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Introduction

In recent years a considerable interest has been manifested
in magnetohydrodynamic (MHD) 1ubrication.[§n8]l, Most of the
work reported to date in the literature has been analytical al-
though the author is aware of at least one experimental investim
gation currently being conducted in MHD lubrication D{]. The
analytical studies have served to demonstrate the possibility of
increasing the load capacity of liquid metal lubricants by means
of an applied magnetic field.

All of the analyses to date have considered only the equa-
tion of motion and the continuity equation. If the assumption
of constant thermophysical properties is made, these two equa-
tions suffice to determine the pressure distribution and there=
fore the load capacity of the bearing. In the present paper,
the energy equation is utilized to determine the temperature rise
of the lubricant in flowing through a slider bearing. In spite
of the fact that liquid metals have large thermal conductivities
which would result in rapid conduction of the energy arising
from local dissipation, the presence of electric currents in the
lubricant means that the strength of the local dissipation func-
tion may become quite large under certain operating conditions.

The present analysis must be viewed as a preliminary investi-
gation of the lubricant temperature rise in MHD lubrication be=-

A

cause a number of simplifying assumptions have been introduced

1 Numbers in brackets designate References at end of paper.



to render the problem tractable analytically (without the use of
a computer) and at the same time preserve the essential physical
aspects of the problem. The analysis suggests that the influ-
ence of the applied electric and magnetic fields on the lubricant
temperature rise will be significant in all cases for which
significant increases in load capacity due to the applied fields
are obtained. This in turn suggests that a more accurate analy-
sis will require the inclusion of the effect of viscosity varia-
tion with temperature instead of a constant mean viscosity as

used in the present analysis.



The Analysis

The linear slider bearing Will be considered in the present
analysis and the geometry is shown in Figure 1. The walls are
assumed to be electrical insulators. The influence of finite
electrical conductivity of the walls on MHD lubrication has been
considered in reference [2]. The thermophysical propérties of
the fluid are assumed constant so that the equation of motion
and the energy equation are uncoupled. This assumption implies
that a mean value of viscosity is used based on a temperature
between the inlet and exit temperatures. The appropriate temp-
erature to use can be determined only after a more exact analysis
is performed which considers variable viscosity. The bearing is
considered to be infinite in the z-~direction and a uniform mag-

netic field is applied in the y-direction.

The equation of motion has been discussed in reference [}]

and may be written as
dP > w -
“Iy M ae - T (Epr uBy)=o (1)

It is shown in reference [i] that the electric field EZ is con-
stant for the present configuration. It is convenient to de-

fine the following dimensionless parameters.
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In terms of the dimensionless parameters, the equation of

motion is




20 _myz dT 2 ~
S = gt M (3)
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where M= W, B, ('/7.")
3 5
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Equation (3) is integrated across the film, neglecting the
pressure variation in the trans film direction, subject to the

boundary conditions Yy (§= o)< and ¥ (§= }) = b

The result may be written

- o4 Sinh M2 (coshmf-1) = siabh M § (coshti=1)
K" §§+Mmcl z% : Sf‘nkM} < I.;

(4)

+ Sinh M) cosh MS ~Sinh MS cosh M2
Sinh M?

The details of applying the continuity equation to deter-
mine the pressure distribution are contained in reference (2)
and only the results are summarized here. The mass flow rate

is given by

W ?
mep fudy = pVWL [ydf .
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Substituting for ¥ from Equation (4) into Equation (5) and

integrating the pressure gradient with the boundary conditions

T




'IT(?Z =) = T, y ’17'(?: *\'A\Al/’;‘-‘}l) = T, gives the follow=-

ing results which are required later in solving the energy

equation.
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The integrals I, (%) and I, ('?) must be evaluated numerically.

