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The concept of uniform space is due to Weil(3). Is is well knocwn
that a uniformity is generated by the family of all pseudometrics that
are uniformly continuous(relative to the product uni formity)and that the
topology of a uniformity is completely regular. Given a completely reg-
ular space similar results can be obtained but by using pseudometrics
that are continumous. Thus the topology J of a completely regular space
is the topology of the family G of all pseudometrics which are continuous
(relative to the producﬁ topology); also G is the gage of the finest
oniformity whose topology is T. Every topology T has a finest completely
regular topology S coarser than T and S is the topology of all the pseudo-
metrics that are continuous(relative to the product topology I»<7). -

Unless otherwise specified the terminology used in this paper is
that of Kelley(1).

Let M be a set and T a topology for M. Denote by L the cartesian
product of M with itself and by (L, S)the product of the topological spaces
M, 70, (M, T). Let R denote the reals.

Definition 1. A non-negabtive function @ from L to R is said to be
a pseudometric for M iff for all x, y, z in M

(1) d(x, x) =0

=
L
I

(2) d(x, y) = d(y, x) and
The ordered pair (M, d) is said to be a pseudometric space. d is said

to be continuous(for M)iff & considered as a furction from L to R is



continuous with R having usual topology.

Theorem 1., Lgt (M, T7) be a topological spacé and d a pseudometric -
for M. Then 4 is continuous for M iff for each point x in M and each
r > 0 the set S(x, r) = {y: d(x, y) < r} is open in (M, 7).

Proof. Let x in M and r > 0 imply S(x, r) is open in (M, 7). To
prove d is continuous it is enough to prove that (x, y) in L and 2r > 0O
imply there is a neighborhood A of (x, y) such that [d(x, y) - d(u, v)| < 2r
for all (u, v) in A. Take A = S(x, r)><(S(y, r); then A is a neighbor-
hood of (x, y). Let (u, v) € A. Now d(», y) < d(x, u) + d(u, v) + da(v, y)
and so d(x, y) - d(u, v) s d(x, u) + d(v, y) <r +r = 2r, Similarly
a(u, v) - d(x, y) < 2r and so |d(x, y) - d(u,v)| < 2r.

Next, to prove the converse, let d be continuous and suppose x in M

and r > 0. Then d is continuous at (x, x) and so there is a neighbor-
hood A of (x, x) such that (u, v) in A implies |d(x, x) - d(u,v)| < r, i.e.,
d(u, v) < r. There are neighborhoods B, C of x such that B>C C A,
Then T = BN C is a neighborhood of x'in (M, T) and T><T c A, Hence u;Vv
in T implies (u, v) in A and so d(u, v) <r. Now x is in T and so v in
T implies d(x, v) < r and so v € S(x, r). Hence x € T S(x, r). Fory
€ 8(x, r) there is t > 0 such that S(y, t) « 8(x, r) and so S(x, r) will
contain a T-neighborhood of y, Hence S(x, r) is T-open.

In proving the converse it is enough to assume d is continuous at
each (x, x) for x in M. Hgnce the following corollary follows.

Corollary 1. d is continuous iff d is continuous on the diagonal
A= {(x, x): x € M},

Corollary 2. d is conbinuous for the pseudometric space (M, d).

Lerma 1. Let (M, T) be a topological space and f a function from

M to the reals. Define d by d(x, y) = |£(x) - £(y)

. Then d is a

™o
.



pse-_udomei;ric'for M and d is contimious iff f 1is continuous.

Proof. That d is a pseudometric is cbvious. Ncﬁi f is continuous
iff xdn M and r > 0 imply S(x, r) = {y: d(x, y) < r} = {ys |£(x) ~ £(y) | < r}
is in 7T,

Lemma 2, Let f be a continuous function from M to R, R ths usual
topology for R and f'R the inverse of Runder f. Define d as in Lemma 1.
Then £™*R is the topology of d.

| Definition 2. A topological space (M, ) and its tepology T are
said to be completely regular iff A is a closed subset of M and x not
in A imply there is a continuous function f from M to the closed unit
interval K = [0,1] such that f(x) = 0 and f4 = 1.

Definition 3. A topology T for M is ‘said to be finer than a
topology S for M (or S is coarsaf than T) iff S is a subfamily of 7.

Theorem 2. Let (M, T) be a completely regular space. There is
then a family F of pseudomstrics for M such that T is the coarsest
topology making each member of F continuous.

Proof, Let A be a closed subset of M and x not in A. There is
then a continuous functionf from Mto K such that f(x) = 0 and A = 1.
For all u, v in M take d(u, v) = .|f(u) - £(v) |« Then d is a continuous
pseudometric for M and the pseudometric topology Td of d is coarser
than T35 also y in A implies d(x, y) = 1. TFor each closed subset
A of M and each x not in A there is a pseudometric d with these proper-
ties; let F be the family of all such pseudometrics. For d in F, xin
Mand r >0 take S(d, x, r) = {y: d(x, y) <r} and let B be the family
of all such 5(d, x, r). Obviously B is a subfamily of 7. Let T €T
and x € T. Then the complement C of T is closed and so there is d in F

such that d(x, y) = 1 for all y € C. Then x € 8(d, x, %) € T. Hence &
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is a base for J. It now foilows easily that T is the coarsest topoiogy
such. that each d in F is céntinuoué.

