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Abstract

The well-known “threshold effect” dictates that the more powerful a code is, the more
sensitive it is to channel noise. A code is said to be robust if it is asymptotically optimal
for a wide range of channel noise. Thus, robust codes have a “graceful degradation” char-

acteristicv and are free of the threshold effect. It is demonstrated that robust codes exist

whenever the source and channel bandwidths are equal. In the unequal-bandwidth case,
a collection of nearly robust joint source-channel codes is constructed using a hybrid of
digital and analog coding techniques. The design principle is based on bandwidth/power
splitting and matched tandem coding. These nearly robust codes achieve the Shannon
limit and have a less severe threshold effect. Finally, for the case of two different noise

conditions, the achievable distortion regions of these codes are determined.



1 Introduction

Consider the problem of transmitting a bandlimited analog source on a bandlimited additive
noise channel. In many situation, the exact channel signal-to-noise ratio (SNR) may not be
known to the transmitter. For example, the range of SNR may be known but the true SNR
value may be unknown. Given a range of SNR, it is desirable to design a single transmitter
which performs “well” for all SNRs within this range. There are essentially two ways of
designing such a system - (i) using analog modulation methods or (ii) using digital modulation
methods.

The main advantage of analog methods — such as amplitude modulation (AM) and fre-
quency modulation (FM) — is the gradual change (graceful degradation) in the received signal
quality with change in SNR [4]. However, these systems are in general suboptimal in the
sense that they rarely achieve the theoretically optimal performance. Further, analog systems
require expensive circuitry which are generally less reliable.

Digital systems are not only more reliable and cost efficient than analog systems but they
can be designed to (asymptotically) achieve the theoretically optimal performance [1, 2, 18].
The inherent problem of digital systems is that they tend to suffer from (a severe form of !
the “threshold effect” [3]. This effect can be described as follows. The system achieves a
certain performance at a certain designed SNR. The system performance, however, does not
improve with increased SNR and it degrades drastically when the true SNR falls below the de-
signed SNR. Further, the threshold effect becomes more pronounced as the system performance
approaches the theoretical optimum.

The severeness of the threshold effect in digital systems may be attributed to Shannon’s
source-channel separation principle [1, 2, 13] which states that no loss of optimality is incurred
by separate (independent) design of source and channel codes. Codes designed based on the
separation principle are often referred to as tandem source-channel codes. Recent works [5 -
12] [16], however, demonstrated that joint source-channel codes not only outperform tandem
codes for a fixed complexity and delay, they are also inherently more robust to channel noise
than tandem codes.

A vector quantizer with an optimized index assignment [5] is an example of robust joint

source-channel codes. Channel-optimized vector quantizers [7], channel matched tree-structured

and multi-stage vector quantizers [9], and chaunel-optimized trellis coded quantizers [11] arc

!Analog systems suffer a mild form of the threshold «tfect [17]. In the mild form, the system performauc:-
improves when the SNR is above the designed SNR.



further examples of robust joint source-channel codes.

Recently, Shamai et al. [14] demonstrated that systematic joint source-channel codes are
optimal for a wide class of sources and channels. One of the motivations of [14] is that
systematic coding allows graceful degradation of performance at low SNR. For Gaussian source
and channel, Shamai et al. proposed a type of bandwidth splitting which enables systematic
coding on part of the source bandwidth.

In this report, we utilize a combination of bandwidth splitting and power splitting to
design a collection of “nearly” robust joint source-channel codes. Furthermore, we introduce
the concept of matched tandem code which facilitates linear decoding of (part of) the source
signal at low SNR. The use of linear decoder makes the threshold effect less pronounced. The
preliminaries, notations and models for source and channel are given in Section 2. In Section 3,
we define robustness and proved the existence of a robust code when the channel and source
bandwidths are identical. Further, we also conjectured on the non-existence of a robust code
when the bandwidths are not identical. In Section 4, we define the modules used in Section 5.
In Section 5, we design various joint source-channel coding systems and derive the achievable
distortion regions of these systems. In Section 6, we compare the performance of the systems

in Section 5. In Section 7, a nearly-robust code is defined. We also showed the existence of a

nearly-robust code in this section.

2 Preliminaries and Notation
2.1 The Broadcasting Problem

A broadcast system consists of one transmitter and many fixed (finite) receivers. In Fig. L.
the transmitter broadcasts the same information, say an audio signal, to K different receivers
(users). The distance between the transmitter and each user varies. In such a system, one
expects that the user closest to the transmitter should receive the lowest distortion (best audio
quality). The transmitter sends the same signal to all users, but each user receives the signal
with a different SNR. The closer the receiver is to the transmitter, the greater the SNR. It
is desired to design an encoder which performs well at all these SNR’s. Further, it shoul
give better performance (audio quality) for users which are nearer to the transmitter and the

performance should not degrade drastically for those users which are considerably farther fron.

the transmitter.
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Figure 1: Broadcast System

2.2 The \Robustness Problem

In the broadcasting problem, we have many users with different SNR. Now, consider a problem
of designing a transmitter for a single mobile user. The channel noise vary from time to time
depending on various factors, such as position of the mobile, the speed of the mobile, fading,
etc. In such a scenario, we need to design transmitter and receiver whose performance do
not degrade drastically because of the mobility of the user. In other words, the transmitter
and the receiver should be robust to change in channel noise. One way of doing this is to
design transmitter and receiver for the worst case noise. However, this implementation does

not utilize the higher capacity of the channel when the channel noise is less than the designed
noise.

For many channels of interest, the receiver can accurately estimate the channel noise from
the received signal. With this assumption, this problem is now similar to the broadcasting
problem. In the broadcasting problem the set of channel noise for which the code should

perform well is finite while in the robustness problem this set is uncountable.

2.3 Source and Channel Model

Source: Consider a memoryless Gaussian source, {X;}2,, with zero mean and variance o*.
Thus, X; ~ M(0,0?) and the sequence {X;} is independent and identically distributed (i.i.d.).
We assume the source is obtained from uniform sampling of a continuous-time Gaussian process
with bandwidth W, (Hz). Furthermore, the sampling rate is assumed to be 2W, samples per
second.

Channel: The source is to be transmitted over an AWGN channel modeled by Z; = Y; + V.

where Y;, Z; and V; are the channel input, output and noise, respectively. We assume E[Y}?] =



X eR" Encoder | Y € R™ —~ ZeR™ | Decoder | X € R"
P — =t —————
X ~ N(0,0°1,) n T B

VeR™
V ~ N(0,NT,,)

Figure 2: Block Diagram of Joint Source-Channel Coding System.

P and V; ~ N(0,N). The channel is derived from a continuous-time AWGN channel with
bandwidth W, (Hz). The discrete-time channel is used at a rate of 2W, channel uses per
second.

