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By
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The study of proximity spesces vas pioneered by

Bfremovich (2,3%) and Smirnov (4). A quasiproximity does

not have the full symmetry of a proximity but has a certain

kind of symmetry as cen be deduced from its definition end

from the fact that the bitopological sr»race of a guasi-
proximity is completely regular. Quasiproximities are

£ F / i
equivalent to the toposenous structures of Csaszar (1).

Quasiproximity spaces have properties analogous to

those of proximity spaces and c¢uasivniform spaces. For inst

two sets distant from one another, in a quasiproximity

space can be functionally separated by a § —function end
a guasiproxinity is generated by the family of all the

quesiproximities, of quasimetrics,which are finer.

Let Il be a set. For a subset A of 1i we will write cA

for the complement of A, If A = { x} , B = {_y} y C ar

D

.

subsets of i denote cA by cx and the pairs (4,B), (4,C),

by (x,y), (x,C), (C,y) resmectively. If b is a binary

relation on the power set of I! and A,B are subsets of
(A,B) € cb and (A,B) }f b denote the same fact.,

=

(C,B

)



Let g be a binary reclaticn on the power set of W
such that for all subsets A,B,C,D of I
Q(1). G, ;zﬁ i (y/ ,I1) € ecg
Q(2). if A,B intersect then (A,B) € g
e(3).A C ¢, B & D, (A,B) € g imply (C,D) € q
Q(4). (o ) B,0) & q implies (A,C) € q or (B,C) €& g and
(4,B () C) & g implies (A,B) & q or (A,C) ¢ q
Q(5). (A,B) & cq implies there is a subset X of li such that
(A,X) € cg and-(cX,B) € CQ.
Definition 1. #e will call q a quesiproximity for M.

The ordered pair (li,q) is said to be a quasiproximity space. =

A symmetric g is a proximity. 1f ve define < by
A < B iff (A,cB) € cq then <« is obviously a topogenous

structure as defined by Csdszér (1).

/
Definition 2. Let -9 , "’J be two topologies for i,
/
Then the ordered triple (1, °J, % ) is said to be a
/
bitorological snace. “J ena fj are said to be the left

and right topologies of this bitopological space.

ihen there is no ambiguity we will also denote this

bitopological space by M.

Let %) be the family of all subsets T of I such that

X in T implies (cT,x) €& cg; it is obvious b is a topolosy



/
for M. Let aj be the family of all subsets T of I such

/
that x in T implies (x,¢T) € cq; then < is also a topolorny

-

for Ii.

§ . . /
Definition 3. Je will say J is the left and °J
/
the right topology and (if,q, %7, J ) the bitovological space.
of q.

¥hen (li,q) is considered as a bitopological space we

i
will denote it by (li,q, oj 2 °j Jo

/ /
Let k,% be the Kuratovski closure functions of “J L
/ / /
Teke i = cke, i = ckec. Then i,i are the interior functions
/ o . . . o }
of k, k. iWe will denote the bitopological space (I, % , 7 )

_ /
also by (M,k,k).

Theorem 1. Let A be a subset of M. Then iA = {x : (c4,x) ﬁcq}
{ N
and iA = { ¥ t (x;c4) & cay -

Froof. Let B = {x : (e4,x) € cql. Then
1A C B C A. Hence if iB = B then iA = B, Let x & B.
Then (cA,x) €& cqg. Hence there is a subset C of I such that
(chyC) & cq and (cC,x) & cq. Then y €& C implies
(cA,y) € cq and so y € B, This means C ¢ B and therefore

cB C cC which implies (eB,x) & cq. Hence iB = B,

The second part can be proved similarly.



Corollary. kA = {x: (A.x) & q} and

kL. = {x: (x,A) ¢ q}.

Theorem 2. (L,B) ¢ q iff (I'(!f'-.,k}B) £ @

Proof. Let (A,B) € cq. Then x € A implies
(x,B) € cq and so X € ifo?}. Hence A C ich = CI{/B.
Similarly B C ckA and so kA < c¢B. Now (A,B) & cq
implies (A,C), (e¢C,B) &€ cq for some subset C of M. Then
kA CC cC and so (kA,B) € cq. Also cC ck;B or }:Ls . C

/ /
and so (A,kB) € cq. 1t now easily follows (kA,kB) £ cq.
The converse is obvious. This completes the proof.

Given a quesinroximity g, define q; by (A,B) & 0_; s it &
(ByA) € q. LIt is clear qi is also a quasiproximity. The
.1eft and right topologies of q’ are respectively the right
and left topologies of g. Hence we do not get any new

: l
topologies from q.

