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Abstract. 

, 
A new formulation of t h e  ascent algorithm f o r  the Chebyshev solution of 11 

l i n e a r  systems is  given. This leads t o  two algorithms, which are  s imi lar  t o  
i 

the /ordinary s h p l e x  and the  product form of inverse algorithms for  the solu- 
I 

I 
t ion of l i n e a r  programming problems. 

I 
1. Introduction. 

. i; 

? 

i Let us consider the folloving system: 

where A i s  an m x n matrFx with rn > n, x is an n x l vector, b and r(x)  are 
- .  

m x 1 vectors. Let the  ith element of r (x)  be denoted by r (x) and t he  n di- 
i - 

mensional Euclidean space by E". I n  t h i s  paper, we s h a l l  consider the  follow- . 1 I 
11 & 

i n g  probbem: I 
I 1: 

Cheney 13, Chap. 2 ] gives an excellent discussion of  the above problem and 

also several  algorithms f o r  i t s  solution. One of them he c a l l s  the  ascent al- ;) 1 
li 

gorithm, which i s  due t o  S t ie fe l  [7, 8, 91. We sha l l  give a reformulation of 
I' 

t h e  ascent  a l g o r i t k ~ .  This w i l l  make it possible t o  express the algorithm in I 
I I 

t h e  wel l  known tableau forms associated with the solution of l i n e a r  program- :I 
, I  ' 

ming (LP) problems, when using the ordinary [2, Chap. 51 and the revised 

simplex (product form of inverse) methods [5, p. 2003. The pr inc ipa l  advan- 

tages o f  the  two algorithms, which r e su l t  from the reformulation of the as- I' 
i 
/i 

cent  algorithm, a re  as follows: E'irst, the algorithms require somewhat l e s s  is i: ' 
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computational work than the  ascent algorithm. Second, by making use of the 

algorithms, l i n e a r  programming codes, e.g. [4, 51, can be eas i ly  adapted 

f o r  the solution of (1.2) with changes i n  only few of the pertinent subrou- , 

I 
t ines. Third, the  algorithms give a c lear  and easy representation of the meth- 

od of solution, especial ly  i f  the r e a d e ~ i f i f a m i l i a r  with the solution of LP 

problems. Finally, one of  the  algorithms makes it possible t o  minimize the  

round-off e r rors  by control l ing the pivot choice, and i f  A i s  sparse, mini- 

mize also the  growth of non-zero elements during the  computational process. 

2. Reformulation of the  ascent algorithm. . 
Let J = C i l ,  ..., i 3 E {I, ..., m3. Then, according t o  [3, p. 361 

n+l 

every solution of (1.2), f o r  appropriate s e t s  of indices J, is a solution of 

min my]r i (x)  1, x E E", i E J. 
X 

(2.1) 

Without l o s s  of generali ty,  we can assume t h a t  J = E l ,  .-., n+13. Now, ac- 
I 
I 

cording t o  de La Vallee Foussin [3, p. 371, x i n  (2-1) is the solution 

ri(x) = ciz, i E J, oi = - + 1 

i 
and . \ 

.'\, 

li 
where Ai denotes the ith row of A and the right-hand s ide  of (2.3) denotes the II 

q 1, 

k convex h u l l  of the  vectors ol $, . . . , a A . In t h i s  paper, we sha l l  as- 
i n+l n+l 

1 I 

I 
1 !j 

sume t h a t  the  rows of A s a t i s f y  the Haw condition viz., every subset of n . I 

I 

rows of A i s  a non-singular m a t r i x .  It is  possible t o  re lax  t h i s  condition 1 I 

e as i ly  [3, p. 91. In view of the Haar condition and the f a c t  t ha t  i n  
I 

I 

I 
I 

n + l  vectors have t o  be l i n e a r l y  dependent, we have [ 
( 

n + l  
I: A , A i Z 0 ,  (2.4) 1 

i=1 li 

I * 

where hi # 0, i E J. For l a t e r  use, l e t  us impose t h e  normalization 

. ii+l 
X b =-1 (2.5) 

i 
1 .  C . i i  

I 
h 

i=1 I 
f 

, I 

. 2. I I 

*- 



t h  
on Xi; bi denotes t h e  i element of b. If we define 

then we can take cri = sgn hi and from (2.4) we have 

The above equation shows t h a t  condition (2.3) i s  sa t i s f i ed .  