Coding: The block coding system is depicted in Fig. 2. The source samples are grouped
into blocks of size n: X = (z1,232,...,2,). The encoder is a mapping o, : R" — R™ which
satisfies the power constraint E[|a,(X)||*] < mP, where p = m/n = W,./W,. The received
signal is given by Z =Y +V, where Y = a,(X), V ~ N(0, N1L,.) and L, is the m x m identity
matrix. The decoder is a mapping G, : R™ — R". The average squared-error distortion of

the coding system is denoted as
1 .
Dave (et B V) = E[IX — X, m

where X = Bn(Z). For purpose of analysis, we will eonsider a sequence of codes (an, ..
where n is increasing but the ratio p = m/n is fixed. The asymptotic performance of the code
is given by

Dave(N) = lim Doy (@, Bn, N). ‘ (2

n—"2x

We assume that 02 > 0, P > 0, and p > 0 are known and express D,,. as a function of V. |1

subsequent sections distortion means the mean squared distortion.

Theoretical Limit: The rate-distortion function for the memoryless Gaussian source i
squared-error distortion measure is given by 2. I~]:
R(D) = Wyloe -~ D)) bits/sec.
Similarly, the capacity of the AWGN channe: .en by [1, 18):

C(N)=W_log I\ bits/sec.



If a code has average distortion D, then R(D) < C'(N). This implies that

2
D> ‘7 2

- m‘; Dopt(N)‘ (5)

According to classical information theory, D,,(N) provides a lower bound on the average
squared-error distortion of any coding system. Furthermore, given %, P, N and p, there exists
code sequences with Dg,.(N) equal to D, (N). However, the optimal code sequence may differ
for different values of 0%, P, N and p. In this report, we are interested in code sequences which
are robust to channel noise. Thus, we assume that o2, P, and p are known and NV is unknown.
Therefore, in (5), we express D,,: only as a function of V.

Notations: The significance of symbols X, Y, Z, D,,(N) and D,,.(N) is already given in
the previous section. We shall be splitting the source X. This splitting may be bandwidth
splitting (demultiplexing) or power splitting. In case of bandwidth splitting, X = [X;X}],
where X; and X, represent the two demultiplexed components of X. In case of power splitting.
X = X + ¢, where X is a quantized value of X and e is the error due to quantizatif)n. For
any vector W, let W be a quantized value of W and W be an estimate of W. Thus, V%/ 1s an
estimate of a quantized value W of W. Let Dw(N) be the limit (as n approaches infinity) of
mean squared distortion between two n-dimensional vectors W and W when the channel noi~

is N, ie.,

Dw(N) = lim LE(|W - W?).

n—00 n

The symbol IN represents a set of non-negative integers. Further, in the subsequent sectic:.

all the logarithms unless specified are to the base 2.

3 Robustness

Robustness: We define a code to be robust if its average distortion is close to the theore:

limit for a wide range of channel noise conditions. More precisely:

Definition 1 A code sequence {(an,B3,)} is swid to be robust on R if it satisfies the pe
constraint and

Dave(N) = Dy (N). ¥ N € R.

-t



We note that the code can not depend on N. For a code to be robust, it must perform
close to the optimum for all N € X, Robust codes may or may not exist. In the following

sections, we discuss the conditions for the existence of robust codes.

3.1 Robust Codes Exist for p =1

In this section, we show that robust codes exist for p = 1. The proof is based on actual

construction of robust codes rather than the traditional technique of random coding.

Theorem 1 Assume p = 1. V finite set X (|R] < 00), 3 a code sequence {(an, B,)} which is

robust on N.

One can prove this theorem by setting a,(X) = /P/o?X and B,(Z) = Vo?PZ/(P + N).
The optimality of this linear code is well-known (see, for example, [14]). However, this decoder
depends on N. The proof of this theorem is given in the appendix where we set P+ N = 2|/ Z||?

and applied the law of large numbers.

3.2 Conjecture on Non-Existence of Robust Codes for p # 1

Shannon in [3], argued that topologically it is not possible to map one region to another region
in a one-to-one, continuous manner unless both the regions have the same dimensionality. On
this basis he explained the threshold effect common to various communication systems. Ziv,
by restricting to a class of signals, showed in [15] that for a Gaussian source transmitted on
an additive bandlimited Gaussian channel, no single practical modulation scheme can achieve
the optimal performance at all noise levels, if the channel bandwidth is greater than the source
rate, i.e., p > 2. In [19, 20], it was conjectured that for p # 1, any system which touches
D,pi(N) curve at a particular value of N can not touch the curve again. This conjecture is

restated below.

Conjecture 1 Assume p # 1 and X = {N;. N}, Ny # N,, there does not exist any cod:

sequence {(an, Brn)} which is robust on N.

For the case of AWGN channel, the decoder can always estimate the noise power precisely (s

proof of Theorem 1). Hence we may assume that the decoder has full knowledge about the

noise power.



Definition 2 An encoder sequence {a,} is said to be robust on N if it satisfies the power

constraint and 3 a collection of decoder sequences {B(N): N € R} such that

i Dave(ctny Bu(N), N) = Dope(N), VN € R, (8)

=00

Conjecture 2 Assume p # 1 and X = {N{, N3}, N1 # Nj, there does not exist any encoder

sequence which is robust on N.

Note that Conjecture 1 follows from Conjecture 2. Even though we have not been able
to prove these conjectures, we have derived a collection of codes which are nearly-robust, the

exact definition of which is provided in Section 7.

4 Modules Used in the Coding Systems

In the next section, we will be designing many coding systems which are nearly-robust. The
modules used in the design of these systems are described here. For each module, we use r to

denote the rate (instead of p).

4.1 Rate r Tandem Code

A tandem code (a,, 3,) consists of a tandem encoder o, : R” — R™ and a tandem decoder
Br: R™ — R", where m/n = r. The encoder «, consists of a source encoder o2 : R™ — IN
followed by a channel encoder of : IN — R", ie., a,(X) = a&(a?(X)). The decoder 3,
consists of a channel decoder 85 : R™ — IN followed by a source decoder 35 : N — R".
Note that {(a2,8:)} is a source code sequence and {(a%, %)} is a channel code sequence. The

channel code sequence is such that when it is used for transmitting data on an AWGN channel

with noise variance N, input power constraint P., and data rate

lim _LH(a;(X)) = -;—log (1 + 1—Dc-> bits/chénnel use, (h

n—oo nr N

it achieves arbitrarily low probability of error, i.e.,

lim Pr{al(X) # 3:(Z)} = 0. (1

n—oo

Note that the increase in data rate with n in (9) is governed by the decrease in probability !

error in (10).



The source code sequence quantizes an i.i.d. Gaussian source of variance o? at rate

lim '];H(QZ(X)) = Zlog (1 + fc—) bits/source sample, (11)
and distortion
2 : 1 S(.s 0-3
D = D(og, Pe; Nyr) = lim —[[X — B (e (X))} = 7—F5=7 (12)

We specify this tandem code sequence by a 5-tuple (o2, P., N,r, D) and say that the tandem
code is designed for (o2, P.,, N,7, D). Note that D is a function of the other four parameters
and is given by (12). Thus, D,ye(a, 8, N) = Dopi(N), when this tandem code sequence is used
as the code sequence for transmitting an i.i.d. Gaussian source of variance o on an AWGN

channel with noise variance N, power constraint P., and rate r.

