimum for the entire course
of the GE. It is our experience that the pi%%t choice (2.)) leads to
_su@sﬁgnyia%_ggqygaséﬁi@;tbe pumbar‘qfﬂnew no$~z§royglemen§s.

In the beginning, when k is small, it usually happens that

(k)
gt = 0.
P9

viz., Ték> = 0 and/or cék) = 0. It also héppens if for all s with

For example, if there are 'singletons' in columns or rows

R
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13
({/ (k) / h} (1‘:) .
£ 0 a 0 whensaver o ) In this . -
2 L. ILCIICVE . o N thisg coes o p 2 s
ps 7 ’ 18 1g 7£ ) 15 caus colunn o s oaald to
------ have & interssction' with column s. In ivv evesd. -0

o (x) | :
seplies that the chodiee of & ' the pivot e KO glare of 6B
IL_T!‘TP—'L—LU-) . P9 for the PLVCTY 8,'.{1- the &k eape of G will
on-zero elements. Tr olK) - ~
lead to no new non-zero elements. If gpq = 0 for mere than one row-
column pair (p,q), then we choose the pair which has the least number of
other such pairs in the row and the column associated with it. This in
effect 'saves' the other pivots of zero growth for subsequent stages of

bi
the GE. '_ : |

3. Practical considgz*ations. The computation of G(k) given

e gt TR o e

by (2».3) is not difficult. To save the working storage, each element

of Bk can be represented by one bit, instead of a full word in the com-

puter because all the elements of Bk are either zero or one. The compu-

tatidn itself can be simplified by progr émming téchniques and noting that %]
ﬁTk is obtained from Br'g{ by changing each of its unit elements to zero and ' (
vice—versﬁ_a. Computing 'G(k) at each stage k of the GE and then selecting £
the pivota‘;_eading to the minimum growth, involves a 1ot‘of work but, as |
T we pointeda"’-,?ut in the previous section, gives e}:cbellémt results. In any gé

method for minimizing the number of non-zero elements created during the |

GE, we would like to gét ths maflmum amount of’.information prior to pivol- 4
ing with minimuﬁ effort and wﬁrking'storage. :The choice of a method de-

Pends on several v.factors e..g., programming effort, compile time (especially
for one shot.use),’ storage available for the compiled program, solution \

.- ,'.~' . e el v . . ‘.‘L‘:‘."" 4..‘- . -,,' g r’l’}"f;
time, available data and working storage etc. A discussion of these factors

and several other methods for minimizing the number of pew non-zero elerents |
is given in [87.

. k . s
If we do not want to compute G( ) at each stage k and are willing




ettle for somewhat less of a decrease in the gronth

ct
C
w

5 Ny ele-
- PR AP e, 1
mants, then we can procsed as follows., CO”“ te 4( ! and poricss the etans
E SR AR NG giang

of GE until all avallable pivots with g(l) O have been uti uu 1. In
Pg
n

arse matrices there are usually several such elements e.g., due to 'gin-

gletons' and 'contained columns'. Let A(E) be the matrix left after all

(1)

available pivots with gpq = 0 have been used, then as in [8], web com-

pute the row vector

L) T T

(2) _
D - V f,B ’eB'g’, (3_1)

(1)

and select the columns of A in the order of the ascending values of
the elements of the vector Du’) . In each column, the pivot chosen is the
one whose corresponding element in the row count vector ru') is minimun.
The probability updating given in [9] is used for updating the row count
vector after the elimination on the chosen column. This avoids the eval-
uation of:%r(k) for each k from the cor'responding Bk' We_: notice that in
the procesé of transforming A(:L> to A( £) no addition.a'l non-zero elements
were creat;'d. Therefore, we do not need to c.orstruct‘B’e afresh from A(‘@),
but dbtain it easily from B, by deleting the appropriate rows and columns.

An alternative method to treat the problem discussed in this
péper is to first transform A to as. much uppef triangular form as possible
by means of row-column pel"mutétions and then thoose the pivots on or near
the 1ead1ng dlagonal This method is glven in [10] The tgleran@ on the
i31vot size is dlSCUSbed in [8] ‘ o |

L. Concluding Remarks. When using the methods suggested in this

and other papers given in the reference,it should be realized that the struc-

ture of A, in general, affects the efficiency of the chosen method. This 1s

e



especially trus 1f the non-zero elements of A are not randomly distributed.

(6]

s

In view of the above mentioned facts the choice of a method is not easy.

Perheps is is best left to the user provided he is made aware of ag many

v o

me+thods as possible and of course their pitfalls.
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