I S0y

|
;. REPORT No. 70
:

DIRECT METHOD FOR GEVERALIZED MATRIX INVERSIOM

>

by

R. P. Tewvarson

S e S | AUGUST 15, 1965
o

- TAI ‘
NE3R
we 7¢




A DIRECT METHOD FOR GENERALIZED MATRIX INVERSION

R. P. Tewarson
Abstract. A method for computihg the generalized inverse of a matrix is
described. It uses the well-known Gauss-Jordan elimination scheme in con-

Junction with the conventional Gramm-Schmidt orthogonalization process.

1. Introduction. Moore [11], Bjerhammar [6] and Penrose [1L] have independ-
ently generalized the concept of matrix inversion. This paper is an addi-

tion to the already growing literature on the computational aspects of gen-

eralized inverses [2-5, 7, 9, 12, 15, 18, 19, 21]. As in [21] we shall con- .

sider a m x n matrix G of rank r with real coefficients. Since [GT]+ = [G+]T,
(where T denotes the transpose and + the generalized inverse of G), there is

no loss of generality in assuming m < n.

2. Main Results., Penrose [13] states that for any matrix G there exist ele-
mentary permutation matrices H and K such that

N B
(1) HGK = A = ,

C CONT'B
where N is a square non-singular matrix of the same rank as A. Evidéntly N
isrxr, Cis (m-r) xr, Bis r x (n-r) and CN™*B is (m-r) x (n-r). For the
elementary permutation matrices H and K we have g = 5T and K= KT, there-
fore G = ET A K*. Hence from theorem II, Equation (12) of [8] we have

G’+ - [KT]‘-I A‘*’ [HT]—L

=x A H®.

kY]

" This work was supported in part by the National Aeronautics and Space
Aéministration, Washington, D. C., Grant No. NGR-33-015-013.
@

l.

LT SETE
T e A oo i Y o R e R B e S e S

Epe
e X

o e e e g
P ey e



erefore, in ox"d‘é:_'_uto evaluate G+,, it is desirable to have “a_Lfscheme to
aluate A" as well as the elementary permutation matrices H anci K. Mak-
\g use of (1) it is easily verified ‘chatA
N

: C
néi‘e I is‘ a unit mbatz;ix of order r and A = N"iB.' Since N is a non-singular
atrix, the columns of the matrix [Ig] are linearly iziaepender_lt; also it is
lear that [I > ‘A] has linearly independent rows. Therei‘ore,(as shom by

reville [10]), it folldws that
, -,
' + +| N
:3) . A =11, 4] [C] s

fhere

(L)
and
" N7~ -
~= {6 U} o', o
C : ‘C
-ty + oy T, of
- .[ﬁT{I N QTCN'I}ﬂ ot T
-z - rayTovty) o 6B
or
-1
(5) = N-l{I + [CN*leECN'lj} [, [CN"I]T] .
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The Gramm-Schmidt orthogonalization process can now be used for the

. . . =1
letermination of the values of [I + AAT]™* in (L) and {I + ren-* 1T ron- ]} in

5) . AIn order to do so the following result, due to Rust, Burrus and Schnee~

yerger [19] as stated in their equations (30) and (31), will be used.
Lemma. If the Gremm-Schmidt orthogonalization is performed on the col-

s of matrix [TIJ] s wheré U is any given s x t matrix with real coefficients

nd I is an identity matrix of rank t, and if the resulting matrix is de-

10ted by f%], where P is t x 1, then

(6) [T+ vyl = et
an_d. . |
() - [I+ w1t =[I- el

We are now in a position to prove the following theorenms:
Theorem 1. If the Gramm-Schmidt orthogonalization is performed on the

r;oluxms oi: the matrix [C‘ﬁ-l] to give [% then

(8)"» '{I . [CN-le[cN-lj J"-'l = ppl,

where I and P arer xr. However, if the orthogonalization is performed on
[ [CN_lj ] to give [ ]; then |

(9) - {I +-[CN"1]T[GN~1]}—; = I -Qq%,

Whéi'e I‘:iv.s (m—z"):‘x (mr) and @ is r x (m-r). _ »

Proof. If in the Iemma U is replaced by CN™%, then (6) Teads to (.8).‘
Similarly, if [CN“IJ replaces U in (7) then (9) is obtan.ned since
(T - ora, |

Theorem 2. - If the Gramm-Schmidt orthogonalization process is performed

. TS ‘
on the columns of the matrix [jﬂ to give [ﬁ‘] sThen

3.
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: 7,7t T
10) [I+aA"] - =[I-8s"],

there I'is (n = r) x (n-r) and Sis rx (n - r). However, if the above or-

T '
shogonalization is performed on (% ] to give [g]}then
r’ . T -'1 . -

11) [I+AA ] =RRT,

wherehI and R are bothr x r.

-

Proof: Same as that of Theorem 1.