Definition 4. A bito.pologica.l spece LI‘f,k,k!) is said
to be regular iff
(1) A = kA, y € cA imply there are disjoint sets i = 1iX,
X = iIX‘ such that A C K: y & £ and

/ :
(ii) B = kB, x ¢ ¢B imply there are disjoint sets ¥ = ji¥,

/ / :
Y = 4 guch that x € ¥; B < X.

A quasiproximity space is obviously regular.



/
Theorem 3. Let (i, k,k) be a regular bitopolorsical
space. Then
set ;
(i) a k—olosedAA is the intersection of all the k-open
sets containing A

p _
(ii) 2 k-closed set B is the intersection of all the

k-open sets containing B.

Froof.
. ) . /
(i) Let C be the intersection of all the k-open sets
containing A. If there is a point x in C — A
/ :
then there is a2 k-open set D containing A such
that x is in e¢D but this is a contradiction.

(ii) Proof is sinilar,

Corollary. A kX-onen set A is the union of all the
/ /
k-closed sets contained in A and a2 k-open set B is the

union of all the k-closed sets contained in B.

/
Let (li,k,k) be a regular space., Then x €& ky iff

/ / : / ;
y & kx., Also x f/kB implies kx (Y x8 = ¢ and x & B
/
implies kx () k8 = 4 .

f
Theorem 4. Let (1,q,k,k) be a bitorological spa
Then kA = ﬁ {_CB: K;:B) & cq} and
{
h = () { ¢B : (B,A) ¢ cq} .

oM
o
D
-

Proof., Liet C = m { ¢B : (A,B) ¢ Cr:} . Then

x € C — kA implies (4,x) € cq and so ¢ (C cx vhieh is
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cond part can be proved similarly,

Corollary. ia = () {5 (ch,B) € cq } end
/
ik =L { Bt (B,cA) & cq} .
. . : ; /
Definition 5., A bitopologicel space (IM,k,k) is said

/
to be T1 iff each one-point set is both k-closed and k-closed,

It is easily seen that a quasiproximity space (ll,qg)

ig B iff (x;y)] & q implies x &= ¥a

Definition 6.. A bitopological space (iL,k,k) is said
to be Hausdorff iff x,y are distinct points imply
/
(i) x 2nd y have disjoint k .and k-neighborhoods
respectively and
- = - 3 3 } -
(ii) x and y have disjoint k and k-neighborhoods

respectively.

It is obvious that a gquasiproximity space is

Haugdorfs aff 4% 4% Tl.

T . . . v - . 5
Let W ve a quasiuniformity for li, For U in W

J

let xU = { y o3 x’u’_v} end Ux = { v o yilx} . Let T ve

the family of all subsets T of M such that x in T implies

Ux ¢ T for some U in ; s then ﬁ] is a topology for Le
7
!

Denote by T the family of all subsets T of Ii such that
x in T implies xU (. © for some U in W 3 then T is

also a topology for I, For subsets iA,B of Il write (4,3) € ¢



iff eacn U in ﬂl intersects A >< B; then g is a

T

guasiproximity for I,

! Definiticn 7. ‘j is said to be the left tOI}OIO{E';:}T,
.‘ -
T tne right topology and (15, W, 71 , % ) the bitopological

gpece of . We will czll q the quasiproximity of . s

It is obvious a quasiuniformity and its quasiproximity
have the same bitopological space. In this gense we can

say & cuasiuniform srace is a quasiproximity space.

Definition 8, A function d from the Cartesisn product
of I with itself to the nonnegative reals is said to be a
quasimetric for M iff for all x,y,z in M
(i) dx,y) = 0af x = ¥ eud
(ii) d(x,y) < d(x,2z) + d(z,y).

The ordered pair (ll,d) is said to be a guasimetric space.

Let (I,d) be a quasimetric space. Let U be the
family of all subsets U of K >< M such that
{ (x,y) ¢ alx,y) € r} < U for some r > 0. Then W is

a quasiuniformity for .
Definition 9. Ul is said to be the quasiuniformity
of d. The quasiproximity, left topology, etc., of W are

also said to be the quasiproximity, left tonolegy, ete, of d.

Let (lI,d) be a quesimetric space. For subsets 4,3 of I



if D(a,B) = infialx,y) : x € A, y € B}, then the

quasiproximity q of d is given by (4,B) e g iff D(A,B) = 0.

Definition 10. A subset B of a topological space is
said to be compact iff every open cover of B has a finite

subcover,
/
Theorem 5. Let (li,q,k,k) be a guasiproximity spece
such that
(i) each k-closed set is ktcompact or
(ii) each kteloseé set is k-compact.

. oy
Then (4,3) & g iff ka4 () kB £ ?5 . Hence q is unigue.

