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'1.'he concept of uniform space is due to l1eilO). Is is well known

that a uniformity is generated by the family of all pseudometrics that

are uniformly continuous(relative to the product uniformity)and that the

,topology of a uniformity is completely regular. Given a completely reg-'

ular space similar results can be obtained but by using pseudometrics

that are continuous. Thus the topology 1 of a completely regular spa.ce

is the topology oT the family G of all pseudomet..dci3 vJhich are continuous

(relati va to the product topolog;y); al[;o G is the g2.ge of the finest

l.miformi ty whose topology is j ~ Every topol.ogy ~T has a finest completely

regula.,!' topology S co,s,rser than1" and S is the topology of all ths pseudo-

metrics that are cont-inuous(relati ve to the product topology :T::><:r),

Unless otherv..>ise ,specified the terminology used 1.n thi s paper is

that of Kelley(l).

Let M be a set and T a topology for M. Denote by L the cartesian

product of M with itself 8"nd by (L, Shl1e product of the topological spaces

(M, 1V, (M, T). Let R denote the reals.

Defini ti on l. A non-negative function d from L to R is said to be

a pseudometric for M iff for all x, y, z in M

The ordered pair (}1, d) is said to be a pS9udoJl1etric space. d is said

to be continuous(for l1)iff d considered as a :L'unction from L to R is
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(1) d(x, x) = a

(2) d(x, y) = d(y, x) and

(3) d(x, y) d(x, z) + d(z, x).



continuous with R having usual topology.

Theorem 1. Let (1'1,1) be a t,opological space and d a pseudometric

for M. Then discontinuous f'or H iff for each point x in M and each

r > 0 the set Sex, r) = [y: d(X, y) < r} is open in (M, j).

Proof. Let x in M and r > 0 imply S (x, r) is open in (1-1,T). To

prove d is continuous it is enough to prove that (x, y) in Land 21'> 0

imply there is a neighborhood A of (x, y) such that \d(x, y) - d(u, v) I < 2r

for all (u, v) in A. Take A = Sex, r)>«S(y, r); then A is a neighbor-

hood of (x, y). Let (u, v) E A. Now d(x, y) ~ d(x, u) + d(u, v) + d(v, y)

and so d(x, y) - d(u, v) ~ d(x, u) +, d(v, y) < r + l'= 2r.

d(u, v) - d(x, y) < 21' and so Id(x, y) - d(u,v) I < 2r.

Similarly

Next, to prove the converse, let d be continuous and suppose x in M

and r > O. Then d is continuous at (x, x) ~~d so there is a neighbor-

hood A of (x, x) such that (u, v) in A implies Id(x, x) d(u,v) I < r, i.eo,

d(u, v) < r.. TIlereare neighborhoods B, C of x such that B~C C A.

Then T = B n C is a neighborhood of x'in (M, j) and T><T cA. Hence u,V

in T implies (u, v) in A,and so d(u, v) < r. Now x is in T and so v in

T implies'd(x, v) < l' and so v E Sex, r). Hence x E T c Sex, r). For y

E Sex, 1') there is t > 0 such that S(y, t) c Sex, r) and so sex, 1')will

contain a j-neighborhood of y. Hence Sex, r) is j-open.

In proving the converse it is enough to assume d is continuous at

each (x, x) for x in M. Hence the following corollary follows.

Corollary 1. d is continuous iff d is continuous on the diagonal

6 = [(x, x): x EM}.

Corollary 2. d is continuous for the pseudometric space (M, d).

Lemma 1. Let (M, j) be a topological space and f a function from

M to the reals.. Define d by d(x, y) = If(x) - fey) I.
Then d is a
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ps~udometric for M.and d is continuous iff f is continuous.

Proof~ That d is a pseudometric is obvious. Now f is continuous

iff x in M and I':>0 imply Sex; 1') == lY: d(x, y) < r} = [y: If(x) - fey) 1< r}

is in 1.

Lemma 2. Let f be a continuous function ~rom M to R, R the usual

topology for R and r1R the inverse of RundeI' f. Define d as in Lemma 1.

Then f-1R is the topology of d~

Defin:t tion 2. A topological b'Pace (M, 1) and its topology 1 are

said to be completely regular iff A is a closed subset of M and x not

in A imply there is a continuous function f from M to the closed unit

interval K = [O,lJ such that f(x) = 0 and fA = 1.

Definition 3. A topology 1 for M is 'said to be finer than a

topology S for M (or S is coarser than 1) iff S is a subfamily of 1.