Corollary. Let U be the uniformity for M generated by F. Then T
is the topology of U and each d in F is uniformly comtinuous. Let 6 be
the proximity of U defined by (A, B) € 8 iff each U in U intersects
A><B for A, B © M; then each d in F is a §-function if all the members
of F are totally bounded with the exception of at most one of them.

The last part of the corollary follows from Thampuran (2).

Theorem 3. Let (M, T) be a completely regular space and G the family
of all continuous pseudometrics for M. Let U be the uniformity generated
by G. Then T is the topology of U, i.e., T is the cearsest topology
making each member of G continuous. Also G is the gage of U.

Proof. The topology of U is obviously coarser than T, the F of
Theorem 2 is a subfamily of G and so the first part of the theorem
follows. For the last part it is only necessary to notice that each
member of G is in the gage of U and if d is in the gage of U then d
is continucus and so d is in G.

CoroTlary. Let V be a uniformity, for M, having T as its topology.
Then the gage of V is a subfamily of G and hence U is the finest uni-
formity with T as its topology.

Definition 4. A family G of pseudometrics for z set M is said to
be a gage iff there is a topology T for M such that & is the family of
all continuous pseudometrics on M>=<M relative to T><J. The family G
is said to be the gage of 7.

Definition 5. Let F be a family of pseudometrics for a set M
and let U be the uniformity, for M, generated by F. The topology
T of U is called the topology of F or the topology generated by F.

We will also say that F generates the gage of 7.
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Let (M, T) be a topological space and F the family of all continuous
pseudometrics on M. Then the topology S of F is evidently coarser than T.
But S = T when the space (M, T}_is completely regular and conversely.

Theorem L. A topological zpace (M, J) is completely regular iff
T is the topology of its gage.

Let (M, T) be a topological space and G the gage of T. Then the
topology of G is the finest completely regular topology coarser than J.

| _Theorem 5. Let (M, T) be a topological space. There is then a
finest completely regular topology S coarser than T and S is the topology
of the gage of 7.

Let F be a family of pseudometrics for a set M and T the topology
of F. Then the family of all sets of the form S(d, x, r) for d in F,
xin M and r > 0 is asub—basefof T. Now a pseudometric e for M is
continuous iff S(e, x, r) is in ¥ for each x in M and each r > 0 and
so e is continuous iff for each x in M and each r > O there is s > 0 and
there is a finite number dy,..., d, of members of I such that
Sldi, = 8) Ml S(dn, x; 8) € 8(e, x, T)s

Theorem 6. Let F be a family of pseudometrics for a set M and
let G 5@ the gage generated by F. Then a pseudometric d belongs to
G iff x in M and r > 0 imply there is s > 0 and there is a finite
subfamily dy,..., d, of F such that n{s(di, X, 8) ti=1,...y n}c8 (d,x,r).

Let (M, T) be a completely regular topological space and G the gage
of 7. Then T is the coarsest topology for M such that the identity
function from (M, :r_) to (M, d) is continuous for each d in G. Take

P to be theproduct ’G[Md: d € G} where M, = M for each d in G and assign

d
the product topology to P. ILet U, denote the projection of u in P to Md
and f the function from M to P defined by f(x)4 = x for each d in G

and each x in M. Then T is the coarsest topology for M such that f is

continuous. But f is one to one and hence f is a homeomorphism.
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Next assume T is Hausdorff and use the same notation as in the
preceding paragraph. Now the pseudometric space (M, d) is isometric
under a map hd to a metric space (M&%, d*) and so T is the coarsest
topology making each of the functions hd continuous. Let N be the
Cartesian product of Md% for d in G and define the function h from M to
N by h(x)d = hd(x). Assigning the product topology to N we see that T
is the coarsest topology for which h is continuous. Let x, y be two
distinct points of M. If h(x) = h(y) then hd(x) = hd(y) for each d
in G and so d(x, y) = O for each d in G. But then M is not Haysdorff.
Hence h is one to one and in this case h is a homeomorphism. Hence we
have:

Theorem 7. Legt (M, T) be alcompleteiy regular space and G the
gage of 7. Then M is homeomorphic to a subspace (actually the diagonal)
of the.product of all the pseudometric spaces (M, d) for d in G. If
T is Hausdorff then M is homeomorphic to a subspace of the product of
all the metric spaces (Md*’ a') for d in G.

We alsc have the following result. Let (M, T) be a completely
regular sﬁace, G the gage of T and U the uniformity generated by G.
Then the proximity § of U is the finest: . proximity whose topology is
T. This is because if §’is a proximity whose topology is T then &’

‘_is the proximity of some uniformity U’ and U’ is coarser than U.
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