The source code of the tandem code splits X into two orthogonal components, the quantized

value X = (a2 (X)) of X, and the quantization error e = X — X.

Lemma 1 For a tandem code sequence specified by (o2, P, N,r, D)

lim =3 |E(ed:)] = 0. (13)
e n =1
where X = (&1,%y,...,%,) and e = (e1,€2,...,€,). Hence
e -
lim |=EQIXI) - (02 = D)| =0, (14)

The proof of this lemma is given in the appendix.
In the rest of the report we will be dealing with tandem code, encoder and decoder se-
quences. Sometimes, we will specify these sequences as tandem code, encoder and decoder

respectively.

4.2 Matched Tandem Code

A tandem code is said to be matched, if the first [ = min(m,n) components of the channel
input, a,(X), are scaled versions of the first [ components of the quantizer output, 32(aé(X)).

for all X. In a matched system, if B3(k) = (.7).0y,...,%,) then oS(k) = (y1,92,- ., Um) =

(aZ1,aZa, ..., QT Yig1s - - - s Ym)-



Lemma 2 For any values of (0%, P.,N,r), there erists a matched code sequence which is

asymptotically optimal.

The proof of this lemma, based on the random coding argument, is given in the appendix.
The main advantage of the matched tandem code is that it facilitates linear decoding of

some components of the transmitted signal when the channel noise is more than the designed

noise. Let the matched tandem encoder be designed for (o2, P., N.,r, D). If the channel noise

N > N, then a linear decoder given by

~

r, =

(62— D)F,

PC+N = (15)

obtains a linear estimate of the first min(n,rn) components of the transmitted signal X =
(z1,%4,...,,). We specify this decoder by a 3-tuple (¢2 ~ D, P, N).

In practice, a matched tandem code can be designed using the method of joint trellis coded
quantization/modulation (for r = 1) [16] and then properly puncturing the code for r less than

or greater than one.

4.3 Rate-One Linear Code

A rate-one linear code consists of a linear encoder o : R™ — IR”™ and a linear decoder ;3 :
R" — R". Let the variance of the input to the linear encoder be o2, the output power

constraint be F;, and the noise variance be N. Now, the encoder a(X) = \/;L]z X and the

a? . . . .
decoder B(Z) = %—;TP?Z. Note that the encoder o is independent of the noise variance .\

In subsequent sections, the encoder « is specified by an 2-tuple (02, P;) and the decoder by
3-tuple (o2, P, N). '
Even though the rate-one linear code can he implemented by high precision digital circuit-

it is often referred to as an analog coding systemn ~since X is never represented as “bits”.

5 Achievable Distortion Region

Consider the broadcast system in Fig. 1. [ - ‘i source and the channel be as given

Section 2.3. Let the noise variance of the -+ wer be Ny (1 < k < K). A K-tny

(dv,da,...,dK) is an achievable distortion po ' "here exists an encoder sequence {«,,} a1



decoders sequences {Bn(N1), Bn(N2), ..., B.(Nk)} such that o, satisfies the power constraint
and Dgye(a, B(Ng), Ni) =dg for 1 <k < K.

In the previous section, we proved the existence of robust code for p =1, and conjectured
that there does not exist a robust code for p # 1. Thus, if the conjecture is true, then
(Dopt(N1), Dope(N2), .. oy Dopt(NK)) 1s achievable iff p = 1. For simplicity, we assume K = 2.
Let the noise powers be Ny and N, (N, > Ny). Note that (Dgp( V1), 0?) is achievable by a code
optimized for noise Ny (for noise Ny, set B,(N2)(Z) = 0). Since Ny < Nz, (Dopt(N2), Dope(N2))
is achievable with a code optimized for N;. Since (D,p:(N1),0?%) and (Dope(Nz), Dope(N2))
are achievable, any point lying on the line segment joining the two points is also achievable
by the principle of time sharing. Fig. 3 shows the achievable and unachievable distortion
regions of this system. The points A and C in this figure correspond to (Dop(N1),0?) and
(Dopi(N2), Dopi(N2)), respectively. The region lying above EACD is achievable and the region
below £BD is not achievable. To the best of our knowledge, the achievability of the triangular
region ABC has so far not been presented for p # 1.

In the subsequent subsections, we propose various hybrids of linear and tandem systems.
Using hybrid systems, we show that a significant portion of the triangular region ABC can
be achieved. As mentioned before, we shall be splitting the bandwidth and the power of the
source and channel.  For describing these systems, we use the following nomenclature: .\
system which employs bandwidth splitting in the source and power splitting in the channel 1.
named as, “B/P”. A system with both bandwidth splitting and power splitting in the sonr«.
and only bandwidth splitting in the channel is named as, “BP/B”. A system which does 1.
have any kind of splitting in the source and the channel is named as, “N/N”. Further. ..
shall be using either a purely digital system, or a hybrid of digital and analog (linear) syst::
Both these system can have matched or unmatched tandem encoders. A purely digital sy«
without a matched tandem encoder is represented by DU, i.e., digital unmatched . A hyi-
system with matching is represented by HM. With this naming convention, a time sha:

system can be said to be a “B/B DU” system.

5.1 System 1: P/P DU

In [21], it is shown that efficient multi-stage descriptions are possible with i.i.d. Gau--
sources. In this system, an efficient two-stage source encoder and a capacity-achieving b

cast channel encoder are combined. The block diagram of the system is shown in Fi-

10

.
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Dave(N?.) IE

Dopt(N2} | B

Unachievable Region

Dopt(Nl) DDpt(N2)

Dave(Nl)

Figure 3: Distortion region for a time sharing digital system.

Tandem Code 1 is designed for (6%,aP, (1 — a)P + N, p,0?) and Tandem Code 2 is designed
for (02, (1—a)P, Ny, p, D.(N1)). Note that o2 is the variance of the input of Tandem Encoder 2.

;From (9), we have

1 - 1 aP
Ro—"lgrgo;n-H(X)—glog(l—i-(I_G)P+N2>, (16)
I | (1-a)P ‘
Ry = lim mH(e)— 2log <1+ N, )» (17)

The rate pair (R, R1) lies in the achievable rate region of the above Gaussian broadcast channel
[18]. The rate Rq corresponds to the common information and the rate Ry corresponds to the
information for the higher capacity (less noisy) channel. Thus, there exists channel encoders
which can encode the outputs X and € of the source encoders such that both X and € can be
decoded correctly (arbitrary low probability of crror) when the channel noise is Ny, and X can
be decoded correctly when the channel noise i~ V,. The channel encoder in Fig. 4 encodes .\

and € independently. The encoding and decoding procedure for the above channel encoder i~

described in [18].



The block diagram of the decoder at noise N; is shown in Fig. 5. Since X and é can be

decoded correctly when the channel noise is Ny, the distortion D.(V;) is achievable at M.

