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ON THE CHEBYSHEV SOLUTION OF INCONSISTENT LINEAR FQUATIONS

*
R. P. Tewarson

|
|
.Abstéact.

jA new formulation of the‘ﬁscent.algorithm for the Chebyshev solution of
1inqar systems is given, Thi§ leads to two algorithms, which are similar to
thegordinary simplex and the product form of inverse algdrithms'for the solu-
tio; of linear programming problems. T .
1. fIntroduction.

% Let us consider the following system:

: CAxb = r(x), , - - (1.1)
where A is an m x n matrix wiﬁh m>n, xis an n x 1 vector, b and r(x) are
mx i vectors. Let the it® element of.r(x) be denoted by r&(x) and the n di-
mensional Euclidean space by E'. In this paper, we shall consider the follow-
ing prob}em: |

m%P.m%xlri(x)[, i=1, «o., mj x € B8 | | (1.2)

Cheney [3, Chap. 2] gives an excellent discussion of the above problem and

also several algorithms for its solution. One of them he calls the ascent al-

gorithm, which is due to Stiefel [7, 8, 9]. We shall give a reformulation of
the ascent algorithm. This will make it possible to express the algorithm in
the wéll known tableau forms associated with the solution of linear program-
"ming (LP) problems, when using the ordinary [2, Chap. 5] apd the revised

- simplex (product form of inverse) methods [5, p. 200]. Thé principal advan-
tages of the two algorithms, which result from the reforﬁnlation of the as-

cent algorithm,'are as follows: First, the algorithms require somewhat less

~
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computational work than the ascent algorithm. Secona, by making uss of the
algofithms, linear programming codes, e.g. [li, 5], can be easily é&apted
for the solution of (1.2) with changes in only few of the pertinent subrou-
tines. Third, the algorithms give a clear and easy representation of the meth-
od of solution, especially if the reader_is familiar with the solution of LP
problemé.’.Finally,‘one of the algorithms makes it possible to minimize the |
?ound-off errors by controlling the pivot choice, and if A is sparse, mini-
mize élso the growth of non-zero elements during thé computational process.
2. Reformulation of the ascent algorithm. o~

Lef J={iy, veu, in+1} € {1, ..., m}. Then, according to [3, p. 36]
every solution of (1.2), for appropriate sets of indices J, is a solution of

min ngxir, (x)], x € B, 1 € J. : (2.1)
Without loss of generality, we can assume that J = {1, ..., n+l}. Now, ac-

. _

) ’ :
cording to de La Vallee Poussin [3, p. 37], x in (2.1) is the solution of

3

r,(x) = oz, 1 €J, 05 = +1 (2.2)

and 4 R

= coes '\ 2,
0 =K (o 4 , * %pn Ah+1)’ ) | (2.3)

where Ai denotes the ith row of A and the right-hand side of (2.3) denotes the

convex hull of the vectors o; 4, ...y O 4 ., In this paper, we shall as-
n+tl p+1

sume that the rows of A satisfy the Haar condition viz., every subset of n
rows of A is a non-singular matrix. It is possible to relax this condition
easily [3, p. 51]. In view of the Haar condition and the fact that in E°,
n+l vectors have to be linearly dependent, we have

n+l _

A A =0, (2.4)
i=1 :

where Ki ; Oy, 1 € J. For later use, let us impose the normalization

i

Z Ay b = -l S (2.9
j‘:l . ) .

- . - ¥
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on li; bi denotes the ith element of b. If we define

sgn Xi =1, Xi >0

(2.6)»
=1, 3 <0
then we éan take &i = sgn A; and from (2.4) we have
‘ n+l ‘ . .
izilxiloi A =0. | . (2.7)

The above equation shows that condition (2.3) is satisfied.

Let us compute the values of the A\;s. From (2.L) and (2.5), we have

T ~— o~ - =
A ... A A 0
1 n+l 1
N (2.8)
b L 2R 2 b x O
Ll n+1 | . n+1.] L -1
T .
where A denotes the transpose of Ai. Now, if we let
: 1 :
: T T
A L3 L . A'
1 n+ .
B ’—' ' ; 3 , (2;9) '
. b » & = b . o
b1 n+l

' 4T ‘ ot (2.10)
' s e = O L 3 O l = e -
[)\1: ) )\n+1] .)‘ and [0, s 0, 1] nti
then (2.8) can be written as .
Ba=-e . ' (2.11)

n+1
In view of (1.1), the vector (b5 «-es bn+1] does not lie in the row space of the

matrix [AT, cees AT+ ], and therefore B is non-singular and (2.11) gives
1 n+1

A =B (-e ). (2.12)