The energy equation including viscous dissipation and Joule

heating is

Peuwlz @ (Fp+WBy)" e (2 )+K(w1 “av‘) (8)
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In dimensionless form, Equation (8) may be written

NI T 12 w2y 2
Re Prv2= = M7 (d+r) +(—1§-)+ §§L+ 349-»— (9)
where 6 = ;r
= Pr
’Py-:‘: ,A‘-‘K‘—E-

Equation (9) is uncoupled from the equation of motion through
the assumption of constant thermophysical properties. The terms
involving ¥ can be evaluated from Equations (4), (6), and (7)
so that in principal, Bquation (9) can be solved subject to
specified boundary conditions. Bven though the equation is
linear, it is a complex equation and an exact solution would be
extremely difficult to obtain without the aid of a computer.
An approximate solution can be readily obtained if certain
assumptions are made as follows.

A Ravyleigh type of approximation will be used for the con-
vective term. This means that the exact velocity expression is

replaced by the average velocity across the film defined as

? *
- ] .
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A Rayleigh approximation is more valid for an MHD f{low than for

a flow in the absence of a magnetic field because the effect of

the magnetic field is to distort the otherwise parabolic profile
into a flatter profile. The approximation becomes more exact

as the magnetic field strength increases. The other assumption

to be introduced is to replace the dissipation terms by the

average dissipation across the film. The average dissipation is

defined as

?

9= -?L S[M (&+6) "+ ) 14 (11)
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¥
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and can be evaluated from Bquations (4), (6), and (7). The appro

mate energy equation then becomes

'JA

*
Re Pr w' -2 w = () + 28 & (w) 224 (12)
? 3 % h'bg"" ““a?’z,
where the transformation .:;f’*;,gm %?;é% = w' % has been
W, =Ws
used with w'= - .

If a solution to Fquation (12) is assumed of the form

6(§,1) = 6552 +F(3) (13)

substitution of Equation (13) into (12) shows that the functions

9*(§,%) and FY?) satisfy the equations
s RePam¥ 0
F . e’ ¢ TL j ?) (14)
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A solution to Equation (i4) can be obtained by means of an

integrating factor with the result

3 2 K
F(a):—(‘wﬁq%,ﬂl%ﬂnljg’jdx}laqﬁn C,'f%‘2+cz (16)

- RePr m*
WY
where 7 = ;> is the integrating factor and

C, and C, are constants to be determined by the boundary
conditions.

A solution to Equation (15) may be obtained by assuming a
product solution of the form 9*(3)}) :N(}) Z(f) with the

result

6%z Y Na(3) (Cn sindyf#D cosdnf)  (am
Mz o

where Nn,(§> satisfies the equation

" ! R P M*W' ! L p
Wwh N - RelT N = X, N.= © (18)

The constants C;L s DQ , and ln_are to be determined from

the boundary conditions.




A number of possible boundary conditions could be applied
including various combinations of isothermal, adiabatic, and

constant heat flux conditions at the two surfaces. The extreme

case of maximum temperature rise of the lubricant would occur
if both surfaces are adiabatic. The assumption of adiabatic
surfaces will thus be made in the present amalysis. The mathe-

matical condition of adiabatic suxfaces is

26

ﬂ""?: o at fz o0 a rne f:(% (19)

Applying EBquation (19) to Equations (13) and (17) gives

CQ:O )-q’ - :..'LZ?

y

and thus the temperature distribution becomes

T
5(8,3): > M) Dy s %1«5 + Foy) (20)

The constants D, would be determined from a specification of
the temperature distribution at the inlet, .

The mean temperature across the film would be obtained by
integrating Equation (20) across the film. If éSﬂ%)is the

mean film temperature, we may write

f@(g ds = Fez) (21>




since the integration of the cosine terms between § =0 and
§ = ; vanishes. The change of mean film temperature thus
depends only on /?(;) which is given by Equation (156). There
are still two undetermined constants in Equation (16), however.

These constants are determined by the conditions

aowis

>5_ . Y |
5 =0 at Zzy 60z b, <t 3=y (22)

The first condition gives (= ¢ and the second C,= 4,

with the final result

&)z b, - (W’) f[z jfjf/"]d? (23)

The overall mean temperature rise from inlet to outlet then

becomes

2, 2
6(3)- 6.7 - 21575“ f[z-;-’wfg’jc/)(]c}i (24)
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It is clear that the integrals of BEquation (24) would have to be

evaluated numerically.