2

2 is achievable when

When the channel noise is N, only X can be decoded correctly. Hence, o

the channel noise is N;. From (12), we have

0.2

{(U+ i) (14 5525))

0.2

Dave(NZ) = 2 P (19)
(L + =)

Dave(Nl) =

(18)

Note that Dgyye(N1) and Dgye(N;) are equal to the distortion values in the distortion-rate
function of an i.i.d. Gaussian source at rates p(Ro + R;) and pRy, respectively. ;From the
capacity region of a Gaussian broadcast channel [18, 22], (Ro, R;) is the best achievable rate
pair. Thus, any system based on the separation of source and channel coding can not achieve
distortion pair better than (18) and (19). The achievable distortion regions for P/P DU systems
are shown in Fig. 15, 16 and 17 for 6> = 1 and various values of p, P/N; and P/N,. Nete that
the achievable region of this system is below the time sharing system, i.e., below the line AC
in Fig. 3. This system does not achieve any point on the lines AB or BC. In the next two

subsections we will show how points on the lines AB and BC can be achieved.

5.2 System 2: P/B HU

Consider the system in Fig. 6. As the name suggest, we first split the channel into two sub-
channels. The first channel, referred to as the primary channel, occupies (p — 1)W./p Hz of
bandwidth. The secondary channel occupies W./p Hz of bandwidth. We call this “channel
bandwidth splitting”. Now, a traditional tandem coding system is used in the primary channel

and a linear encoder is used in the secondary channel. The enceder for the primary channel
is a mapping from R"™ to R™™". The tandem code is designed for (%, P, N3, p — 1,02). Note
that this system is valid only for p > 1.

The source encoder splits X into two components, the encoders output X of variance 02— -
and the error vector e of variance o2. We call this “source power splitting”. A linear encodc:

with parameters (o2, P) transmits the error vector ¢ on the secondary channel. Note that th

secondary channel has bandwidth ratio of 1.

12

-
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Figure 4: Encoder for System 1: P/P DU.

"1 Encoder 2
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Tandem Decoder 1
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“|Decoder 1 Decoder 1f:
Channel : :
Output :
. RPN ‘
Channel
Encoder 1

Channel

Source

[9.334

Decoder 2 Decoder 2|

Figure 5: Decoder for System 11 P/P DU for Noise N;.
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Source !
Decoder \
y
= X '
Linear ; | Linear é
e Encoder : Decoder

Figure 6: Block Diagram of System 2: P/B HU.

The decoder for the above hybrid encoder when the channel noise N < N, is shown in

Fig. 6. The tandem decoder for the primary channel decodes X correctly, i.e.,

lim Pr(X # X) = 0.

n—00

(20)

The linear decoder with parameters (o2, P, N) obtains a linear estimate of e. The estimate AN

of X is the sum of tandem decoder’s and linear decoder’s outputs, i.e.,
X=X+e

The average distortion Dg,.(N) is given by

uMN)zlmlmu-ﬁw
n=—0o0 n

1 A
= lm =F1 \ -« = (X +é)|H)
’n,——)OOn
.1 a1 2
= lim =£c v N+ —E(fle—¢]?)
n—)OOn n
.1
= lim —F£.

n—00 7

(2



The equality (24) follows from orthogonality of e and X (Lemma 1), and (25) follows from
(20). Note that Dg.e(N) is equal to the mean square distortion of e, which is equal to the
optimal distortion for a Gaussian source of variance o2 transmitted on a AWGN channel with

noise power N, power constraint P and bandwidth ratio 1. Thus

Dave(N) = —2— (26)

and from (12),

g
L+ )1+ &)t

Dawe(N) = (@)
Note that for N = N, the above coding system achieves D,,,(N;). Further, for Ny < N; its
performance is better than D,,(N3;) by a factor of (1 + P/N;)/(1 + P/N;). Note that this
factor is greater than 1. Thus, the encoder achieves a point on the line BC in Fig. 3. The
achievable points of System 2 are shown in Fig. 15 and 16. Note that in Fig. 15, D,,.(N;) for
System 1 is 17 dB (Gain) less than that of time sharing system provided Dgue(N2) = D,pe(.V2)
for both the systems. In Fig. 16, this gain is 2.5 dB.

The main advantage of this system is that the tandem encoder of this system can usec
standard source compression methods as its source encoder and standard channel encodin:
techniques as its channel encoder. For example, the code-excited linear predictive (CELYP
coder can be used for speech compression, and the joint photographic expert group (JPEG
algorithm can be used for image compression. Similarly, standard error control coding te«!
niques such as Reed-Solomon codes, BCH codes, convolution codes, trgllis coded modulat i

and turbo codes can be used as channel encoders.

5.3 System 3: N/N DM

In the previous subsection, we showed that a hybrid of a linear and a tandem system achie.

point on the line BC in Fig. 3. We now show that a matched tandem system can achieve a |

on the line AB. Consider a matched tandem encoder with parameters (0%, P, Ny, p, Doyl N

As in Section 4.1, let X = X + e. Since the matched tandem encoder is optimized for

Dave(N1) = Dopi(Ny). When the channel noise is .V;, the use of matched encoder enables I+

estimation of the first [ = min(p, 1)n components of X. Let X{ be the first [ componen:



X, Z! be the first [ components of the decoder input Z, and X! be an estimate of f(l' Note

that the variance of X is o2 — D,pe(Ny). Thus,

: 2D, (N))P
I \/(U pt 1 I
K=t 4 (28)

If n > m (p < 1) then the components XﬁH are estimated as zero. Since X and e are

orthogonal, the distortion in estimating X is the sum of the distortion in estimating X and
the variance of e.
The distortion in estimating the first I components of X is (62 — Dop(Np))/(1 + P/Ny)

and the distortion in estimating the rest of the components is 02 — Dy, (N;). Thus, the mean

distortion in estimating X is

(J’2 - Dopt(Nl)

+ max(1 = p,0)(0? ~ Doge( M), (29)

and hence

0'2 — Dopt(Nl)

1+ P/N, + max(1 — p,0)(0? — Dypt(N1)) + Dopi( Ny). (30)

D,ye(N2) = min(p, 1)

Note that (Dgpe(N1), Dove(N2)) lies on the line AB in Fig. 3. The performance of this

system at various values of p, Ny and N; is shown in Fig. 15, 16 and 17.

5.4 System 4: P/P DM

In this section, we show the improvement in achievable distortion performance by using a
matched tandem encoder instead of a standard tandem encoder in System 1. Let Tandem
Encoder 2 in Fig. 4 be matched. The decoder when the channel noise is N; is same as in
Fig. 5. Thus, the distortion when the channel noise is N; is same as in (18). When the channel
noise is Ny, a linear decoder with parameters (62 — D,,.(N1),(1 — a)P, N;) obtains a linear

estimate of the first min{np,n) components of ¢. The distortion for noise Nj is,
Dave(N2) = D{,,‘,(A\'\) +D€(N2) (“ J
Note that,

2 — Daye( N1
1-a)¥

1+ N,

(o

D:(N;3) = min(p, 1) + max(1l — p, 0)(0? — Dyye(Ny)), (32



thus

- (02 = Dave(MN1))
Da've(‘Nﬂ = Dave(Nl) + mm(p, 1) 1+ (17\;1)}3
2

+ max(l - P, O)(Uz - Dave(jvl))a (33)

where
2
5 o

2 . (34)
’ (1 + (1—51(;1};-1\/2),)

The performance of this system at various values of p, Ny and N, is shown in Fig. 15, 16 and

17. Note that, in all the cases this system performs better than its unmatched version, 1.e.,

P/P DU.

