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A DIRECT METHOD FOR GEDEEALIZED MATRIX INVERSION 

R. P. Tewarson* 

Abstract, A method f o r  computihg the genera ised  inverse of a matrix is 

described. It uses the well-known. Gauss-Jordan elimination scheme i n  con- 

junction with the conventional Gram-Schmidt orthogonalization process, 

1. Introduction. Moore [ll], Bjerhammas [6] and Penrose [I41 have independ- 

ently generalized the concept of matrix inversion. T h i s  paper i s  an addi- 

t ion  t o  the  already growing l i t e r a t u r e  on the computational aspects of gen- 

eralized inverses [2-5, 7, 9 ,  12, 15, 18, 19, 211. A s  i n  [21] we sha l l  con- 

sider a m x n matrix G of rank r with r e a l  coefficients. Since [ G ~ ] +  = [G']*, 

(where T denotes the transpose and + the generalized inverse of G), there is  

no loss  of generality i n  assuming m < - ri. 

2. Main Results, Penrose [13] s t a t e s  tha t  f o r  any matrix G there ex i s t  e le-  

mentary permutation matrices H and K such tha t  

where N i s  a square non-singular matrix of the sane rank as A. Evidently N 

i s  r x r, C i s  (m-r) x r, B i s  r x (n-r) and CN"B i s  (m-r) x (n-r) . For the 

elementary permutation matrices R and K we have H-'= HT and K"= K ~ ,  there- 

fore G = HT A K ~ .  Hence from theorem 11, Equation (12) o f  [8] we have 
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+ 
erefore, i n  order-.to evaluate G , it i s  desirable  t o  have a scheme t o  

a lua te  A+ as well  as the elementary permutation matrices A and K. Mak- 

~g use of  (1) it i s  eas i ly  ve r i f i ed  t h a t  

nere I i s  a u n i t  matrix of order r and A = N"B. Since N i s  a non-singular 

a tr ix ,  the  columns of the  matrix E] are  l i n e a r l y  independent; also it is  

l e a r  tha t  [I, A] has l i n e a r l y  independent rows. Therefore, (as  shown by 

rreville [lo]), it f o l l ~ w s  tha t  

and 



t 

The Gramm-ScWdt orthogondLization process can now be used f o r  the  . : , ,  
f 

letermination of the  values of [I + ~ ~ ~ 1 - l  in (4) and (I + [CHW1 ]'[CNa ]r in 
I 

(5)  . -1n order t o  do so  the following resu l t ,  due t o  Rust , B u r r  us and Sc h e -  f 
>erg= r191 as stated in t h e i r  equations (30) and (31), w i l l  be used. : i 

i r, 

Lemma. If the  Gramm-Schmidt orthogonalization is perf omed on the col- 
- - 

-o f  matrlIx , w h e r e U i s  any g ivensx tma t r ixwi th redLcoe f f i c i en t s  

3nd I is an iden t i ty  matrix of rank t, and 'Ff t h e  resu l t ing  matrlx is de- 

mted by [;I, where P is t x t, then  

We m e  now i n  a posi t ion '  t o  prove the following theorems: 

 heor or em‘ I. If the  Gramn-Sc hmidt or thogonalization i s  performed on the 
h 

col~mns of t.he mtrh  [c:;] t o  give [$] then 

where I and P are r x r . However, if the orthogondlization is performed on 

[ [C~-']* 1,' t o  give [$I9 then 
I 

where I i s  (m-r ) x (m-r ) and Q is r x (m-r ) . 
Proof. If i n  t h e  Lemma U is  replaced by CN-=- then (6) leads t o  (8) . 

Similarly, i f  [CN-?]~ replaces U i n  (7), then ( 9 )  is obtained, since 

{;cN-.]qT = CN-1 

Theorem 2,. If the Grm-Schmidt o r t h o g o d z a t i o n  process is performed 

on t h e  columns ,of the matrix [$] to ,  give then 
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rhere I - i s  (n - r )  x (n - r )  and S is r x (n - r). However, if the above or- 

;hogondllzation i s  performed on [$] to  give 

where I and R are both r x r ,  

- 
Proof: Same as that of Theorem 1. 

3. - Computational Aspects. Suppose the Gauss- Jordan Elimination [17] is per - 
formed on the matrix A suc h that  N is reduced to  the identity matrix of order r , 

The elimination is  equivdlent to  the premultiplication o f  A by a non-singular 

matrix E as  follows: 

=[: 0") 
A s  i s  c~stomary~the computation can be arranged such that a t  the completion of 

the elimination'process the matrix A gets transformed as shown below: 

Ln practice the elimination i s  performed on G instead of A and therefore some 

other s e t  of m - r rows i s  reduced t o  zero rather than the l a s t  rn - r rows as 

shown i n  (12). Also due t o  the permutation matrix K, see (11, the columns of 

N-I and A may not be positioned as indicated in (13). However, it is easy t o  



see that  the position of , a l l  the pivots a t  the end of the elimination process 

,n G determines the permutations H and K of (1). 
- - 

floating point computations, it is gcner a l l y  not easy determine 

some number is effectively zero or not. T h i s  fact  leads t o  the following dif- 

f iculty i n  the elimination process (12), namely, the problem of deciding 

whether a row of A has been transformed to  zero or not. A technique, essentially 

due t o  Osborne [12, p. 3045, will now be described f o r  the above problem. Let 

denote the i t h  row of A af te r  k - 1 pivots have been chosen, where i = 
i 

1, 2, ..., m and k = 1, 2, ...', r. Since L(:) consists of d t i p l e s  of the 
I 