Let us compute t h e  values o f  t h e  Xis. From (2.4) and (1.5) , we have 

where A' denotes t h e  transpose of  A Now, i f  we l e t  
i . i' 

L I 

= X and [O, ..., 0, 1) = e (2.10) 
n+l 

then (2.8) can be wr i t t en  as 

In view o f  (1.1), t h e  vec to r  [bl , . . ., b ] does not l i e  in the row space of the  
n+l  

T 
matrix [A , ..., A* 1, and therefore B is  n o n - s i n ~ a r ' a n d  ( 2 . ~ )  gives 

1 n+i 

To f i n d  5 we proceed as follows: From (2.2)s we have 



C 

F 

: ~ ~ t i ~ l f l n g  t he  above equat ion by hi and summing over a l l  i E J, we get  

which i n  view of (2.4) and (2.5') y i e l d s  

5 = 
1 

ntl 
0 

We a r e  now i n  a p o s i t i o n  t o  solve  equation (2.U) f o r  x. we' can write it 

T T 
w h e r e  a = [a , ..., a 3 . In view o f  (2.9) t he  above equation can be written 

1 n + ~  

[" i= % pICT.. ( 2.17) 

-1. I 
I 

Now, x i n  (2.17) i s  t h e  s o l u t i o n  of (1.2) if 

[r (x) ( < a ,  f o r  i 4 J- 
- 3 

Let us compute r (x). Using (1.1) we have 
3 

r j ( x )  = A r  -aj , 3 .$  J, 
J 

T -l 
= A b ] z [B ] a, using (2.17). 

3' 3 

I Since r (x) is  a scalar, t h e  above equation can be d t t e n  as S * 



then (2.18) becomes 

-21 case l r . (x)  I > z f o r  some j 4 J, then x, given by (2.17), i s  not  t he  solut ion 
J 

of (1.2). In t h i s  case, l e t  

The s e t  of rows [Ai, bi], i E J i s  ca l l ed  a reference s e t  (RS). We s h a l l  in t ro -  

duce N*i [AQ, bQ] and remove t h e  row [Ag, bg] from the  RS, thus constructing a 

\. new The index fl is given by 
' i  

via ra(x) ppe sgn TQ(x) max - - 
9 (2 22) 

i X i  
,, 

th where P denotes t he  i element of p,, . The reason f o r  t he  above choice is as 
ia! 

\, 
follows: fiom (2.19), we have 

which g ives  
n +i 

Denoting sgn ra(x) by 0, and multiplying (2.23) by u y and adding t h e  r e s u l t  to. a .  

(2.41, we g e t  

i n  (2.7), ze ro  must l i e  i n  the  convex h u l l  of the new RS, therefore  i n  equa- 

. t i o n  (2.24) we have v 



. 

2 > y  .a, % pict and y > 0 . 
Since /Ai oi = 1 xi 1 > 0, we have 

. . 1 

Therefore, i f  we take 

then:! i n  (2.24), t h e  coeff ic ient  of 0 A w i l l  be hero and the .coefficients of 
I B B 

the  o ther  oi Ai; i = 1, ..., 8-1, p+l ,  ..., n+l, ct w i l l  be positive. Thus the 
. I 

s e t ' A  , ..., A , . A , % is  the  new RS. Widently the new x will 
u 1 n+i 

be d! Chebyshev solut ion of  an equation analogus t o  (2.2). It is easy t o  show 
I 

t h a t : t he  new z w i l l  be grea te r  than the current z [3, p. 471. 

3. F i r s t  algorithm - updating the  whole tableau '(UWT). 

Let denote the  matrix obtained from B by replacing the pth column by 

[%, b,lT. men it can be e a s i l y  shown [lo, 2 (pt 19711 tha t  

where 



n 
Notice that .  t h e  columns o f  B cons t i t u t e  a new RS, I n  order t o  continue with 

. the  ajgorjthm out l ined  i n  secton 2, we need h' and CL: ( the  values of X and p . )  
J J 

f o r  t h e  new RS. From (2.12), Ere have 

= 'll B-I [-en+1], using (3.1), 

o r  

Using (3.2) i n  t h e  above equation, we g e t  

Once we know A', we can evaluate  a '  ( t h e  z f o r  t h e  new RS) from (,2.14). 

Furthermore, as i n  ( 2-19), associa ted with t h e  new RS, we have 

j New RS 

Once a g d n ,  us ing (3.2) i n  the  above equation, we get 

Notice t h a t  pp = eg, s ince  c o l m  p was  i n  the old RS, and therefore, from ( 3 . 9  

we have 



In view of (3.2), the above leads t o  

which i s  the Bth of 7. 