5.5 System 5: P/PB HM

In Section 5.2 we showed that System 2 achieves a point on the line AB in Fig. 3 and in the
previous subsection we showed that by using matched encoder we can improve the achievable
distortion performance. In this section, we combine these two systems. We first split the
channel into two sub-channels. The primary channel occupies (p — 1)W,/p Hz of bandwidth
and the secondary channel occupies W,/p Hz of bandwidth. The block diagram of the encoder
is shown in Fig. 7. Tandem Encoder 1 is designed for (¢2,aP, (1 —a)P+ N2, p—1,0?). Tandem
Encoder 2 is a matched encoder and is designed for (02, (1 — a)P, Ny, p — 1,02 ). Note that

o’ is the variance of e and a; is the variance of e;. The outputs of Tandem Encoder | and

Tandem Encoder 2 are added and transmitted on the primary channel. The linear encoder
with parameters (o2, P) transmits e; on the secondary channel. Note that System 2 is a
special case of this system and can be obtained by fixing a = 1. The decoder when the channel
noise is Ny is shown in Fig. 8. The linear decoder has parameters (o2 , P, N1). The distortion
1s given by

0.2

{0+ i) (+ 5525)) 7 (04 )

The decoder when the channel noise is V; is shown in Fig. 9. Since X, € and e; are mutuall.

Dave(Nl) = (:{.-)v

asymptotically orthogonal,

Da'ue(NZ) = DX(/VQ) + Dg(ﬁVQ) + Dsl (/Vg) {3t



Since

lim Pr(X # X) = 0. (37)

D4 (N3) =0. ,
The first linear decoder in Fig. 9 has parameters (62 — 02 , (1 — a)P, N;) and estimates the

first { = min((p — 1)n,n) components of €. The other components are estimated as 0. Thus,

2 _ g2
D:(Nz) = min(p — 1, 1) ———3 + max(p — 2,0)(s? — 7?)). (38)
2 1+ QELP‘ 1

The second linear decoder with parameter (o2 , P, N;) estimates e;. Thus,

2

(o2
C(Ny) = T 39
DI(N2) l-}-[\% ( )
and
Daue(NZ) = Dé(NZ) +D61(N2)- (40)

5.6 System 6: PB/PB HM

In the design of Systems 1, 4 and 5, we have only one free parameter: a. The achievable distor-
tion performance was obtained by varying that free parameter. In this, system we generalize
most of the above systems by having two free parameters (a and b) instead of one. The block
diagram of this system is shown in Fig. 10. We split the channel into two sub channels. The
primary channel occupies (p — b)W./p Hz of bandwidth and the secor;dary channel occupies
bW./p Hz of bandwidth. Tandem Encoder 1. designed for (6% aP,(1 — a)P + Ny, p — b,0?).

splits X into X and e. Now, the n-dimensional vector e is split into two subvectors e; and ¢,
of dimensions (1 — b)n and bn (bandwidth splitting). respectively. A matched tandem encoder
(Tandem Encoder 2) designed for (2, (1 ~a)P. Ny.(p —b)/(1 —b), D.,(Ny)) encodes e;. Note
that &6 < min(p, 1). The outputs of Tandem Encoder 1 and Tandem Encoder 2 are added and

transmitted on the primary channel. A linear encoder with parameters (o2, P) transmits « .
on the secondary channel.

The block diagram of the decoder when tlic channel noise is Ny is shown in Fig.11. Tanden:

Decoder 1 and Tandem Decoder 2 decode \ and ¢, respectively. A linear decoder with

I~
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parameters (o2, P, Ny) obtains a linear estimate of e;. Now,

Dase(N1) = Dg(M)+ D(My) (41)
= (1—'b)De1(N1)+bDez(Nl)> (42)

where (42) follows from the fact that P(X # X)=0. ;From (12),

0.2

De, (M) = (43)

D.,(N) is equal to the optimal distortion when an i.i.d. Gaussian source of variance o? is

transmitted on a rate-one channel with noise variance N (N = Ny or N,) and power constraint

P. Thus,

0.2

D.,(N) = - : (44)
(1+ =) (14 )

The block diagram of the decoder when the channel noise is V; is shown in Fig. 12. Here,

Tandem Decoder 2 is replaced by a linear decoder with parameters (62— D,, (Ny), (1 —a)P, N,)
which estimates the first min(n,(p — b)n/(1 — b)) components of é;. A linear decoder with

parameters (o2, P, N;) estimates e;. Now,

Dyye(N2) = (1 = b)D,, (N2) + bD.,(N,). (45)
Note that,
D.,(N3) = D.,(N1) + Dz (N,). ‘ (46)

[t can be easily verified that

pP— b 0'3 - Del([v})

’1_b) 1+!1—CLP
No

D: (N2) = min(1

-b
+ max(1 — ‘1’——6,0)(0—3 —D. (M), (47
Substituting the values of o2, D, (N,), and D,,(N;) in (42) we obtain D,u.(N;). Thus.
Dyye(N1) and Dgyye(N2) are functions of a and b for given values of o2, P, Ny, Ny, and p

The best achievable region of System 6 can be obrained by solving the constrained optimiza-

tion problem

min /), .1\, (I~

a,b

21
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Figure 10: Block Diagram of the Encoder of System 6: PB/PB HM.

subject to:

Dave(Nl) S D, (49)

for various values of D.

Note that this system is a generalization of System 2, System 3 and System 4. These
systems are obtained by fixing (a = 1,6 =1), (a = 1,6 =0) and b = 0, respectively.

5.7 System 7: BP/BP HM

The systems discussed thus far perform well for p > 1. A system is said to be a dual
another system if its encoder is “similar” to the decoder at noise N; of the other system
[24]. The duals of System 1 to 6 perform well for p < 1. Here, we consider the dual
System 6. The name of this system is BP/BP instead of PB/PB because the bandwidtt.
splitting of the source and the channel are done before the power splitting. The block diagri.
of the encoder is shown in Fig. 13. Note that the encoder here is similar to the decod: -

in Fig. 11. The source X is split (bandwidth splitting) into two constituents X; and .\, -
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bandwidths (1 — bp)W; and bpW, (b < min(1,1/p)), respectively. Tandem Encoder 1 designed
for (02,aP, Ny + (1 — a)P, p/(1 — bp), 0?) splits X, into X; and e (power splitting). A matched
tandem encoder (Tandem Encoder 2) designed for (o2, (1 —a)P, Ny, (p—bp)/(1 — bp), D.(Ny))
encodes e. A linear encoder with parameters (02, (1 — a)P) encodes X,. The outputs of the
linear encoder and Tandem Encoder 2 are multiplexed and added to the output of Tandem
Encoder 1. Note that the bandwidth of the multiplexed output is the same as the bandwidth
of the output of Tandem Encoder 1. The block diagram of the decoder when the channel
noise is /Vq is shown in Fig. 14. Tandem Decoder | and Tandem Decoder 2 decodes X’l and €,
respectively. A linear decoder with parameters (o2, (1 —a)P, N;) finds a linear estimate of Xj.