-

To find z we proceed as follows: From (2.2), we have

3.
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Multiplying the above equation by A, and summing over all i € J s we get
n;l N n+l n+l
\s As x— ¥ A, b, =z 3 A o.
1= TOET L M TR N %

e ———

which in view of (2.Lh) and (2.5) yields

1 |
Z = ol ° : : (2.1L)
E | |
1=1

We are now in a position to solve equation (é.13) for x. We can write it

as ) ‘
.-A , b L | : |
1, 1 1 1
. =20, A (2.15) !
, . -1
A , b .
| nH1 n+1 |
1

: T
where CIT =[lo, «evs 0 1. In view of (2.9) the above equation can be written
1

n+i ’
as |
: §
BT[X"l] = zg, R . . (2.16) .
or ' .. '
S -] i
x : .
=z EBT:l o . N (2.17)
-1. . ) '

i e - A A

Now, x in (2.17) is the solution of (1.2) if ‘ i

lrj(x)] <z, for all 1 ¢ J. ‘ | 1

Let us compute rj(x). Using (1.1) we have

n

r.(x)

Ax -b, , j¢ J,
J J J .

) Ix
[Aj’ bj] ‘{Z"l} |

-1
[45 by] 2 (8] o, using (2.17).

Since T, (x) is a scalar, the above equation can be written as !




T
T A :
r(x) =z o BT 'j],j dJ. | (2.18)
J b. ) |
J
Ir A
s =B J s . (2. _
J b, ~ .
. J e ————————r
then (2.18) becomes
rj(x) =gz ol bys d J. | (2.20)

‘In case |r (x)| > z for some j ¢ J, then x, given by (2.17), is not the solution
J
of (1.2)., In this case, let

2 < 'I'a(x)l_ = m;tx Irj(x)ls j¢d. , (2.21)

/

The set of rows [Ai, bi], i € J is called a reference set (RS). We shall intro-
duce row [A,s byl and remove the row [4g, bg] from the RS, thus constructing a

new RS. The index B is given by
Mig 580 T,(x) b, sen r,(x)

-4

3

- where By denotes the ith element of y, . The reason for the above choice is as

follows: From (2.19), we have

| oI
A-T n+l Ai
bo |~ Bhg = T kg, [b, |2
ba o 1=1 io i
which gives
A =ma A, | (2.23)

AP L i
Denoting sgn ra(x) by o, and multiplying (2.23) by g, v and adding the result to

(2.4), we get

n - . (2.2L)
Y O by +.Z Moy - v oy o3 mygdog A =0 .

As in (2.7), zero must lie in the convex hull of the new RS, therefore in equa-

tion (2.2}) we have



N, Oy Z Y Oy O5 By, ady >0,

Sinéegki o = [\ ] >0, we have
"
1 5 0% Mo % Mie

tIherefore, if we take

o . o, W
1 . pax @ i . "o "Bo s

Yoor N s

. ) ’
then;in (2.2h), the coefficient of GB AB will be zero and the .coefficients of all

the;other o; Ajs i =1, ...y B-1, B+l, ..., n+l, o will be positive. Thus the

A

n+1’

set?Ai, eesy A, 1s the new RS. Evidently the new x will
i

be aEChebyshev solution of an equation analogus to (2.2). It is easy to show

that ' the new z will be greater than the current z [3, p. L47].

3. First algorithm - updating the whole tableau (UWT).
| , _th
Let ﬁ denote the matrix obtained from B by replacing the B~ column by
(4, bQ]T. Then it can be easily showm [10, 2 (p. 197)] that
N f A~1 -1

B =1B , | : (3.1)

where

n=1 1 . , | (3.2)

6.
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Notice that the colwms of I’B\ constitute a new RS. Imn order to continue with

- the ‘algorithm outlined in secton 2, we need A’ and uj' (the values of A and p,j)

for the new RS. From (2.12), we have

‘I
X o= B [ee ]

"

7B [-ep+ Js using (3.1),
or |
A=A .

Using (3.2) in the above equation, we get
Al : A
B3 i #pand ! =-2.
LLBO, B pBO!

A=A, -
1 1

Once we know L', we can evaluate z’/ (the z for the new RS) from (2.1h).

Furthermore, as in (2.19), associated with the new RS, we have

T
A3l A :
w =873 1, 3 dNewnrs
J b. a
3
\
- st|al "
J s using (3.1),
b.
3
or
- .
B Ll s

Once again, using (3.2) in the above equation, we get

Y = » B4
! = - _...l' B . 'l fel ,_ = ._..B..J_ »
"1y T ey g M 1T B gy T

(3.3)

(3.L4)

(3.5)

(3.6)

Notice that kg = egs since column B was in the old RS, and therefore, from (3.5)

we have

7.




