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Abstract

The question of whether a matrix represents the conductance ma-
trix of an n-port consisting exclusively of positive resistors is consid-
ered. A systematic method of testing the matrix is presented. The end
result of this procedure either yields a particular realization (or real-
izations) of the matrix or determines that a realization does not exist.
The question of whether the matrix is realizable as an impedance ma-
trix can be treated by simply inverting the matrix and applying the

same procedure.

1 Introduction

Let F be any real n xn matrix. Cederbaum [2] found necessary and sufficient
conditions for the realizability of F' as an n-port conductance or resistance
matrix using only positive resistors and no transformers. However, the deter-
mination of realizability required a procedure for testing F as the principal

submatrix of a matrix having a particular form. Weinberg [6] compiled and
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summarized many of the advances in this problem. In this paper we take
a slightly different approach in where the matrix F is tested for all possible
n-port assignations. The algorithm presented will either find a realization or
exhaust all possibilities, proving F not realizable. For F to be considered as
a possible conductance matrix of an n-port we will assume only the following

necessary conditions:

Conditions 1

1. F is symmetric
2. F is nonsingular

3. The main diagonal consists of positive values.

2 The Indefinite Admittance Matrix

A network A containing m nodes and consisting only of (not necessarily
positive) resistors can be described by its indefinite admittance matrix. If
we assume a terminal going into each node and let i be the vector of currents
flowing into these terminals and v be the vector of voltages from each node
with respect to an arbitrary reference, we can write i = Gv. The matrix G

is of the form:

( Ek;ﬂ 91,k —41,2 —91,3 cee —91,m \
—912  Lk#292k  —923 *  —G2m
G= -913 —923  Lkz393k 0 —Om Y
\ —91,m =3g2,;m —g3m te Zk;ém 9Im,k }



The element g, ; represent the value of the conductance connecting node
r to node s. The matrix G is symmetric, singular, and each of its rows
and columns add up to zero. We will call any matrix of this form an IA-
matrix. Furthermore, if all g, ; values are nonnegative, then G will be called
a nonnegative IA-matrix.

Note that G can be completely specified by either the values above or
below the main diagonal. There are m(m — 1)/2 free variables on an m x m
IA-matrix. Let D be an operator that extracts a vector consisting of these

values out of an IA-matrix. That is:

D(G) = (91,2, "1 91,mr 92,3, s G2mr " * * » Gm—2,m—1 Im—2,m» Gm—1,m) "~ (2)

It is obvious that any resistive network has an IA-matrix representation.
Conversely, any IA-matrix can be associated to a resistive network. This

network is made of the m(m — 1)/2 conductances of D(G).

3 Multiport Networks

Let F, an n X n matrix, be the conductance matrix of an n-port. Let j be
the port currents vector and u be the port voltages vector. The network
satisfies the equation j = Fu. The actual realization will consist of a network
with at least n + 1 nodes so as to make all port voltages u; independent
of each other. Counting internal nodes (i.e. nodes not associated with any
port), the network may have as many of them as required. However, we
will limit ourselves to realizations with up to 2n nodes. There is no loss in
generality since the nodes that are not connected to the terminals of any
port can be removed through a star-delta transformation. In general, we

will assume that the realization consists of a resistive network N with m



nodes and thus has an associated m x m IA-matrix which we will call G.
Assuming that the nodes of the network N are indexed, we will use the
term “n-port assignation” to a collection of n ordered pairs of nodes. A
pair of nodes corresponds to the positive and negative terminal of a port.
Figure (1) shows a resistive network in both its multiterminal and multiport
representations.

i 3

1 1
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Figure 1: Multiterminal and multiport representation of a resistive network

Let T be the n x m matrix that maps v into u (u = Tv), and H be the
™ X n matrix that maps j into i (i = Hj). Each row of T has exactly one +1
and one —1, in the position corresponding to the node to which the positive
and negative terminals are connected, respectively. As pointed in [2], if
each port is represented by the branch connecting its positive and negative
terminal, the n ports are distributed into one or more tree-like structures

(since they can’t form loops). In other words, the n ports form a forest that



covers all m nodes. This condition limits the possible number of matrices

T and H formed from all possible assignations.
Lemma 1 HT =T.