The distortion (for general N) is given by
Dase(N) = (1= bp) D, (N) + bpDx, (V). (50)

Since P(X, # X,) = 0, Dx,(N) = D.(N). From (12),

0_2

De(Nl) =

(51)

Since the input to the linear decoder is equal to the sum of linear encoders output and the

channel noise (with large probability),

0_2

DX2(1V1) = 1—-{_—— =ap {H2)

M

When the channel noise is N3, a linear decoder with parameter (o2,(1 — a)P, N3) replaces

Tandem Decoder 2. This decoder finds a linear estimate of €. Using the same approach a~ 1,

previous sections, we get

o2 — DN

_ : p—bp p—bp .\ -
DXl(]YZ) = De(Nl)-i-mm (1, 11— bp) 1 N ‘,'.’.“i +max(1 - I—;TP,O)(O'e —De(Nl)). b
and
.TZ
DX2(L,\3‘ ) YR
v,
The achievable region now can be obtainc: wlving a constrained optimization prohl

similar to the one in Section 5.6.
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dB.

6 Comparison of Performance of Various Systems

In Fig. 15, 16 and 17, we compare the performance of the systems in Section 5. Fig. 15
corresponds to p = 2, N; = P/100 and N, = P, Fig. 16 corresponds to p = 1.5, Ny = P/2.5
and Ny = P, and Fig. 17 corresponds to p = 0.5, N; = P/100 and N, = P. In these figures, the
distortions (Dgaye(N1), Dave( V7)) are plotted in logarithmic scale. Thus the time-sharing curve
is no longer a straight line. Note that System 1 (P/P DU) outperforms the time sharing system
(B/B DU). Further, the matched version of System 1, i.e., System 4 (P/P DM) outperforms
System 1. Since System 4 is a special case of System 6, its performance is worse than System 6.
In Fig. 15, the performance of System 6 is better than the performance of System 5, while in
Fig. 16, System 5 outperforms System 6 for smaller values of Dg,.(/N2). For p < 1, the dual of

System 6, i.e., System 7 outperforms all the other systems in Fig. 17.

7 Nearly-Robust Code

A code is said to be nearly robust if it does not suffer from the (severe form of the) threshold
effect.

Definition 3 A code sequence {(an, Br)} is ~aid to be nearly-robust on N at N, if it satisfic

the power constraint and

Dave(N) = D) (N, (53

't
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Dave(Ni) < Dopt(N) (56)

V N; € R which are less than N and
Dae(N;) < 02 (57)
YV N; € R which are greater than N. Further, if N; < N; then
Dy (N;) < Dgue(N;), YNy, N; € R. (58)

Note that if a code is robust on N then it is nearly-robust on N at all N; € R. A code
sequence is said to be nearly-robust at N, if it is nearly robust at N on all finite N.

Consider an encoder of System 2. Let the tandem encoder be matched (P/B HM). We will
show that the above code is nearly-robust at NV,. Note that, for N < N,, from (27)

0.2

Dave(N) = .
I .

Whenever N > N,, the use of matched encoder facili_tates linear estimation of Xj. Proceeding

as in Section 5, we have

2 2
DXI(N) :min(p—l,l)al Pe +max(p—2,0)(02——ae), (60)
N
and
D.(N i
e = < ) 1
=57 1)
where
2
5 o
o, = - (62)
(1+%)
The net distortion
D,(N) = D¢ (N) + D.(N). (63)

It can be easily verified that this code is nearlyv-robust at N;. The above result holds provided
the decoder has a prior knowledge about the noise power N. Since the set R is finite, noise

power can be estimated (decoded) with probability one. Note that System 3 and System 4 are



not nearly-robust at N,. Fig. 18 shows the near robust performance of the above mentioned
system for p = 2. Note that the system is nearly-robust at N = P/10.
Now consider System 7 and p < 1. Fix b =1 and

A P\’ P ,
— 202 i) 1. 4
¢ P<1+N2> [<+N2) ] (64)

Since p < 1,0 < a < 1. Let Tandem Encoder 1 be a matched encoder designed for (¢2,aP, (1—
a)P + Ny, p/(1 — p),0?). Since b = 1, the rate is 0 for Tandem Encoder 2. Thus, Tandem

Encoder 2 can be removed from System 7 whenever b = 1. Note that this system is a dual of

System 2. From (50), (53), (54) and (64), we have

o
Dx,(Nz) = Dx,(N2) = (1+ P)P? (65)
N
and P
2
o
Dave(N2) = Dope(N3) = (1—+—P—)—3. (66)
TV; .
Further, if the noise power N < N,
a? _
Daye(N) = (1 = p) Dope(N2) + Sy (67)
N

Since 0?/(1+ (1 —a)P/N,) is equal to D,p(N2), 02/(14+ (1 —a)P/N) < Dyp(N2). This implies
that Daye(N) < Dopi(N7), for N < N.

For N > N,;, Tandem Decoder 1 is replaced by a linear decoder with parameters (o° -
Dopi(N3),aP, (1 —a)P + N). Thus,

) m = D (N
Dx,(N) = min(l, T—E—) Dope(Ng) + ———M + max(l — —p—,0)02. (s
—F R AT L=»
Since N > N,, X; can not be decoded corre«tlv Now the linear decoder which estimates \
has parameters (6%, (1 —a)P,aP+ N). Note t'...' 11 this case the output of Channel Encode
act as noise for the linear decoder. Thus,
l)Xz(]Vl '\.I_—; R \ i
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Figure 18: Near Robust Performance of System: P/B HM for p = 2.

Since

Dae(N) = (1= p)Dx, (N) + pDx,(N), (701

and Dy, (N),Dx,(N) < 0% D,.(N) < o All the properties of nearly-robust code at .\,
are satisfied by this code. Fig. 19 shows the near robust performance of the above mentioned
system for p = 1/2. Note that the system is nearly-robust at N = P/4. Furthermore, the L

traditional digital coding method suffers from the severe form of the threshold effect, while 11+

threshold effect of the proposed system is mild.

8 Conclusion

We proved the existence of a robust code when the source bar;dwidth and the channel |..
width are equal. Hybrids of analog and digital systems with achievable distortion rcu
better than the achievable distortion regions of time sharing and tandem systems are desiu: -
A nearly-robust code is defined and it is shown that a hybrid system is nearly-robust whe.

source bandwidth is not equal to the channel bandwidth.
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Appendix
Proof of Theorem 1: We rely on the following lemma for proving Theorem 1.

Lemma 3 Let A, be a sequence of random variables which converges with probability one
(w.p.1) to a. Let B, converges w.p.1 to b. Let F: R* — R, C, = F(Ay,, B,) and ¢ = F(a,b).

If F is continuous at (a,b) then C, converges w.p.1 to c.