In view of (3.2), the above leads to

L Wiy . T2 ' -
Wig = - — » 1 # B and ugé =1 . (3.7)
‘ Heo ol

which is the Bth colurm of M.
We shall now describe the UWT algorithm. A numerical example will be
given in section 5. |

1. Apply the Gauss-Jordan elimimation [67 to the matrix

T T T T
Ay oo, An+1, Aigs «ves An s + (3.8)

L)
n+i

e
b b b ¥
13 sy eees b 3
nt1’ n+’ > m

such that the RS is transformed to the identity matrix. This is equivalent to

premultiplying (3.8) by B™., There is no loss of .generality if we assume that

the first n+t1 columns in (3.8) constitute the initial RS. Hence we have

—n

- n+2, v o & p'm’ - hd (3'9)
O
|__ ’ n+1‘J

If the colurms in RS are chosen sequentially, but in order to minimize the
round-off errors, the largest available element in each column is chosen as
a pivot (partial pivoting [12]), then instead of the identity matrix I, a
permutation matrix P will replace the RS in (3.9). The affect of this is

described in the remarks following the algorithm.



2. COmputévz using (2.1l) and rj(x), j € RS using (2.20). Determine

ng.x |rj(x)\ = Ira(x)l, j ¢ RS. If Ira(x)l < z, gO to li, otherwise go to

3. ’
3. Find the value of B by u_sing (2.22). Transforn colum o of (3.9) into
®g (the ﬁth colurm of the identity matrix) by means of.elementary' row operat-
_ions. This is equivalent to the use of the formulas (3.L), (3.6) and (3..7),.
Now, go to 2. . -

L. Compute x for the fina.ll‘ RS by performing the Gauss-Jordan or the Gaussian

elimination [6] on

'—Ai1 g bil _1

-
-

-

1 3 i
L n+1 -nh

0i

T G' v T . . : . . . >
where o° = [9iy» > L] and {i;, ..., ln+1} are the indicies associated

with the final RS.

9.
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g In using the above algorithm, we have to take the following facts into
con%ideration. If the matrix B associated with the initial or any one of
thgfsubsequent reference sets is singular,‘then Ax = b may have an exact solut-
ioﬂ. Also all the kis associated with each of the referenﬁe sets should be - |
no#~zero, othe;wise the Haar. condition will be violated. In (3.9), when using
pa%ti'al pivoting, instead of I we will get P, then in place ‘ofA (3.9) we will
hg%e [p, ij, PA] and evidenﬁly the algorithm remains unchanged.. The set of
'i%dicies {i15 «ees in+1} used in step L of algorithm, is determined by the
pe%mutation'matrix which is present in the final updated tableau. The index
ik; k=1, ee+y ntl, being that column of EA,b]T which has been transformed to
e,s the kP colum of I. |

‘The UWT algorithm described abo&e is specially adVantégeous if m is not
much greater than n. For m > > n, thé algorithm given in sgction L is some-
what bepter. We can now point out the similarity of fhe UWT algorithm‘to the
ordinary simplex method in linear programming [2, Ch. 5]. ‘The similarities
are between A and the}bésic solution, z and the objective function, RS and the
basic column vectors,ujs and the coordinates of the non-basic vectors in terms
of the basis, the updaﬁihg rules. Of course, there are differences, viz., com-
putation of z, computation of B, choice of initial RS etc. These differepces
can be used to make changes to the subroutines pf linear programming codes to.
adapt them for the UWT algorithm.
L. Second algorithm-the product form of inverse (PFI).
As is well known [10, li] the inverse of B can be expressed as the product

of n+l matrices of the type (3.2). Let

Bl=71 ...T01, | (L.1)
2 1 |

nﬂ._

10.
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P ' |
vhere T; denotes the i matrix factor of B™. In view of (L4.1) and (3.1), we

have!
i
/

A . ‘ .
B—l = Tlnf.z LI ’nl » ) ) (h.z)
Only the elements of the non-trivial columns of each of the ni along with the

corresponding pivot row index B; are stored. If the non-trivial column of 1|

I
in ',:1(3.2) is denoted by (W1 s =+* > ‘”nﬂ)T, and

: 4‘ (vllﬁ cee s V1,1+1) = (W eee Vn+1)ﬂ, ' - (4.3)
the\n
V; = Vis i #B |
n+l B ’ o (h'h)
and v/ = z Vi w; | ‘

B i=1 172

on the other hand if

§ N
o B
. =1 .
Sr'm Sp+x
then ) i
S-jf =s, tw, s, i # B .
(4.5)
s/ =w . »
B B B
" Now, from (2.12) and (L.1), we have
X = [nnﬂ e Th] ['enﬂ] , ' (haé)

ll A d ’



Using the updating rule (4.5) in the above equation, A can be easily

evaluated. Now, from (2.18) and (4.1), we have

Kl

rj(x) = g0l E“m nlj e (L)
= | bj:l .
The row vector -
sz ol [nn+1 . nl] - (L.8)

can be easily evaluated by making use of the updating formulas (L.L).