Proof: Consider a network A both in its multiport and multiterminal rep-
resentations. On the multiterminal case (indefinite admittance representa-
tion), let the last node be the reference node (v, = 0). That makes it the
return path of all currents. From each node £ to node m connect a voltage

source vx. Then we have:

v = (Ulyv2a"',vm—1aO)T (3)
m—1
i = (ilai%"'a”:m—h_ Z ik)T (4)
k=1
The power delivered by vy, ...,vp,—1 is ZZ;I Vkig, which can also be written

as i’'v. Now construct a replica of A" but now let it be an n-port. On each
port k we connect a source ug according to the transformation u = Tv. The
power delivered in this replica is jTu and must be the same as in the first one.
Thus jTu = iTv = (j7HT)v. That means jTu—j"HTv = jT(u—HTv) = 0.
Therefore j = Ful(u — H'v). Since F is nonsingular it spans all of the
n-dimensional Euclidean space R™. This implies that (u — H'v) is the zero
vector, i.e. u = HTv. The choice of reference voltage in the multiterminal
case is arbitrary so the previous equation holds for all possible vectors v.
Since u = Tv we can finally conclude that HT = T.

Note that H has the form of an incidence matrix. In fact, it is the
incidence matrix of the forest of oriented trees described above. Therefore,

this matrix alone is enough to characterize one n-port assignation.

Lemma 2 Let N be a network with m indexed nodes. Let H be an m x n

matriz that gives N an n-port assignation, withn < m. Then any matriz nx



n F that satisfies conditions 1 can be realized by the resistors that constitute

the IA-matrizc G = HFHT .

Proof: For any input v, Gv = i = Hj = H(Fu) = HFHTv. That is, any
nonsingular symmetric n X n matrix with positive main diagonal elements
has an n-port conductance realization with only linear conductances (which
are not necessarily positive).

Now we will need to prove an additional property of the incidence matrix

H. First, we present a preliminary result.

Lemma 3 A forest of oriented trees described by an m X n incidence matriz

H has m —n trees.

Proof: First we note that, on a network with gx + 1 nodes, a tree must have
gr branches. Now, let p be the number of parts of a forest. If the forest is
described by an m X n incidence matrix (i.e. it has m nodes and n branches,

the following must be satisfied:
P
m = Y (g+1)
k=1

P
n = Z q;.
k=1

Substracting the second equation from the first, we conclude that p = m—n.

Now we can establish the following:

Theorem 1 The m x n incidence matriz of a forest has n independent

columns.

Proof: A known result of network theory is that the incidence matrix of
any graph consisting of p parts and r + p nodes has rank r [1]. Identifying

r +p =m and p = m — n we have rank(H)=m-(m-n)=n.



From here on, we will refere to the matrix H as an assignation matrix,
that is, an incidence matrix with all columns linearly independent. Also, we
will say that F is produced by G if for the resistive network described by G
there exists an assignation matrix H such that F is the conductance matrix

of the n-port.

Lemma 4 Given an assignation matric H and an IA-matriz G it is always

possible to find the conductance matriz F produced by G.

Proof: It is a known result from linear algebra that if H is composed of
linearly independent columns, then H? H is square, symmetric and invertible

[5]. Then, we may write

G = HFH7Y
HT'GH = HTHFHTH
HTH)'HTGHHTH)! = F (5)

We can thus obtain F from equation (5).

4 Multiple realizations of an n-port

Consider the conductance matrix F and an associated assignation matrix

8 6 » [1 0 -10
F= H" = : (6)
6 9 0 -1 01



and two nonnegative IA-matrices:

14 -12 -2 0 15 -13 -1 -1
-12 15 0 -3 —13 16 -1 -2
-2 0 14 -12 -1 -1 15 -13
0 -3 -12 15 -1 -2 -13 16

(7)

F is produced by both G; and G4 using the same assignation matrix H.
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Figure 2: Two realizations of the same conductance matrix

This indicates that there might be a whole class of realizations of the
matrix F for a particular assignation matrix H. Given an nxn matrix F and
an m X n assignation matrix H (m > n) we inmediately get one realization of
the n-port, namely G; = HFHT. This may be the only realization (for the
selected H) or might be one representative of the whole class. The problem

is to find all G such that:
F=HHH'GHHTH)! = HTH)'HTGHH'H)! (8)
The equivalence class of all G that produce F can be defined by:
H'GH = H' G, H. (9)

Since G is an IA-matrix, it is uniquely determined by D(G). Let g = D(G).