3. -Computational Aspects. Suppose the Gauss-Jordan Elimination [17] is per-
formed »on the matrix A such that N is reduced to the identity matrix of order r.
Thé elminaﬁion is equivalent to the premultiplication of A by a non-singular
matrix E as vfollows:

| - of|lN B

(12) BA=| _ -
| ~CN lIJ c ox'm

As is customary,the computation can be arranged such that at the completion of
the elimination process the matrix A gets transformed as shown below:

Nt A
(13) h—> -1 .

In practice the elimination is performed on G instead of A and therefore some
other set of m - r rows is reduced to zero rather than the last m -r rows as
shown in (12). Also due to the perm'xrbatién matrix K, see (1), the colums of

N1 and A may not be positioned as indicated in (13). However, it is easy to

® "h'




see that the position of all the pivots at the end of the elimination process
m G determines the permutations H and K of (1). ..

In floating poiﬁt computations, it is generally not easy to determine if
some number is effectively zero or not. This fact leads to the following dif-
ficulty in the elimination process (12), namely, the problem of deciding
whether a row of A has been transformed to zero or not. A technique, essentially
due to Osborne [12, p. 3047, will now be described for the gbove problem. VI.et

( ) denote the 1 th row of A after k - 1 pivots have been chosen, where i =
l 2, cee, and k =1, 2, «es, s Since L( ) consists of multiples of the
rows of A added to L( i)’ 1t is therefore reasonable to compare the Euclidean
norm of L( ) 4o that of L%) []L(k)”/HL || as the criterion to decide
whether a row is zero or not. In passing, we may also mention the following
technique.

In the solution of large linear programming problems the redundant con-
straints (artlflc:Lal vectors at zero level) and the contradictory constraints '
‘(artificial vectors at non-zero level - problem infeasible) are determined in
the following manner. I:f:“ no pivot _great.er than a certain "pivot tolerance' can
be found in a certain row, then that row is considered to be a linear combina-
tion of the obtrer rows in which pivots have already been chosen. (In connection
with the design and writing of the Linear Programming Compilor AIPS [17 about
one hundred Linear Programming problems were solved. These actual production
problems were cqlle_cted from diverse users of Linear Programming and ranged in

size from 20 to 805 rows. A '"pivot tolerance!" of 10-.'5

appeared to be adequate
for a 4O bit mantissa.) So much for the elimination process.
As in Theorem 1, the Gramm-Schmidt orthogonalization process can now be

used as follows. A sultable matrix I is appended to either CI\I"l or its trans-

pose in order to be able to make use of either (8) or (9) in (5).- Evidently,
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n order to save storage space and in general computational work, the equation
rhosen out of (8)‘ and (9)4 is the one which requires I of the smaller dimension
;0 be appended to the relevant matrix. In other words, if m - r _>_ r viz.

' < m/2, then (8) is chosen, however if r > m/2, then (9) is chosen. Similarly,
rom Theorem 2, it follows that for r < n -~ r viz. r < n/2, (11) should be used;
m the other hand, if r > n/2, then the choice falls on (10). Since maxr = m,
it shovld be noted that r < n/2 implies that m < n/2 but r > n/2 implies £ha{t
1.>n/2. The results of all of the above mentioned cases can now be stated

in ther form of the follewing theorem. |

Theorem 3. The generalized inverse of A is given by:

(1) A { T] RRTN'IPPT[‘I, [CN"]‘]T], if < m/2
_ 1a

e I -
(Wp)  a" ={ T FRIIT - QQT][I,ECN”l]T], if m/2 <1 <n/2
. A | A -
I] o
(1he) A= T T - ssT]N”l[I - QQT][I, [CN_]’]T], if r > n/2.
| A ' : :

Moreover, the maximum storage spaces requir‘ed to compute N by the above methods

(denoted by S;, S; and S, respgactively) are given by

S, =m(n + 1),
S, =max {m(n +7), r(m + 2n - r)},
.8, =r(m-r) +n?, ifr < aln - m) ;

"

m(n+r),ifr>m. ‘

Proof: If r < m/2 < n/2, then using (11) in (b,)‘,.. (8) in (5) and the re-
sults thus obtained in (3), we have (ll;a); It m/2 < < n/2, then from (3),
(L), (5), (9 and (11) we nave (b). To get (i), we use'(3), (W), (5), (9)
and (10). If the usual programming techniques for saving storage are used for
congputing fhe pfédtc:‘c. of matrices etec., then routine calculations regarding

the storage spacés yield the values for S, S, and S;. Note that a ma:dm-um of

6.
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m additional cells of storage are needed which have not been included in the

values of S;, S; or § given above.(working storage).

‘Lj.” An example.  Consider the following matrix from [57:

If the elimina’cibn is performed by choosing the circled elements of the

sbove matrix as pivots(viz., H and X are identity matrices), then as in (13)

we have - — , —
' -1 -1 1 -1 0 -1
Nt A o) 1 -1 1 -1 0
Nt o 1- 1 o 0 0 0
2 3 0 0 0 0
- 3]
Hence
-1 -1 1 1 1L ~L 0 -1
N“‘l = s -CN—l = R A=
0 1 2 3 ~1 1 -1 0

i

Since r = 2 and m = L, viz. r = m/2,therefore (1l42) should be used. Now

P e S

1 1
2 3} g.s.