(1) . rows 'of A added t o  L , , it is therefore reasonable to  compare the Euclidean 
* 

(k) (1) 
norm of  I,(:) t o  t h a t  of L( t )  and use I I L  l l / i \~ 11 as the criterion t o  decide 

whether a row i s  zero or  not. In passing, we may also mention the following 

t ec hnique , 

I n  the solution of large l inear programming problems the redundant 'con- 
, . 

straints  ( a r t i f i c i a l  vectors at zero level) and the contradictory constraints 
8 

( a r t i f i c i a l  vectors a t  non-zero leve l  - problem infeasible) are determined i n  

the following manner. If no pivot greater dhan a icert&n llpivot toleranceff can 

be  found in a certain row, then t h a t  row is considered t o  be a linear combina- 

t ion of  the ot  k r  rows i n  which pivots have already been chosen. (In connection 

w i t h  the design and writing of the Linear Programing Conpilor AI3S about 

one h~ndred Linear Programming pr oblems were solved. These actual production 

problems were collected f r o m  diverse users of Linear Programming and ranged i n  

size from 20 t o  805 rows. A llpivot tolerance1I of lo-' appeared t o  b e  adequate 

for  a 40 b i t  mantissa,) So much for  the elimination process. 

As  in' Theorem 1, the Gramm-SclmidG or thogodizat ion process can now be 

used as fol lars .  A suitable matrix I is appended t o  either CN-1 or it+ trans- 

pose i n  order t o  be able t o  make use of either (8) or ( 9 )  i n  ( 5 )  .- Mdently, 



.n order t o  save storage space and in general computational work, the equation :I 
:hosen out of (8) dzzd ( 9 )  is the  one which requires I of the s u e r  dimension 

;o be appended t o  the relevant matrix- Ln other words, if m - r > r vi.~. - 
< I&, then (8) is chosen, however if r > d 2 ,  then ( 9 )  is chosen. Similarly, - - 

porn Theorem 2, it foUows tha'c for r < - n - r viz.  r < n/2, (ll) should be used; - i 
E 

w the  other hand, if r > d 2 ,  then the choice falls on (10). Since max r = my 

it should be noted that r < - n/2 implies that  m 5 n/2 but r > d 2  implies that  

n-> n / 2 ,  The results  of dll. of the  above mentioned cases. can'now be stated 

h the?. form of the following theorem. 

Theorem 3, The generalized inverse of A is given by: :I 

MoreOver, the maximum storage spaces required t o  compute A+ by the above methods 

(denoted by S,, S, and S, respectively) are given by 

= m(n + r ) ,  

=m(n + r), if r - 
Proof: If r < - d 2  < - d 2 ,  then using (3.2.) i n  (41, (8) in (5)  and the r-e- 

sults  t h n s  obtained in (31, we have (Qa) . If d 2  < r < - d2, then from (3) 1 

(41, ( 5 ) ,  (9)- and (U) we have (&b) - To get ( 2 . 4 ~ ) ~  We use (3), (4)~ (511 ( 9 )  

and (10) . If the usual pr ogramrtng techniques for saving storage are used for 

coquting the product, bf matrices e t c  ,, then r ou the  c d c d a t i o n s  regarding' 

the storage spacks yield t h e  values f o r  S, , S, and S, - Note that a of 



m additional cells ,  of storage are needed which have not been included in  the 

d u e s  of S, , S, or S; given above. (working &orage). 

4 . - - ~ n  example. Consider the following matrix from [s]: 
0 0 1 

1 -1 
G - 

If the elimination is performed by choosing t h e  circled elements of the 

&ope m a - t r b ~  as pivots(viz ., B and K ase identity matrices), then as i n  (13) 
. . -. 

we have 

Hence 

Since r = 2 and m = 4, v i a .  r = nl/2,therefore (ha) should be wed. I?m 



Hence 

and 

w9 substituting the values of A, R R ~ ,  N-', ppT and CN-1 i n  ( a a )  

and performing the indicated multiplications, one gets 

5. Concluding Remarks. The met hods for computing A', given by R u s t ,  B u r r u s  - 

and Sc hneeberger [191 and by Ben-Israel and Wersan [5] generally require 

n2 + mn ce l l s  of storage; the  met hod given by Osborne [Xi?] requires more than 

n2 + rn cel ls .  The storage space $,, S, or  required for the method des- 

cribed i n  this paper is genern'lly l e s s  than that  in the above mentioned methods 

since usually r < n. H O W ~ V W ,  if N is  a poorly conditioned matrix, then more 
. , .  

sophisticated methods, often requirl.ng more work and storage space, are recom- 

mended, e.g. L-9, 151. In  aqy.case it seems reasonable t o  assume that i n  a 



significant rider pf cases the me"uods of this paper would have l e s s  diffic- 

T ulties during the course of t h e  elimination process than '$1, because NN i s  ' 

mope niXL-conditionedfl than N [20]. A Fortran ITT pr o g r m  based on the method 

described in this paper is being written. 
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