For a given G, equation {9) can be rewritten as a linear matrix equation



on g:

Kg=BHTGH)=b (10)

where B is an operator that rewrites the matrix HTG{H as a vector b taking
elements in row-wise order, and K is some matrix acting on g. Equation
(10) has at least one solution g; = D(G;). Depending on the dimension of

the null space of K it may have more. The general solution is:

gE=8r+8& (11)

where g, is an element of the null space of K.
Example. Given matrices F and H as before, we first get a particular

solution Gy:

-1 8 6 1 0 -10
-1 0 6 9 0 -1 01

G, = HFHT =

8 -6 —8 6

-6 9 6 -9
= (12)
-8 6 8 -6
6 -9 6 9
The corresponding vector solution g, is:
g, = D(G1) = (6,8,~6,—6,9,6)T. (13)

It contains two negative elements so G; is not a nonnegative IA-matrix.

We now search the space of solutions to find a realization with only positive



resistors. We have:

gi12 + 913 + 914 —g12 —g13 —g14
G-= —g12 g12 + g23 + 924 —g23 —g24
—9g13 —g23 913 + 923 + 934 —9g34
—a14 —g24 —9g34 g14 + g24 + g34
(14)
The equation H'GH = H7 G H reads:
912 + 4913 + g14 + g23 + g34 912 — 914 — 923 + 934 32 24
912 — 914 — 923 + g34 g12 + g14 + go3 + 4924 + g34 24 36
(15)
Noticing that one equation is redundant, we rewrite the above in vector
form:
g12 \
gi3
1 4 1 1 01 32
914
Kg=|10 -1 -101 =| 24 |=b. (16)
923
10 1 1 41 36
924
\ 93¢ )

We use MATLAB to find that the null space of K is of dimension 3 and get

a basis for it. The general form of a solution g is:

[ —0.8165 0 0 6 )
0.2041 0.1610 —0.3148 8
~0.2041 0.4685 0.6368 ~6
g = ¢ + ¢ +cs +
—0.2041 —0.7905 —0.0073 —6
0.2041 0.1610 —0.3148 9
\  0.4082 —0.3221 | \ 0.6295 ) 6

10



~0.8165 0 0 6 )
02041  0.1610 —0.3148 8
[
~0.2041 04685 06368 || —6
= g |t (17)
~0.2041 —0.7905 —0.0073 —6
C3
02041 01610 —0.3148 9
\ 04082 —0.3221  0.6295 6

Let ¢, = —7.3485, co = —5.7970, c3 = 11.3311; we get g = (12,2,0,0,3,12)7 .
Let ¢; = —8.5732,¢cp = —6.7632, c3 = 13.2197; we get g = (13,1,1,1,2,13)T.

These are the vectors that generate the IA-matrices of equation (7). In
fact, any nonnegative solution can be obtained by choosing an arbitrary cost
function f that is a linear combination of the conductances (i.e f(g) = cg for
some nonzero row vector ¢ with m(m — 1)/2 components) and then solving
the linear programming problem: Maximize f = cg subject to Kg = b and

g>0. [4]

5 An algorithm

Now we can establish a systematic procedure to test a matrix for realizability

as an n-port with positive resistors only.

1. Is F symmetric, nonsingular and with positive main diagonal?
NO: F is not realizable. Stop.
YES: Continue

2. Let m = 2n.
3. Choose one of finitely many assignation matrices H of dimension m xn

not already tested.

11



10.

. Let G; = HFHT.

.IsD(Gy) >07

YES: F is produced by G;, a nonnegative IA-matrix. Stop.
NO: Continue.

. Solve for G in HTGH = HT'G;H. That is, choose a random row

vector ¢ and solve the linear programming problem: maximize f = cg

subject to Kg =b, g > 0.

Are there any feasible solutions to the linear program?

YES: F is produced by the matrix D~!(g) (it may be one of many).
Stop.

NO: Continue.

. Are there any more m X n assignation matrices left?

YES: Go to step 3.
NO: Continue.

. Decrease the value of m by 1.

Ism<n+17
YES: No realization is possible (all possibilities exhausted). Stop.
NO: Go to step 3.

The number of assignation matrices H to be tested is finite and thus the

algorithm must end in finite time. It will either provide one nonnegative

TA-matrix that corresponds to a network that realizes the matrix F as a

conductance or it will prove by exhaustion that no realization with positive

resistors is possible. To test if the matrix is realizable as a resistance matrix,

we simply apply the algorithm to F~1.

12



6 Assignation Matrices

The generation of assignation matrices to be tested is an important part
of the procedure. Graph theoretical methods exist to count the number of
oriented trees with a specified number of nodes [3]. Each of these trees give
rise to an incidence matrix. All of the forests corresponding to assignation
matrices with n columns consist of different groupings of these incidence

matrices.
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