1 0

o 1
16 ~1/,/102
0 6/,/102

1//6
2//6
1//6

T

1//102 |
L/ /102
~T/,/102

6/102

T 1
FP" = 155

-l2




Also
1 -1 1 -1/
-1 1 -1 1/4/3
. o - " 0 -2/3 s
A - -
= ‘ G » S 3 ; ]72 = .
I -1 ol -1 -1//3 R
1 o} 1 1/./3
0 1 0 2/./3
Hence . | '
1 3 2 1
R = ]"é and RRT = %ﬁ. ’ .
0 2/./3 1 2

Finally substituting the values of A, RRY, N, PPT and cN™% in (1La)

and performing the indicated multiplications, one gets

s 8 7 6
18 13 58 -3

15 8 -1 -6

- o

5. Concluding Remarks. The methods for computing A+, given by Rust, Bwrus
and Schneeberger [197 and by Ben-Israel and Wersan [5] generally require
m® + mn cells of storage; the method given by Osborne [127 requires more than

m? + mn cells. The storage space (S1 s S, or 83) required for the method des~

cribed in this paper is generally less than that in the sgbove mentioned methods

since usually r <« m. However, if N is a poorly conditioned matrix, then more
sophisticated methods, often requiring more work and storage space; are recom-

mended;, e.ge [9, 15].' In any case it seems reasonabl.e to assume that in a

By
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si.gnificant nunber pf cases the methods of this paper wouwld have less diffic-
wlties during the cowrse of the elimination process than [5], because NN® is ~ . 1
more "ill-conditioned" than N [207. A Fortran IV program based on the method

described in this paper is being written.

State University of New York
. Stony Brook, N. Y.

RO

L R et Saeh g

it




.1l. ALPS. Honeywell E.D.P., DSI-275, WellesleyHills, Mass., 196L.

2, A. BEN-ISRAEL, On iterative computation of generalized inverses and asso-
sociated projections, to appear in J. SIAM, Ser. B.

3 ' : s A note on an iterative method for generalized inver-
sion of matrices, Math. of Comp., v. 20, 1966, pp. L39-LLO.

L. ' , An iterative method for computing the generalized 3
inverse of an arbrbrary matrix, Math. of Comp., v. 19, pp. L52-455. |

5. 4. BEN-ISRAEL AND S. J. WERSAN, An elimination method for computn.ng the
generaj_‘Lzed inverse of an arbltrary complex matrix, J. ACM 10, v. ).;, 1963,

6. A. BJEREAM&AR, Rectangular reciprocal matrices with special reference to
. geodetic calculations, Bull. Geodesique 1951, pp. 188-220.

Te Je G. G. BOOT, The compubation of the generalized inverse of singular or
rectangular matrices, Amer. Math. Mon.,v. 70, pp. 302-303. '

8. H. DECELL, An application of generalized matrix inversion to Sequenﬁial
least square parameter estimation, NASA TND-2830, 1965, Washington, D. C.

9% G. GOLUB AND W. KAEAN, Calculating the singular values and pseudo-inverse
of a matrix, J. SIAM: Ser. B, v. 2, 1965, pp. 205~22l.

. 10. T.N. E. GREVILLE, Soms applications of the pseunomverse of a matrix,
- SIAM Reve, Ve 2, 1960 s PPe 15-22. .

1. E. H. MOORE, On the rec::_prvocal of the general algebraic matrix, Abstracﬁ,

. 12. - E. E OSBORNE Smallest least square solutions of linear equations, J.
- SIAM: Ser. B, v. 2, 1965, pp. 300-307.

-13. R. PENROSE, On best approximate solutions of linear matrix equations, Proc.
Cambridge Philos. Soc.,v. 52, 1956, pp. 17-19.

1. , A generalized inverse for matrices. Ibid. v. 51, 1955,
PP' }406"‘)413' ,

15.--V. PEREYRA AND J. B. ROSEN, Computation of the pseudo-inverse of a matrix
of unknown rank, Tech. Rep. 313, Conmuter Science Division, Stanford
University, 96h.

16. L PYIE, Generallzed inverse computations using the gra.dient projec tion
method, J. ACM 11, v. L, 196l, pp. L22-428.

17. A. RAISTON, A first course in numerical analysis, McGraw-gill, NeW York,
“N. Y. 1965, pp. 399-LO1.

10. -

g o T TR TR



19 .

20.

21.

J. B. ROSEN, Minimum and basic solutions to singular linear systems s J.
SIAI\'I, Ve 12 196h, pp. 156"‘1620

G. RUST, W. R, BIRRUS,AND C. SCHNEEBERGER, A simple algorithm for compu‘b-
ing the generalized inverse of a matrix, Comm. ACM,v. 9, 1966, pp. 381-387.

0. TAUSSKY, Note on the condition of matrices, MTAC, v. L, 1950, pp. 111~112.

R. P. TEWARSON, An elimination method for generalized matrix inversion,
suvbmitted for publication to Comm. ACM.

TR