Proofs
/
(i) Let kA () kB = 54’ . Then x & kA implies (x,B) € cg.
Hence there is a C such that (x,C) & cq and
/ .
(cC,B) & cq. Therefore x € ckC and the family
/
of all such sets c¢kC, for x in kA, is & cover
/

of kA by k-open sets and so has a finite subcover
D jases D ; gay. et D be the union of D juwey D
R n ) B n
How (Dj,B) £ cog foreach §J = lseesy, N and 50
(D,B) € cq. Hence (A,B) & cg. The converse is

obvious.,

(ii) Proof is similar to that of (i).

The g of Theorem 5 is unicue in the sense that if

p is a guasivroximity for II such that p hag the san

bitopologicel space as that of q then p = q.



- . ’ b |
Define a quasimetric m for the reals as follows:
for all real X,y
Yy — X, X &Y

/ o
mix,;y) = -
0 »y X > ¥
¢ 2% . : / ' ’
Definition 11. e will call m the usual guasimetric
: G E s
for the reals and the quasiproximity of m the usual
quesioroximity for the reals., The left topology, etec.,
{

of m are called the usual left topology, etec., for the

reals,

Let I be the closed unit interval [Q,i] of the
; / G ;
reals, The usual quasimetric m restricted to I is a
quasimetric for I. We will also denote by I the bitorological

> R

!
space of m for I.

/ /
Definition 12, Let (¥,k,k), (H¥,n,n) be two
bitonological spaces and f a function from i to N. Je will
; / /
sey f is continuous iff f is both k-n continuous and k-n

continuous.

Definition 13. A bitopological space (ﬁ,k,kﬁ is
said to be completely regular iff
(i) A = XA eand y & cA imply there is a continuous
function £ from i1 to I such that fA = 0 and
iyl = 1 =5d
/

(ii) B = kB and x ¢ ¢B imply thers is a continuou

function g from I to I such that g(x) = 0 end
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A completely resular space is obviously regular,
Thampuran (5) has proved that the product of completely

regular bitopologicel speces is completely regular,.

Thampuran (6,7) has proved that a bitopological

space is completely regular iff it is quasiuniformizable

T

e. Hence we have the following result.

i

-

or topogenizab
Theorer 6, A bitopological space is completely

regular iff it is the bitopological space of a quasiproximity.

Let K,k,ﬁ) be a Hausdorff space such that I is
both k-compact and kicompact. Thampuran (8) has proved
that then k = k{ Hence the bitopological space reduces
to a compact Hausdorff topological space and so this is

the topological space of a unique proximity.

) / i A o i
‘Let (¥,q,k,%k), (¥,p,n,n) be tvo quasiproximity

=)

spaces and f a function from i to ¥, Then f is continuous
iff (A,x) €& g implies (fA,f(x)) € p and (y,B) & g implies

(£(y),fB) € p.

Definition 14, Let (i,q), (W,p) be two guasiproxinity
speces and £ a function from iI to N, Then f is said to be
a & -function (relative to q,p) iff (4,B) & g implies

(fL,fB) € p.



11

A g ~function is obviously contimuous., Also f
is a g-function Pf (X, Y € cp implies (f_ ;{,fh Y) & cq.
Let qland plbe the inverses of g and p; then f is a
Q -function relative to qsp iff £ is = S ~function

/
relative to g, pi

Let (I, ), (¥, 1Y ) be quasiuniform spaces, q,Dp
the quasiproximities of W end UV and £ a function from
M to N. Then £ is uniformly continuous implies f is a

3 -function.

Theorem 7. Let (H,q,k,ks be a quasiproximity s
such that
(1) each k-closed set is kicoméact or
(ii) each kiclosed set is k-compact.
Let f be a continuous function from (ﬁ,q,k,ks to (N,p,n,ﬁ).

Then £ is a S‘—function.

Proof., Let (A,B) & q. Then there is a point x in
kA <ﬂ} kB, Since f is continuous this means f(x) is in

, ,
both nfA and nfB and so (f4,fB) € p.

*Lemma 1. Let (ii,q) be a quasiproximity space. For
each t in a dense subset D of the positive reals let
S(t) be a subset of I such that

(1) (S5(t), es{u)) & eg if t & u and
(i) U {s{s):t ¢ D} =L

Por x in M take flx) = int {t : x € 5(%) }. Then
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{ ¥4 R <;11} . 3(m) and {x : £(x) >~11} C eS(u)

for every real u.

Proof. Let x bhe such that f(x) < u., Then x & S(t)
for some t < u and so x & S(u). This proves the first
relation. Next, let y be such that f(y) > u. If y & S(u)
then f(y) < u which is a contradiction and the second

relation follows.

