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‘Abstraét. A method for improving the computations ig the. Davidon-
Fletcher-Powell method for function minimization is suggeétea“ It util-
izes the dﬁubly relaxed generalizéd inverse of the matrix which is usual-
ly obtained from the gradient vectors. The method consists of simple ﬂer—
turbations in the scalar terms of the correction matrix.

1. Introductlon |

The Davidon Tle+cher—Powe11 (DFP) method (Refs. 1, 2) for fanctlon
minimization is one of the most popular methods. Howesver, it has been ob-
served that theyDFP method does not always procead sméothl‘. Fof example :
Broyden (Ref. 3) remarked that occasionally négative steés had to be taken.
McCormick (Ref. L) observed that pefiodic reinitialization of the matrix
lead to significant improvement. Wolfe (Ref. 5) has reported cases where
convergenée to non~stationar§ points had taken place. Bard (Ref. 6) had
encountered éimilar behavior which, he observed, was invariably thg result
of the matrix turning singular.

In this paper we shall make use of the generalized inverses to give a
techniqué for improving the DFP method. In Section 2 we‘will introduce the

doubly relaxed W-generalized inverse,where W is a positive definite matrix.
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In Section 3, we will describe a modification in the DFP method and prove
that the associated matrices are positive definite.
2. The doubly relaxed W-generalized inverse

Iet Bbe an m x n matrix of rank r (r < m < n). If X is a matrix sat-
isfying each of the equations
)T

BYXB=B, XBIXI=2X, (BX) = BXand (XB)® = IB, (2.1)

(where T denotes the transpose), then X is unique and is called the general-

ized inverse of B, viz., X = B , (Ref. 7). If

A =3B + ¢ I, (2.2)
where Im is the identity matrix of order m and ¢ is a small positive number,
then B(e>+, the doubly relaxed generalized inverse of B, is defined by
Rutishauser (Ref. 8) as |

B(e)" = BI(A + & 81)2 (2.3)
Let D = {di} be a non-singular diagonal matrix of order r with 4 > 0 as its
ith diagonal element, then we have

Lemma 2.1.

1im.D(D2 +eI+e (0P +e :tl;)'l)’l = pt. ' (2.1)
€0 .

Proof. Since D = {d;}, d; >0, we have
d.

lin D(D®+e I, +e(D? + ¢ I ™) " =lin 2 e
€0 €0 d?_ + e + € .

"
n

Dt,

_T—-—. 1
di+€'

The following Theorem shows the relation between B+ and B(e)+.

Theorem 2.1 (Rutishauser, Ref. 8).

3+ = 1im B(e)". | - S (2.5)
T g0 C



We give a proof of the above theorem since, in Ref. 8 it is omitted.

Proof. There exist matrices Q and S such that (Ref. 9, p. 10)

. | - 0Ty = 00T - To _ aql = - | ‘
Q=@ =1 , SS=85 =1 . - (2.6)
and
D O
QBS = | 5 (2.7
10O -
i where D is a nodn-singular, diagonal matrix of rank r. The diagonal elements

of D are greater than zero and are the non-zero singular yalues of B. 1In

view of (2.7), (2.2) and (2.6), we have

b 0] '
B=-q st (2.8)
LO O. o .o
- 0 0] |
= a=1q" Q+eQQ,
0 0]

Q. _‘ (2.9)

From (2.9) it follows that

(8 +¢a?)t =gl (bz +elp +e (0F + el)™)™ 0 1a
C : 1+ e)’llm—rj
and from (2.3), (2.8) and Lemma 2.1, we have
2 ‘ -1y _
B(e)* = BI(A + ¢ 4 )= 5 D(”D telp+te (D +e Ir>'> 0 Q,
0 - 0
7t 0
1im B(e) " =s| Q=58

g""o‘ 0 0
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the last equality follows from direct substitution in (2.1) and using (2.8)
and (2.6) (Ref. 10). This completes the proof of the theorem,

Rutishauser (Ref. 8) has shown theoretically and also by one numerical
example that the doubly relaxed generalized inverse B(e)+ leads to better
results on a compuber than the direct computation of B+, if the non-singular
part of B ig ill-conditioned. Ip order to make use of the above fact in the
DFP method, we will need the following.