Solution Neglecting Axial Conduction

In reference [;QJ, the effect of axial conduction on the
heat transfer in the entrance regions of parallel plates and
tubes is investigated. The ratio of the axial convection to
axial conduction is given by the Peclet number, Pe = E@ P .
It is found in that reference that for RE Z 100 , the effect
of axial conduction on the temperature profile is completely
negligible. There is only a slight effect of a few percent for
Pe; as low as 10 and the effect of axial conduction becomes
significant only for Pe <10 . It is of interest to investi-
gate a typical magnitude of F@ for a liquid metal lubricant.
Considering mercury and the operating conditions W= IDHBJrL, R
V=850 ft/sec. gives Pe = 472 . The effect of axial
conduction should be negligible under these conditions. It
should be emphasized, however, that realistic operating ranges of
a MHD bearing are possible for which R: could be much smaller
than the above value and thus the axial conduction would be
significant.

The mean film temperature is still given by Equation (21)
with axial conduction neglected if the function F(3) is
understood to be the solution of Equation (14) with axial con-
duction meglected, i.e. the condition F£ Y= p . The ex-

pression for overall film temperature rise amnalogous to

1




Equation (24) but with axial conduction neglected can be written

as
= _ J
9(?‘)"" ga” m j?icf/} (25)
/

with § (}) defined as before.

A measure of the effect of the electric and magnetic fields
on the temperature rise of the film can be cobtained from the
expression analogous to Equation (25) for the case of zero
electric and magnetic fields. A closed form solution can be
ecasily obtained in the absence of a magnetic field. Denoting
this solution by the subscript M=o ; the result is

(neglecting axial conduction)

[6¢.)- 6],

zp R 'PWW'

4(1+3,) 1203 _ 6(1=4)
i‘ |n }-r 3 Ty ](96)

The ratio of Equations (25) and (26) can be taken as a measure
of the effect of the magnetic field on the mean temperature rize

of the lubricant. Denoting this quantity by PT gives

R. B00-0 | W /?i 7

B0-61,., 20 ), g4 2090 (1))
% ¢ +3)

273

The quantity Rf is the ratio of the mean temperature rise of the

lubricant in the presence of the magnetic field to the mean




temperature rise in the absence of the magnetic field. /[ 7ia-
batic surfaces are assumed in both cases and the values of &%

and PT are the same for both cases.

Discussion of Results

i . i, S LR D

A plot of the ratio of temperature rise with the moguetic
field to the corresponding quantity without the magnetic field,
as given by Equation (27), is shown in Figure 2. ‘Ihe tempera-
ture rise ratio is plotted against é% for three values of M,

It is shown in references [5} and EZ] that favorable conditions
of MHD pressurization occur for negative @ values and thus only
negative values of @ are used in Figure 2, It i3 seen that for
large negative values of }’axmilarge values of k
ture rise with the magnetic field can be two ovders of magni-
tude larger than the temperature rise in the absence cof the mag-
netic field. The results also indicate that the increase in
Joule heating in the film more than offsets the decrease in
viscous heating in the central part of the film due to the
flattening of the velocity profile by the magnetic field,

The above analysis suggests that the thermal aspecis of
MHD lubrication will always be significant in the range of elec-
tric and magnetic field strengths for which favorable MHD
pressurization can occur. The actual temperature rise of the
lubricant as given by Equation (25) would be reduced by allowing
heat transfer at the two surfaces. Several possible areas for

further investigation are suggested such as the influence of




thermal boundary conditions on the film temperature distribua-
tion, the relative importance of viscous heating and Jouls heat-
ing, the influence of variable thermophysical properties on the
heat transfer, and exact analyses instead of the approximate
treatment of the present paper. Some of these problems would

undoubtedly require the use of a computer and further work along

the lines suggested above is contemplated by the author.

‘
{,}
i
|'
|

S b~ s ]




Azjewcen Surresg IAPITS HIT T aanSt,g

g
T Y A AR A I B B
I 2 2 2 T S A
S —
A X
3 : <
" 4 A1 “
} (X)M M




