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Proof, Let Z be th: < -glosure of Y, V a membar
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The other nart can be »proved in the game way.

Theorem 6. Let A be a cuesiuniformity for Ii. Then
the Tanmily of all A =~closed mem
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Theorenm 7. The & -interior of =z member of a guasi-
uniformity W is a member of A and the L-interior of sz
member of ﬂi is a member of 1{.

Zz—open members of W is a base for U aend the femily of
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all X -oren memhers of W is a hase for U .

Proof. Let U be a member of . Then the Qi—interior
U is the set of all (x,y) such that dxx y.i C U for sone
¥ in RL « ¥ow there is Ve WU such thet VVV C U. It then
follows from Lemmsg 1 tkét V is a subset of the X -interior
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& guesiuniform space is said to be T, or Hausdorff iff its

bitopolozicel snace has nding property.
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Uniform Continnity

Definition 7. Let (W ), (¥, TV ) be guasiuniform
spaces and f a function from Ii to H. Then f is said to be
uniformly continmous relative to W an U iff for every V
in U the set {(x,y) : (£(x),7(y)) € V} ig a member of U.

e will say £ is a uniform isomorphism iff it is one to ome

end both f and its inverse are uniformly continuous,

Given a function £ from li to N define the funcition
! / )
T by fl=y) = $0lx), f0x) r all x,y in l.Then f is vniform-
ly continuous iff for each V in U there ig U in U such that

T 1 . : L] ot L7 L . ] S A
fU € V. If J is 2 subbase for U then f is uniformly

is a member of WU . It is clear that the commosition of
two uniformly contimons functions is slgo uniformly

continnous. Let 9,V be the families of inverses of members
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Definition 8. Let UL, 9, ), (L, W, B ) be two

e | £ o A o . k nt
spaces eand f a Tfunction from i to K. e

i/
gsy T is continuous iff £ is both “J-¥l and f]—ﬁb continunous

iff £ is one

|.

continuons and its inverse is continuous. Two bitopological

and £ is said to be a homeomorphism o one, is

snaces are said to be homeomorphic iff there is a homeo-
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morphism from one to the other

Theorem 8, A uniformly continuous function is )
4
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ontinucus relative to the bitopological siaces of the
quasiuniformities ¢ s uniforn isomorrhism is a homeomorphism.

et W end U ve o guasivniformities

o Je will say W is finer than U or UV is coarser

space (7,9) ). Then the family of all inverses under f of

quasiuniformity for i and this
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is the coarsest guasiunniformity for which £ is uniformly

Let (i, ) be a quasiuniform snace and N 2 subset

of 1i. There is then a coarsest uniformity U for N such that
the identity map of N into i! is unifornly continunous. 1t is

obvicus ) is the family of all intersections of members of
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is called the relativization of W to I or the relative

gquasiunifornmi is called a guasiuniforn
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Definition 12. Let J be en index set and (K , 9]

J
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j & d a fanily of bhitopolozical spaces. Denote by

such that projection into each coordinate space is

uniformly continuous is sz2id to be the produet guasiuniformity

niform snace.

and e will say (I, A ) is the product qu

12t the nroduct

it

et £ denote projection into the j-th coordinate space and
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Theorem 10, Let

" i,
»

w

the family of all inverses of members of U and &) 5 @'
.

T
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tre nroducts respectively of AL, W (in this order) and
W s W (in this ordsr). Let @ be a gquasinetric for L and

= HoEl, Por 250 1t Vir) = {(:{,};} d @l £ r} . Then
/

)

(i) a4, from (L, P ) %o (R,m), is uniformly continuous
iff V(r) is a member of WU for each r > 0 and

e m D o . W . L

(ii) 4, from(L, ¥ ) to (2,m), is uniformly continuovs

/
iff V(r) is = member of W for each r > 0.

(i) The family of =211 sets of the fornm
{( (2, )y Gny)) 5 (R ) lv ¥ € U} , e W is 2
/
hacze for ® s If @y from (L, @) ¥ to-H,m}; 18

- - e b - . 1 .
uniformly corntvinuous then there is U

1f (u,x), (y,v) gre in V{r) then d(u,v) < d{u,x) + d(x,v)+
d(y,v) and so d(u,v) — d(x,¥) £ 2r from which the uniform
continuity of 4 follous,

(i1) Proof is gimilsr to that . of (i),

liereafter, uniform continuity of a guasimetric is

used in the sense of part (i) of Theorem 10.