Since W is a positive definite matrix, there exists a non-singular low-

er triangular matrix R, such that

RRY

= W. (2.10)
This is known as the Choleskey decomposition of W (Ref., 11, p. 229). Iet A
be an m x n matrix of rank r, such that

B=AR . ‘ ' (2.11)

Then the unique solution X of ths equations

]

ATA = A, X = T, (AX)T = AX and (xaW)T = xW, (2.12)
is called the W-generalized inverse of A and is denoted by A'y. This defini-
tion of A+W was given by Herring (Ref. 12) in a slightly more general form.
For our pusposes the zgbove definition will suffice. Let the W norm of X be

defined by

x| = trace XTW‘IX, (2.13)
-w—l

then Herring (Ref. 12) has proved the following theorem.
Theorem 2.2 (Herring). If F is a matrix with m rows, then
. + .
X=AWF _ : (2.l
is the least squares solution of the matrix equatiocn
AX = F . | o (2a8)

having the minimum W norm.



We will also need the following theorem.
Theoren 2.3. If Afw and B are the solutions of (2.12) and (2.1) re-
spectively, then

<+

+
W= BB - , (2.16)

A

Proof. By direct substitution in (2.1) and using (2.8) and (2.6), it is
easy to verify that (Ref. 10)
N Dt 0
B =S Q. (2.17)
0 0
Mso, from (2.11) and (2.8), it follows that f
A=3R" =qT [O O] SR, ' (2.18)
0 0
In view of (2.17), (2.18), (2.6) and (2.10), it is easy to check that BB
satisfies (2.12) and therefore (2.18) holds.
We conclude this section with the definition of A(e)+w as follows.
TOMES:ICM (2.19)
which, in view of (2.3), (2.11), (2.10) and (2.2), implies that
ae)', = RBT(a + € 47) = BRTAT(a + 6 a7) T = waT(s + ¢ A7H)F, (2.20)
where

_ T _ T T _ T
A-BB+eIm—ARRA+eIm-AWA+eIm. (2.21)

3. A Modification in the DFP Method.
Let us consider the problem of finding the n element column vector x
that minimizes the quadratic function
£(x) =% xTox + bTx + c, . (3.1)
where G i1s a positive definite matrix, b is an n element column vector and ¢

a constant (Ref. 13, Chap. 3 and Ref. 1l).




We will also need the following theorem.
Theorem 2.3. If A+W and B' are the solutions of (2.12) and (2.1) re-
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B =8 Q. (2.17)
0 ©

v
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a constant (Ref. 13, Chap. 3 and Ref. 1L).




Letrthe ith approximation to the vector which minimizes (3.1) be denoted

by x,. Then in (3.1), the gradient of £(x) at x; is given by

g = Gx; * b, (3.2)
which implies that
8 ~ 8 = Glxyy -x) - - (3.3)
If we let
€~ BT yg and X, - x; = s? s (3.4)

then (3.3) can be written as

T _ T B
yi =G Siv=> yi = Si G. (3-5)
Let
N Jo So (3.6)
Yi = | and Si =1, .
i1 Sia
L. J b -

Pearson (Ref. 1l) gives the following algorithm for the minimization of {3.1).
Mgorithm 3.1. Let P be a positive definite matrix. Given X, and E_ = P.
Solve for H;, the equation

p Hi =5 (3.7)

and determine Xin from the relatiom

f(x,..) = min f(xi + aiHigi) .