We s h a l l  now describe the UWT algorithm. A A e r i c a l  example w i l l  be 

given. in sect ion 5. 

1. Apply the Gauss-Jordan elimination [ 6 ]  t o  the matrix 

such t h a t  the RS is transformed t o  the ident i ty  matrix. This i s  equivalent t o  

premultipl3'kg ( 3 8 ) by . There i s  no los s  of gener a l i t g  if we assume tha t  

tk first  n+l columns i n  (3.8) consti tute the i n i t i a l  RS. Hence we have 

If the  columns i n  RS a re  chosen sequentially, but in order t o  minimize the 

round-off e r rors ,  the l a r g e s t  available element i n  each column i s  chosen as 

a p ivot  ( p a r t i a l  pivoting [12]), then instead of the identity matrix I, a 

permutation matrix P w i l l  replace the RS i n  (3.9). The affect of t h i s  i s  

described i n  the  remarks following the algorithm. 



2. compute z using (2.14) and r .(x), j '# RS using (2.20). Determine 
J 

lr .(x) I = Ir,(x) 1 ,  j RS-  If Ira(*) 1 5 e,  go t o  4, otherwise go t o  
j J 

3. Find the value o f  p by using (2.22). Transfarmcolumn cr of (3 .9)  into 

eg (the pth column of the iden t i ty  matrix) by means of elenentary row operat- 

, ions- This i s  equivalent t o  the use of the  formulas (3.4), (3.6) h d  (3.7). 

Now, go t o  2. 

4- Compute x f o r  the  f i n a l  RS by performing the Gauss-Jordan or the Gaussian 

elimination [6] on 

T where aT = [Oi l ,  - * * ,  9 n+1] and C i l ,  *--,  i n% ] are the indicies associated 

with the f i n a l  RS . 



! 
considerat ion.  If t h e  matrix B assoc ia ted  ~ 6 t h  the  i n i t i a l  o r  any one of 

. thei  subsequent re fe rence  s e t s  i s  s ingular ,  then  Ax = b may have an exact solut-  
l 

ion. Also a l l  t he  Xis assoc ia ted  with each of t he  reference s e t s  should be 

non-zero, otherwise the  Haw. condit ion w i l l  be  violated. I n  (3.9),  when using 
4 

! I 
p a$ t i a l  p ivo t ing ,  i n s t ead  of I we w i l l  ge t  P,  then i n  p lace  of (3.9) we w i l l  

I i 

I: h&e [P, Pp PA] and evident ly  t he  algori thm remains unchanged. The s e t  of 
. I  

3' 

I i d d i c i e s  i , ..., i n % ]  used i n  s t ep  4 of algorithm, i s  determined by the  

permutation matrix which is  present  i n  t he  f i n a l  updated tableau. The index 

I i 
T 

1 iki k=l ,  ..., n+l, being t h a t  column of [A,b] which has  been transformed t o  

ek, t h e  kth column of  I. 

T h e  UWP algori thm described above is spec ia l ly  advantsgeous i f  m i s  not  

much g r ea t e r  t'nan n, For m > > n, the  algorithm given i n  section 4 is  some- 

what bep te r .  W e  can now po in t  out  t h e  s im i l a r i t y  of the  UWT algorithm t o  the  

ordinary simplex method i n  l5near programring [2, Ch. 3. The s im i l a r i t i e s  

a r e  between A and t he  b a s i c  solut ion,  z and t h e  objective function, RS and t h e  

! basic  colum vectors,pjs  and the  coordinates of the non-basic vectors i n  terms 

of t h e  b a s i s ,  t h e  updating ru les .  Of course, there  a r e  differences, vie , com- 

pu t a t i on  of z, computation of p,  choice of i n i t i a l  RS etc. These differences 

I can be  used t o  make changes t o  the  subroutines of l i nea r  programming codes t o  

adapt  them f o r  the UWT algorithm. 