The proof of this lemma follows directly from the continuity of F' at (a,b). We will only be
interested in the case where F'(A,, B,) = A,/B, and b # 0. Suppose a(X) = /P/c? X and
B(Z) = Vo?PZ/(P + N), then it can be easily shown that the optimal distortion (5) can be

achieved. This code, however, is not robust since § depends on N. We will replace P + N by
(1/n)]|Z]|? in the proof, hence making § independent of N.

Let a(X) = /P/oc?X. Note that E[||a(X)||*] = (P/o*)E[||X||*] = nP. Thus this encoder
satisfies the power constraint. Also let
R nValP el 2
X=p(2)= { 1212 z i nHZ“ 2

P
2
0 itz < £
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Observe that neither the encoder nor the decoder depends on N. The squared-error distortion

can be expressed as:

] 1 : :
Dn 2 —|lX = X = — {IX|? + I1X]* - 2X, X)} (72)
Note that
. 2P i1 2> B
£||X||2 D B < 77 A 1 2 (73)
n 0 if -:;”ZH2 < K

We apply Lemma 3 by setting A, = 02P = a, B, = ||Z||*/n and C, = || X||?/n. Note that
B, — P + N = b w.p.1 by the strong law of large numbers (SLLN). Obviously, the function
F given in (73) is continuous at (a,b) = (¢2P, P + N). Thus || X||*/n — 0®P/(P + N) w.p.1.

Also note that

@ X,z .
2%y =] “mre EHZPzE (74)
" 0 iz <

Again we apply Lemma 3, setting A, = 2Va2P(X, Z)/n, B, = ||Z||*/n and C, = 2(X, X)/n.
As before, B, — P+ N = b w.p.l. Also, by the SLLN, A, — 2rvo?Py/02(P + N) w.p.L,
where r is the correlation coeflicient between X; and Z;. It can be easily shown that r =
\/ﬁ/m. Thus A, — 202P = a w.p.l. By Lemma 3, we have 2(X, X)/n —
202PJ(P + N) w.p.1.

Lastly, we have || X||?/n — 0% w.p.1 by the SLLN. Combining these results to (72), we get

0.2

1 y w.p.1
D,=~||X-X||* & ——.
n“ I 1+ P/N

The above limit is D,,; when p = 1. The remainder of this proof is to show that the expectation
of D, converges to D,,. To do this, we need to show that D, isbuniformly integrable (see [23

pages 219-220, 347-348). By the triangular inequality,

Livwe  Liom, 2 . i
Do < SAIXN"+ ~J1XY° + = [LXX) (T

Note that || X||?/n is bounded by 2¢2. Thus
D, <, + 20° (77
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where 7, 2 || X|I2/n + 2|| X||||X||/n. We now show that 7, is uniformly integrable. This is
equivalent to showing that (i) £[y,] is bounded and (ii) V ¢ > 0,3 § s.t. P(A) < § ==
Ely.Z4) < €, where A is a measurable set and Z, is its indicator function (see [23], problem
16.19). By Schwartz Inequality E[y,] < o*(1 + 23) so (i) is proven. To prove (ii), Again by
Schwartz Inequality

1 s 1 H
BlwZal < ZEIIXIPZa) + 250 (B-IXIPZ4)) (78)
Now,
l n
—E[||X||2IA nZE [X2Z,4). (79)
=1

Define 7; 2 Tix2<)), where X is a positive number to be chosen later. Note that X?n; < \. Thus
E[X!T4] = E[X!Zand+ E[XITa(1 - ni)]

< AE[T4] + E[XE(1 - ny)] ,
AP(A) + E[X*(1 — ). (80)

Note that

EXH-m) = [,

4>

2% fx(2)dz =2 /; 2* fx (z)dz, (81)

where fx(-) ~ N(0,0%). Given € > 0, 3 a sufficiently large A s.t. E[X*(1 — n:)] < €/2.
For this A, we choose § = ¢/(2)). If P(A) < é, we have E[X?Z4] < ¢, which implies that
E[v.T4] < €. This result indicates that v, is uniformly integrable, which in turn implies that
D, is uniformly integrable. This along with the fact that D, — ¢%/(1 + P/N) w.p.1 implies
that E[D,] — o?/(1 + P/N).

Let X = {N, N, ..., Nk}. Thus, we have shown

7}1{& Daue(Nk) = Dopt(Nk)- (82)
V N.eRX O
Proof of Lemma 1: Let source rate be R,.

R, = lH()Z) (83)

n



1 )
= ~I(X;X) (84)
- ;1; (h(X) = A(X|X)) (85)
> —log(2reoy) — = j (e;]%;) (86)
= ;log 2rec?) %— 'n E.[h(e;|z; = z)] (87)
1 1 &1
> 3 log( 27rea ;L—Z iEz[log (2meVAR(e;|2; = )] (88)
> %log(27reaf) - %i % log (2re E.(VAR(e;|Z; = 2))), (89)

it
-

]

where VAR denotes the variance of a random variable. (83), (84) and (85) follows from the
definition of R, the fact that X is a function of X and the definition of mutual information.
(86) follows from the chain rule of differential entropy and the fact that conditioning reduces
differential entropy. (87) follows from the definition of conditional differential entro;;y. (88)
follows from the fact that a Gaussian distribution has the highest entropy for a given variance,
(89) follows from Jensen’s inequality.

| Without loss of generality, we assume that e; and Z; have zero mean. We further assume
that F(e?) and F(z?) are bounded. Let c; be the coefficient of correlation between e; and ..
Note that E.(VAR(e;|Z; = z)) is the minimum mean square distortion in estimating e; given

VAR

Z;. If we estimate e; from ; as €; = ¢; -‘m%%)):i,- then the distortion in estimating e; from r,
1 1

is less than (1 — ¢?)D;, where D; is E(e?). Thus,
E.(VAR(es|: = 1) < (1 — )Ds. "

From (11),

and from (12),




Thus,

;From (89), (90) and (93), we have

Jim =3 (og(1 ) + log(D.) 2 log(D) (94)
Thus,
- lim S log(1 = cf) < lim log ((”—bﬂ)—) (95)
< lim log (37——”5‘—’1) (96)
- 0. (97)

Since — log(1 - c?) > c2, we have

1 & ’
lim =Y ¢ =0. (98)
nmeen i=1

Now, the result follows from the fact that |E(e;;)| = lciI[E(e2)E(5s?)]§. O.

? 3

Proof of Lemma 2: Let

Nagn)(‘u’oﬂ) é (27r02)-—n/2 exp (_(I - ﬂ)T(x - ”)) ' (99)

202

That is, N (u,a?) is the joint probability distribution function (pdf) of an n-dimensional
Gaussian vector with mean vector p and covariance matrix o?L,. Let Proj(W, k) denotes a -
dimensional projection of a I-dimensional (I > k) vector W, i.e, if W = (wy,wa, ..., wk,. .., 1y
then Proj(W, k) = (wy, wa, ..., ws). We use the random coding argument to prove this lemma.