3
<

i+

Compute g, and using x,  , update ¥; and §; and (3.7) as follows

T3] 57 ) )
Y = and S, _ = s (3.8)
i+ 141
il 51

- £3:9)

Y1+1Hj_+1= Si+l'



It is proved in Ref. 1L, that the above algorithm terminates for
i < n, if the solution of (3.7) is taken as

Hy = (%) S + (I, - (¥ 1)7p
_1-1WSJ. In 1’ w1 (3.10>

and W=Por G and W=P or G*. IncaseW =G> and W = P, we get the
Davidon-Fletcher-Powell method.

We are now in a position to describe a modification to the DFP method.
To this end, let

H =‘H. + 0, . (3.11)

_ _Sl’YiH=Sl-YiHi
i+1 1 441 in 1 i _
o Si1 V1 55 7Y%y
(3.12)
0
sy - yiHi .
Let
_ 0 . 0 '
jL+1ci = . and ¥, C; = r (3.13)
i I3
then from (3.12), it follows that _
C; = T3 - Cy. (3.1L)
Also, in view of Theorem 2.2, (3.13) implies that
_ . o . . o
C, = (T, w and Gy = (T, )7a | . (3.15)
54 yiHi

are the least squares solutions of the two equations in (3.13) with the mini-

mm W and W norms respectively. We will need the following theorem.

et
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. T +
Theorem 3.1, If in (3.15), (Yi+1) w and (Yiﬂ) #y are replaced by

(e)" *
Y., '8 . and Yi+1 (e) » respectively and

i
T ~ T '
then
—_— - - ~ Ll ~ ﬁ- -1

C; = Ws_f:fsi(OI +ea)™ and C; = WyiTyiHi(d veat)”, (3.17)

where
- T Sy
@=yVWy; +eando=yWy;+e (3.18)

Proof. From (2.20), (2.21), (3.8) and (3.16), we have

+e a7t ), (3.19)

+ T
i+1(e) W WY:L+1(Ai+1 i+1
where . *
A=YWYT+I=Y1WYT Heer
i1 Tifn Tiw € 341 i € i+
: I3
B T T T
LWy YsWyg TWE +e Iy 0
= T T + € Ii+1= T 3
inYi yiwi 0 yiwyi te
and using (3.18), we get
o O o
A = 3.20
W (3.20)
where B = YiWYjI: + eI, . Now, in view of (3.8), equations (3.19) and (3.20)
- N -l
give Ca
. . Ai 0] Ai- 0]
= +
Yi+1(€) ” P O € . -
1ea 7 0
+
T T ( i € Ai ) .
= W(Y, oF )
e 0 (@ + ca™)™

T a1 op, . a1l ‘
zwéi.(Ai+€Ai) ,yi(oe+eo: )) . (3.21)

8.




Now, from the hypothesis of theorem,(3.15) and (3.21), it follows that

l)—l.

Ce T _
C; = Wyisi(a + e a

Replacing W by W in (3.21),we get the value of c given by (3.17). This
completes the proof of the theorem.

The following corollary to the above theorem gives the desired re-
sired result.

Corollary 3.1. If, in Theorem 3.1, W= G* and W = H, then

T T
H =H*+ 5581 o By
T T

. . (3.22)
in 3 oyl v e+ elygsy + )yl

+ e+ e(ysyys + o)

‘Proof: Since, in view of (3.5), WYE = G'lyg = SE: and ﬂyg = Hiyz; equa-

tion (3.22) follows from (3.17), (3.18), (3.1L) and (3.11).

Tt is easy to see that (3.16) is satisfied if W= G and T:I=Hi,'6eca.use in
viewof(B.S')arﬁ (3.7), we have in"lYE = siGSE and yiHiYiT = siGSiT . Therefore,
in this case (3.16) implies that siGsE =0, j<i, which is known to be satis-
fied (Ref. 13, Chap. 3).