= iy

Let § be a family of cguasimetrics for .l., Then ths

o

family of all sets of the form V(g,r) = {{:z_,y) : olx,vr & y-} ;



is 5 subbzee for a gqrasiuniformity
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Definition 16. The cuasinniformity AL, having as
subbase the femily of all sets of the form V{g,r), for g

in ¢ and r > 0, is said to be thne cuesiuniformity

i

1t follows from Theoren 10D

that the suvasiuniformity

cenerated by ¢ is the coarsest cne such that each member of
: ; s Ty : 31 - £ oo

4 is vniformly continuous. For a g in y the family of all

setgs of the form

I y oo i 4 T - +1 an o e
(ay7) for v > 0 is & base for the gquasi-

£

unifornity of

thet the identi

. .
for each g in

the product of il with itself asz many times as there are
members of g. Assion to the g-th coordinate space the
i

cuasiunifornity of g =znd to

: B i

e i P e L > £ B
the product guzsiuvniformity.

ch x
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R £ E T 2] s 3 - £
Define the function £ from & to F by fLX)q,ﬂ x for e

%
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in i and each g in Q. Then the projection of P into
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coordinzte snace is the identity map of ¥ into (i,qJ). By

virtue of Theorem 9, the uniformity generated by G is th
coarsest which mekes f wniformly continuous. How f is one
to one and so it is a vniform isomorphism of I onto a

subspace of g product of guasimetric gvaces,

Lemma 2. Let {T P on = :’},]_,?,...} be a seguence

i
!
)
25
&
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of subsets of L Lyevery V_ contains

{ } L

O and V v v c V for every n.there ig then a
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o N ; for each positive intezer n.
A proof of this may be found in kelley (2;.

Theoren 11, EBvary
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nasiuniformity for i is generzted

by the family of =11 quasimetrics, for I, —hich are uniformly

continuons,

) N AR - s, T . P . . . . R, e Y
dence the guasiuniformity gensrated by ¢ is finer then W .

family of 211 qguesimetrics uvniformly continuous on il, Then
the quasiuniform space i is uniformly isomorphic to a snbspace

of the »roduct of the cuasimetric spaces {(i,q2 for o in {.

Definition 17. A bitopclogical space is seid to he

=

quasi-Hfensdorff iff it satisfies at lozst one of the tio

conditions, for a Hausdorff space, specified in De

A

A quasiuniform space is said to be quasi-dausdorff iff its

f=te

bitopological space is guasi-deusdorff,

Theorem 13, Let (ii,d) be 2 guasimetric snace. ¥or

x in ;i denote by % the intersection of the closnres of = in
the loft and »icht tormolories of d. Let i be ihe set off all

/ B ¥ P ' . _
x for » in M and for x, v in I let e(y,y) = dix,¥). Then

N -3

w L msadaekete anacd  phd 4hp
(K,e) is a gquasi-Heusdorff cussiretric & ce the



manping £ from to ativmad by £¢ = L& LEameteyr,
Fad g
Feoolv 1T ¥ &
/ / /
X, & ¥ BuR 80 L Y.

¥ £ ¥ Then Q%) = 0 = d{x,1) 2nd

erefore

v dn ¥ L

o A e | P SR ol
metric gpace end that the

-

Proof, Let § Be the family of 21l uniformly continuous
guasimetrics on . Then W is cenerated by ¢ and 1t is the
coarsegt guasiuniformity which makes the identity map of
¥ into the guasimeiric space (ii,q) uniformly continuous

isonetry fq from {li,q) &5

LY

space (11, ¢¥%J) and so U is

the coarsest sch of the mans T

uniformly continuous. Let P be the product of the guasiuni-

form snace ii with itself as many times a3 there are q in §

e
a e - Lt _ gomr o s o - i i e W A e
and let £ be the map of ¥ into P defined by f(x) = £ (x).
0 4
Mhen W is the coarsest quesi sweh that £ i

mniformly continuous. Hlow £ is one %o ong gince il is
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There is then a quasiuniforniiy U for il such that ‘j is
]
the left tovology of WU =nd the right topology T of WU

has the family of all ij-closed sets as base.

Proof. AF fj ig indiscrete the result is obviou

[4s3
L]

so congsider the case vwhere it is not indiscrete. Let A be

a nonempty open proper subset of I, Define a quasimetric

o
[N

f xeg M,y egch

dix, 7} = G 1f z,vyE K
L. 3f % w6k, ¥ E &

Let @ be the family of &ll such guasimetrics for L, a
member of ( being obtained in this manner from each ncnemnty

[

open projper subset of !, Let ‘W be the onasiuniformity

The bitovological snpace of Theorem 13 has another

wd
o
j]

/
property too. 1f A,B are disjoint fjmclosed and ﬁjnclosed
/
subsets of i then there are disjoint fjwopen and “J-onen
I
sets X, X’ such that A C X and B ¢ X. Such a space may be

called normal.

Definition 20. A guasiuniform space (M, ) is szid
to be quasimetrizable iff there is a quesimetric d for

such that WU is the quasiuniformity of 4.

1t then follors from Theorem 11 that a guasiuniforn
space is quasimetrizable iff its guasiuvniformity has a

countzble base. 1f we call a guasimetric d with The propes

that d(x,y) = 0 iff x = y a Heusdorff cquasimetric then "e
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such as completeness, comvactiness, characterization by coverincs
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nets, etc., are dealt with in separate pepers.
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