Let z,Z,y,z € R and define

e

fu(z,8) & NU(0,0% = D — DE))ND(E, D + D6y) (100,

foly,z) & N0, P, — N&)ND(y, N), (101

where D is given in (12). We define the two sets A", and A{™. The set A{") is a collection.

5,6

of all n-tuple pairs (X, X) = ((z},z},...,21). (i, &}, ..., L)) which satisfy

*n



1. | = flog fo(X) ! log(2meo?)| < e.

2
2. | — Llog fo(X) — Llog(2me(c? — D — D&))| < e.
3. | - Llog f,(X, X) — Llog((2me)X(D + Déy)(0? — D — D&,))| < e.
4Tk e —2))* = (D + Dé&y)| < e.

The distribution fs(X,X) is a product distribution, i.e., fS(X,X) = 1%, fs(zi, Z4). Ag’;) is
called the distortion typical set w.r.t. f, [18] (with distortion D + D&;). The set A™ is
a collection of all m-tuple pairs (y, z) which satisfies the first three conditions in the above

enumeration with f; replaced by f.. Ag:‘) is called the jointly typical set w.r.t. f, [18].

. Generation of Codebook. Generate a codebook C comprising of 2"%, | = max(m, n)-dimensional

i.i.d. Gaussian vectors of zero mean and variance 02 — D — Dé§;. The rate R will be decided
later. Enumerate the codebook from 1 to 2"f. A special codeword consisting of all-zero el-

ements is added to the codebooks and is referred to as the 0*codeword. The codebook C is
revealed to the encoder and the decoder. ’

Encoding. For an incoming n-dimensional source vector X, choose a codeword W € C, s.t.
(X,Proj(W,n)) € A%:’)t). If more than one of such codeword exist then choose one of them

randomly. If no such codeword exists then choose the 0t codeword. If the i* codeword W; is

chosen then transmit \/(PC — Né&)/(02 — D — Dé2)Proj(W;,m) on the channel provided the
code to be transmitted satisfies the power constraint. If the power constraint is not satisfied

send an all zero codeword on the channel and also say that the 0°* codeword is chosen.

Decoding. For a channel output Z, choose a codeword W € C, s.t.

(\/(Pc — Né1)/(62 — D — Dé3)Proj(W,m), Z) € Agm) If more than one or no such codeword

c,e)’

exists then choose and decode an all-zero codeword. If only one such codeword exists then

choose and decode X = Proj(W, n) provided ||Proj(W,n)||?/n < 02 — D — Dé, + €. Otherwise.

choose and decode an all-zero codeword.

Calculation of Distortion. The expected distortion is calculated over the random codebook

C. Let X denote a source vector and X be the decoded value. Define

D¢ = Ec[Ewl( X, X))|C], (1021
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where d(X, X) is the mean squared distortion. Denote d(X,X) by d. Let &, be the event

that the 0 codeword is chosen by the encoder (encoding error event). Let £y, be the event

that the chosen codeword of the decoder is not the same as the chosen codeword of the encoder

(decoding error event).

Dc = Ec[E(d|C)] = Ec[E(d|€,. NEL.NC)Pr (&, NELIC)]
+ Ec|E(dIES,, N Esc NC)Pr(ES, N EueclC)]
+ Ec[E (d|Eume N C) Pr(EunclC)] (103)

enc

Note that, the first term in the above summation is less than D + Dé; + €. Now consider the

second term in the above summation. Since the source vector belongs to Ag’fc) and since the

mean squared value of the decoder output is always bounded by 02 — D — Dé; + e,
E(d|E, N Egee NC)) < 40 +¢). (104)
Let I denotes the codeword chosen by the encoder:

onR

Pr(Esec N EL.IC) = D" Pr(I = i|C)Pr(Esec|(I = 3) N C). (105)

=1

Let B; be the event that (Z, Proj(W;,m)) € A™), where Z is the decoder input and W, is the

c,e )

7 codeword of C and let £, = . N (I =1). Note that, the event
& CBU (U BJ-> . (106
J#
Applying the union bound, we get

Pr(€h (I =i)NC) < Pr(BE|(I = 1nC)+ S Pr(B;|(I =4)NC). (17
J#

Thus,

2nR

Pr(€ac NELIC) < D Prd  /C)Pr(BI(I=1)NC)
=1

2nR

+ SN =iP(BsI(I=14)NnC) i

=1



Taking the expectation over the random codebook C, we have

gnR

Ee[Pr(€ac N E5,IC)] < 3 Ee[Pr(I = i|C)Pr(BS|(I =) N C)]

1=1

gnR

+ Y5 Ec[Pr(I = i|C)Pr(B;|(I =) NC)).

i=1 j#i

(109)

Since Pr(B¢|C N (I = 1)), depends only on the channel noise, Pr(B{|C N (I = 1)) < € for
sufficiently large m. Thus, the first term on the RHS of (109) is less than e. We need to show

that the second term on the RHS of (109) is also less than €. In order to prove this we rely on

the following lemma.
Lemma 4 [n the above encoding procedure,

n

log =25 —
PI‘(I — ZIC) < 2'2 (08 D+ D&, _6€>

)

for v # 0 and for any codebook C.

Proof: Let W, be the chosen codeword. Now,

Pr(I = i|C) = / £.(X)dz.

(x,Proj(wi,n))eal?

Note that, f,(X) < 23(-1os@res)+29) for (X, Proj(W;,n)) € A(). Thus,

Pr(I =4|C) < 2;—‘(—1og(27rea§)+2e)vol({x . (X, Proj(W;,n)) € Agz)})

From Theorem 9.2.2 in [18]

Vol({X : (X, Proj(Wi,n)) € Aﬁf?}) < 93 (log(2me(D+D82))+4e)
From (112) and (113), we get the required result. O
From the above lemma, we have

2nR 2nR

=1 j#i i=1 j#i

(110)

(11t

S S Ee[Pr(I = i|C)Pr(B;|(I = )N C)] < oy~ (ostoitm) o) SOS Ee[Pr(B|[(I = i) r ¢



Following similarly as in the proof of Theorem 10.1.1 [18], we get

Ee[Pe(B;|(I = 4) N C)] < 2~ F (los(1+7571)—6¢) (115)

From (114) and (115), we get

i . ) n(ZR—glog(l+kﬁM1-)-—%log 5?02’237'*'65)
S° ST Ec[Pr(I = 5|C)Pr(B;|(I = i) NC)] < 2 2 (116)
=1 ji
The above term can be made arbitrarily small if
1{p P. - Né 1 o?
-\= —— )+ - log —2—— | — 117
R<2<2l°g(1+ N )T zle 5 hs, ) T3 (117)

and hence the second term in (103) can be made arbitrarily small.

Now consider the third term of (103). Proceeding as in the proof of Theorem 3 in [24], we

can show that this term can be made arbitrary small for large n provided

2

l S
R > 510g-————D+D62

+ 3 (118)

It can be easily verified that for §; << 1 and é; = pé;, there exists B which satisfies (117) and
(118).
Thus, we have shown that averaged over all such codebooks the distortion is less than D+§.

Thus, there exists a codebook for which the distortion is less than D + 6. O
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