The choice of Hi for %’in Corollary 3.1 is justified provided that Hy
given by (3.22) is positive definite. It is easy to see that for e = O,
equation (3.22) is the usual updating formula for the DFP method and Hy is
known to be positive definite (Ref. 13, Chap. 3). For € > 0, we have

Theorem 3.3. If H, = P, then the H; given by (3.22) are positive defi-

nite for all i.
Proof. Since HQ = P is positive definite, we will show that whenever
H; is positive definite Hi+1 is also positive definite; then by induction the

thecrem is proved. Let H; be positive definite, then

6=g+.—_€_—_—_—.—_>0

T
| YiHj_Yi + e




By the Cauchy-Schwartz inequality for an arbitrary n dimensional row vector

u with uTu # 0, we have

(7,502 = (7330 (wign®) < (r3Hyy) + 8)(ugpu’),

which implies that

(yiH'i'!lT)z T
— < uH.u". (3.23)
yiHiys + 8
" But, from (3.22) and (3.23) it follows that
T2 2
(s,u”) (y.H.ub)
T i T it
uH u = T T -y + uHiu e i
K i“l“l y‘isi + ¢ + e(yisi + e) yiHiyi + 6

T .
.m>'0, if yi84 * ¢ >0,
Since ¢ > 0 and in view of (3.5) &nd the fact that G is positive definite
T, .
‘yisi = SiGSE > 03 therefore yisz + ¢ > 0, and thus we have proved that if
Hi 1s positive definite, then Hi+1 is also positive definite and this com-

~pletes the proof of the theorem.

10.



‘h; Concludlng Remarks. :
| ‘In this paper we have given a technique (3.22) for Amproving the
| computation of the Hi matrix in the IFP method. In the derivation of
(3. 22), we made use of the doubly relaxed W-generalized inverse Y, +1(é)+

. Since R is a non-singular matrix from Ref 8, (2. 16) and (2. 19), it follows

+

that, in general, Yi+1(e) will give better results than (Y1+1)w

This
is especlally true, if due to round-off errors etc., the rows of Yi+1
are not linearly independent (Ref. 6). Rutishauser (Ref. 8) observes
that the choice 10-5 Seg=< 10-10 lead to good results in a computer
with 35 bit mantissa when he computed the boubly relaxed generalized
inverse. The prdper value for ¢ will hafe to be determined on the basis

~of large‘scai; numerical experimentation. |

We can also use the doubly relaxed W-generalized inverse in the
periodic computation of H, directly from (3.10). Ii is known that such
periodic direct computation of Hi improves the performance of the IFP

method (Ref. ). Thus in (3.10), replacing (Y-) and (Y ) by Y. (a)
and Y. (e)~ respectlvely and in view of the fact that W = G and W =

for the DFP method, we get

i

+
H, = Yi(e)G_l 84

. I
+ (I, - Yi(e)P TP, | o (3.2L)
where, in view of (3.19) and (3.5), we have

) . (3.25)

; + T -1.-1
Yi(e)G—I =Si(Ai + € Ai)
=S5, T el | G
By =51 vely , ) S - (3.2
"Yi(e)P _,PYi(A ted ) S R ?.27)

e




v : . . - ~ - T ' r\\ o
I ',;1;‘=_vAi Yi P Yi + e Ii . o | (3.28)

Note that (3.2li) can be computed even if Yi does not have full row rank,

which would not be possible in Ref. 1. In view of the theoretical re-

sults in Ref. 8, equafions (3.214)-(3.28) should in general, lead to

better Hi."
We conclude this paper with the following remarks on Hi which is

given by (3.22). The H; for the DFP method is

s. s, H YT ¥ H

- . } 3 3 3 i . :
By, =f ¢ 5 - 2222 (3.29)
¥y Ty Hp s
T T
T 5; 51 By 73 95 By
Ifyi s, is small then evidently T dominates > this leads
| ST S
. to inaccuracy in Hj,, (Ref. 6). Let ¥ sz = o(e) = A e, where X is a
constant, then
T
v 8. S
]éim 2 j{i‘ = .

0

RS
On the other Hand

. T | T -1 . - -1
%i? (75 8; + e+ elyy sy +e) ) = ﬁi@ (A+1) e+ (+1) Y=o+ 1)

T
The perturbation in yi Hi ¥yi can be similarly justified.
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