4. Second algorithm-the product form of inverse (~n)- 

AS i s  w e l l  known [lo,  ll] the  inverse of  B can be expressed a s  the product 

o f  n+l matr ices  of  t h e  type (3.2). Let 



I 
where Ti denotes the ith matrix factor  of B" . In  view o f  (L.1) and (1.1)~ we 

I 
have: 

I 4  
8''- pn.. .. . q . (4 * 2) 

Only the  elements of the  non-trivial columns of each of the 7. along with the 
1 

corresponding pivot row index pi are  stored. I f  the non-trivial column of 11 

i I i n  p . 2 j  i s  denoted by (WI 9 - 9 mn+~)~,  a d  

\ then 

and 

on the &her hand ' i f  

then 

r s = w  s .  
B B B  

Now, from (2.12) and (4.1) , we have 



i 
1 Using the  updating r u l e  (4.5') i n  the above equation, X can be easi ly  
I 

evaluated. Now, from (2.18) and (4.1), we have , 

r j ( x )  = z oT \I 

The row vedtor 

I can be eas i ly  evaluated by making use of t h e  updating forinulas (4.4). 

From (2.19) and (4. l ) ,  we have 

which can be e a s i l y  evaluated by means of updating formulas (4.5) Also, 

from (2=17), (4.1) and (4.8), we get 

We a r e  now i n  a posi t ion t o  describe the PFI algorithm. 

1- Determine a n  i n i t i a l  RS and f ind the product form of inverse of B i n  

the form (4.1) by making use of the Gauss-Jordan elimination C61, as shown i n  

~ 1 0 1 -  The various techniques for keeping the product form of inverse sparse, 

if A i s  Sparse, and minimizing the round-off errors can be incorporated [lo, ~1 

i n  t h e  above inversion. 

I 2 Compute 1 from (4.6) , using (4.5). 
I 



3. Compute the follcuririg: z from (2.14)? n from (4.8) and r .(x) from (h.91, 
J 

i 4. Find nax lr (x) 1 = Ir,(x) 1 . 1f Ira(*) 1 < z, go t o  6, otherwise, compute 
3 - 

\ 

I Pa from (4.10) ,using (4.5), and determine f3 from ( 2  -22). ' 

I 5. h a h a t e  and s to re  t h e  non-tr ivial  c o l m  of the new I&, according t o  (3-7). 

I If there a re  too  many T\'s, v i z . ,  t > > n+i,-khen reinvert  the  basis. If more 

accuracy a t  each s t e p  is desired, then always keep only n + ~  T's. Thus ..-. 
r r. 

B . o f B ~ b u t b + ~ ,  ..., w i l l g e t  modified. A p r a c t i c a l n e t h o d o f d o i n g  qa 
I this  i s  described i n  [l]. . Now, go t o  2. 

1 6. The f i r s t  n elements of the current value of n constitute the solution 

I T vector x (see (4.11) ) . 
Remark: The computation of i n  s tep  2 of the algorithm, i n i t i a l l y ,  can be 

done d o n g  with the evaluation of B-I (as i n  UWT algorithm) . Also, l a t e r  on, 

during the  course of the d g o r i t h  if lt is only being prefixed t o  the other 

etas, then A' can be evaluated according t o  (3.3). 

The s i m i l a r i t i e s  between the revised s k p l e x  algorithm (product form of 
I 

fnverse) and our PFI algorithm are clear ,  e.g., the pricing vector and n, the 

I update r u l e s  (4.4) and (4 ) , and of course the s imilar i t ies  mentioned f o l l d g  

I the lJWT algorithm. 

I 5. Nmer i c a l  Example. 



Theref ore 

CA, d lT 1 .  
1 [ 0 1 0 1 6 2 - 3  o o 1 6 - 1  o ; ] .  

0 0 1 1 7 2 0  0 

2 1 1 5 29' 3 -4 -1 

Taking the f i r s t  4 columns as  the i n i t i a l  RS, as  i n  (3.9), we ge t  

1 0  0 0 2 ~ 2  1 

0 1 0  0 2 1 - 2  

0 0 1 0 @ 1 1  1 

0 0 0 1 4  1-1 

Hence z - =  1/L, r .(x) = 1/4 (3, -1, 1 ,  a = 5, ,r,(x) I = 3/4 > Z, 
J 

b = (2, 2, 3, -4) , p, = 3 and the next tableau is - a 
hi 

1 and p =' 3h0,  r (x) = 1/10, - 2  1 ,  a = 6, 

1 Iy.-(x) 1 = 1/2 > 3 / l Q  and . 

I 
r.(x) I = 3 h 3  < z, 

i which gives s = 4 h 3 ,  r (x) = (3/13, 1/26, 1/13) and max I J 
j 

I hence the f i n d  RS has-been determined. ~ v i d e n t l %  



= ( 6 ,  2, 5 ,  43 and the  required x i s  the so lu t ion  of 

i .  
The above gives (xl , G,  x3) = (29b.3, 11/13) 15\13) + 
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