From (L4.7) and (4.8), Wé get

-—

AT

rx) = 3. ‘ (4.9)
J b,
J
From (2.19) a.nd (4.1), we have

e “] |  (.10)

" which can be easily evaluated by means of updating formulas (4.5). Also,

from (2.17), (L.1) and (L.8), we get

T .
[X E] "l] = 2 g [Tln+1 s s e

M7= (h.11)

We are now in a p031t10n to descrlbe the PFI algorithm.
1. Determine an initial RS and find the product form of inverse of B in
the form (4.1) by making use of the Gauss-Jordan elimination [6], as shown in
[101]. The various techniques for keeping the product form of inverse sparse,
if A is spa.rs'e, and minimizing the round-off errors can be incorporated [10, 1]
in the above inversion.

2. Compute A from (4.6), using (L.5).

12.



3. Compute the follewing: z from (2.11,1)511 from (4.8) and Tj(x) from (4.9),
j ¢S V\ | |
L. Find.mz:a]x [rj(x)l = |ra(x)|. Iflra(x)l <z, go to 6, otherwise, compute
‘p'oz from (4.10),using (L.5), and determine B from (2.22).

5, Evaluate and store the non-trivial colurm of the new My according to (3.7).
If there are too many TM's, viz., t > > n+1,—then reinvert the basis. If more

accuracy at each step is desiréd, then always keep only n+1 T's. Thus

nﬂ"l’ cees 'ﬂl will remain sar.ie when colurm o of [A, b]T is replacing column
B of B, but Ty, ..., Ty will get modified. A practical method of doing
this is described in [1]. . Now, go to 2.

6. The first n elements of the current value of w constitute the solution

vector xT (see (L.11) ).

Remark: The cor;qputation of A in step 2 of the algorithm,. initially, can be
done along with the évaluation of B (as in UWT algorithm). Also, later on,

during the course of the algorithm if nt is only being prefixed to the other

etas, then )}' can be .evaluated according %’r‘,o (3.3).

The. sirilarities between the revised simplex algorithm (product form of

inverse) and our PFI algorithm are clear, e.g., the pricing vector and m, the

wpdate rules (L4.L) and (L.5), and of course the similarities mentioned following

the UWT algorithm.

5. MNumerical Example.

Let

(1 0 o] T 21
0 1 1 1
0o 0 1 1

A=l1 1 1 and b = 5 |-
6 6 7 29
-1 2 2 3
0 -3 0 -k
L - L

13.



Therefore

~ [a,a]" A
1001 6-1 0 0
0101 6 2-3 0
¢ o117 20 o "

(2 1 1 529 3 -k 21

- Taking the first h colurns as the initial RS, as in (3.9), we get

(1 000 2-21 1]
0100 2 1-2 1
c0o1o0®11 1
L0 001 4 1-1 il

-

Hehce z-=1/h, rj(g) =1/4 (3, -1, 1), « =25, Irs(x)l =3/} > z,

”’ia o, = (2, 2, 3, -L), B = 3 and the next tableau is
i

(1 0 2/3 0 o /3 1/3 |
o 1 -2/3 0 0 1/3 -8/3 1/3
o o 1/3 0 1 .1/3 1/3 13|
0 0 -k/3 1 0 -1/3 -7/3 -7/3 |

Jad = 3/10, v,(x) = (1/10,-1/2, 1/3), @ -6,

Ire(x)| = 1/2 > 3/10 and

Ho o, = (8, -1, -1, 1/7), B =1 and we have

}‘l
r—3/8 o} i/, o o 1 -1/8 -1/8
/8 1 -3/4 0 O 0 -21/8 3/8 | .
/8 o 14, 0 1 0 3/8 3/8
-1/8 o -5/ 1 o0 0 -19/8 -19/8J

which gives z = /13, r (x) = (3/13, 1/26, 1/13) and m?-x |rj(x)l =3/13 < Zs
3 .

hence the final RS has been determined. Evidently,

1.
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(i1 32, 1a, ig} = {6, 2, 5, L} and the required x is the solution of

i

’ . 1 23 [ x, ] : (-1“

2
0 1 0 1| |\ m|_,aa L,
6 7 29 | = 1
L1 1 1 5. -1 | | -1

| .
The above gives (x, Xz, ¥s) = (29/13, 17/13, 15/13).

i
i

Dr. R. P. Tewarson
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