Lemma 2. Let (li,q) be a quasiproximity srace. For
each t in a dense subset D of the positive reals let
S(t) be a subset of Il such that

(i) (8(t); c8(u)) g cq if t. < u and

(i1) QU {s(t) : t ¢ D} = M,
Then the function f from ii to the reals R defined by
f(x) = inf {t : x & S(t)} is a O -function relative

to q, mi

Proof. Let A,B be subsets of the nonnegative reals
/ . . 1
such that (A,B) g cm. Then there are u,v in D such that
. =l n
s in A and t in Bimply s < u < v < t. Then £ A C 5(u)

sag & g, = eS(v).

Theorem 8. Let (il,q) be a quasivroximity space,
/ : o
(I,m) the usual quasiproximity snrace for the closed
unit interval [ﬂ,i] end A,B subsets of iI such that

(A,B) € co. There is then sz gh—funcﬁion £ from [ to I

giieh that fA = 9 8ad fB = A



Proof, Let D be the set of all nurbers of the form

a2 b where a and b are vositive integers. Take 5(t) = M
for t in D and t > 1, take S(1) = c¢B amd take S(N) such
that (A,¢S(0)) € cq and (S(0),B) € cq. For 't in D and
5, b s Bk b de e Bom 4 = 150 5 00 el
choose, inductively on n, S(t) to be a set such that
(S(2m2ﬂn), eS(t)) & cq and (S(t),cS((2m # 2)2hn)) £ CQ.

Such choice is possible since is a quastproximity.
q rs -~ - L

Take f(x) = inf {1} : X £ S("u)} .

Definition 15. Let p,q be two binary relations on

the power set of k., Then p is said to be finer than q or

q is seid to be coarser than p iff_ qg C »

Let s be the intersection of a family of quasi-
proximities for M. Then s satisfies all tie conditions
of a quasiproximity except Q(4). Let u be the union of
all the quasiproximities coarser than s. Then u satisfies

all the conditions of a quasiproximity exeept Q(5).

Definition 16. Let A be a subset & L. Then

]

finite family A] yeees A of nonempty subsets, of A, whose
! n

union is A is said to be a partition of i
The next Theorem is easy to prove.

LamsIyvy W
ramiLy ¢

Theorem 9, Let s be the intersection of a

of gquasiproximities for I end u the uniox of a1l the

i

v



gquasiproxinities coarser than s. Define 2 binary relation
M i

qQ = 2‘“}‘_ 2 as follows: (A,B) £ q s i AE,;--...,Aa and

Bl,oll’

for some j and some r where 1 € j g amid 1l <

B are partitions of A and B imply (Aj, Br?3 £ s
r

o’

< b,
Then g is a quasiproximity coarser then ®z and q = uj

. L] - 3 r o o ~ A ls
hence g is the finest cuasiproximity coarser than each

Definition 17. The quasiproxinity o of Theorenm 9
is said to he generated by F.

T

_ / : :
Let I be a set and (R,m) the usuel quasimetric

/

-

space for the reels. Denoté by u the quasbroximity of n
Let £ be a function from M to R and for xy in M write
aix,.y) == m&f(x), f(y)). Then 4@ is a queshetric for L
and if p is the quasiproximity of & then: &,B) g p iff

(fA,fB) € wu.

Theoren 10. Let (ll,q) be a quasipmzimity space.
There is then a family of guasimetrics, #Hw I, whose

2L Ll

guasiproximities generate q.

Proof. Let (A,B) € cq. By Theore 8 there is a
% -function £ from }i to R such that (f.8) € cu.

/
Define the quasimetric d for Il by d(x,y)=- n(f(x),f(y))

and let p be the quasiproxinity of d. Tha (A,B) € cD.
Also p is finer than g since (X,Y, € qizplies

(£X,£Y) € u and so (£,Y) € p.

14



15

For each pair'ﬁ,B of_subsets.of li such that
(A,B) € cq there is a quasiproximity p for M with the
properfies (A,B) € cp and g < p. Let ¥ be the family
of all such p for I and g the quasiproximity generated by P.
Let (X,Y) & q; then Xi,..., Xa and Yl,.wm, Yb are partitions
of X and Y imply there are j,ry 1 € jJ =8, 1 =S r = b

such that (X.,Y ) ¢ ¢ < p for every p in P-and so
d B
v

(X,Y) € g. Hence g is finer than q. Alsoe (A,B) & cg
implies (A,B) € cp for some p in P 2nd s (4,B) €& cg;

therefore q is finer than g and the proof is complete,

Let (M,q) be a quasiproximity spacz. Let G be th
family of all the quaéiproximities of quasimetrics for U
such that each member of G is finer than gq. It is obvious
that q is generated by G. Thampuran (9) ms proved that if
a quasimetric 4 is a & -function then tie quasiproximity
p of d is fTiner than g; hence G will contain all such
guasiproximities. G is somevhat similar o the gage of a

gquasiuniformity.

It has thus been shovn that quasiproximities have
properties similar to those of proximitiss and guasiuni-

formities.
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