Theorem 2. Let (M, 1) be a completely regular space. There is

then a family F of pseudometrics for Msuch that 1 is the coarsest

topology making each member of F continuous~

Proof. Let A be a closed subset of M and x not in A. There is

then a continu'Jus functionf from 1'1to K such that fex) == 0 and fA ==1.

For all u, v in M take d(u~ v) = Ir(u) - f(v) I. Then d is a continuous

pseudometric for M and the pseudometric topology 1d of d is coarser

than 1; also y in A implies d (x, y) = 1. For each closed subset

A of M and each x not in A there is a pseudometric d with these proper-

ties; let F be the family of all such pseudometrics. For d in F, x in

M and I'> 0 take Sed, x, r) == [y: d(x, y) < r} and let B be the family

of all such Sed, x, r). Obviously B is a subfamily of 1. 1e t T E 1

and x E T. Then the complement C of T is closed and so there is d in F

such that d(x, y) == 1 for all y E C. Then x E Sed, x, ~) c T. Hence B
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is a base for 1. It now follows easily that 1 is tha coarsest topology

such that each d in F is continuous.

Corollary. Let U be the uniformity for M generated by F. ThenT

is the topology of U and each d in F is uniformly co~tinuous. Let 0 be

the proximity of U defined by (A, B) E 0 iff each U fa U intersects

A-:><.Bfor A, B c M; then each d in F is a o-function if all the members

of F are totally bounded with the exception of at most one of them.

The last part of the corollary follows from Th~uran (2).

Theorem 3. Let (M, 1) be a completely regular space and G the family

of all continuous pseudometrics for M. Let U be the uniformity generated

by G. Then 1 is the topology of U, i.e., 1 is the coarsest topology

making each member of G continuous. Also G is the gage of U.

Proof. The topology of U is obviously coarser than 1, the F of

Theorem 2 is a subfamily of G and so the first part ~f the theorem

follows. For the last part it is only necessary to notice that each

member of G is in the gage of U and if d is in the gage of U then d

is continuous and so d is in G.

Corollary. Let V be a uniformity, for M, having j as its topology.

Then the gage of V is a subfamily of G and hence U is the finest uni-

formi ty with 1 as its topology.

Definition 4. A family G of pseudometrics for a set M is said to

be a gage iff there is a topology 1 for M such that G is the family of

all continuous pseudometrics on M~r1 relative to 1::><.T '" The family G

is said to be the gage of 1.

Derini tion 5. Let F be a family of pseudometri~s for a set M

and let U be the unifor~ity, for M, generated by F. The topology

1 of U is called the topology of F or the topoJ.ogy gmerated by F.

We will also say that F generates the gage of 1.
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Let (M, 1) be a topological spac~ and F the f&~ly of all continuous

pseudometrics on M. Then the topology S of F is evidently coarser than T.

But S = 1 when the space (M, 1) is completely regular and conversely.

Theorem 4. A topological ,space (H} 1) is completely regular iff

1 is the topology of its gage.

Let (M, 1) be a topological space and G the gage of 1. Then the

topology of G is the finest completely regular topology coarser than 1.

Theorem ,. Let eM, 1) be a topological space. There is then a

finest completely regular topology S coarser than 1 and S is the topology

of the gage of 1.

Let F be a family of pseudometrics for a set M and 1 the topology

of F. Then the family of all sets of the'formS(d, x, r) for d in F,

x in M and r > 0 is a sub-base for 1. Now a pseudometric e for M is

continuousiff See, x, r) is in 1 for each x in M and each r > 0 and

so e is cQp.tinuousiff for each x in M and each r > 0 there is s > 0 and

there is a finite number dl,..., dn of members of F such that

S(dl, x, s) 11...n Sed , x, s) C See, x, r).n

Theol'em 6. Let F be a family of pseudometrics for a set M and

let G be the gage generated by F. Thena pseudo~etric d belongs to

G iff x in M and r > 0 imply there is s > 0 and there is a finite

subfamilydl,..., dn of F such that n[S(di' x, s) : i = 1,..., n} C S (d,x,r).

Let (M, 1) be a completely regular topological space and G the gage

of 1. Then T is the coarsest topology for M such that the identity

function from (M, 1) to (M, d) is continuous for each d in G. T8.ke

P to be the,product ><. [Md: d E G} where Md = M for each d in G and assign

the product topology to P. Let, ud denote the projection of u in P to Md

and f the function from M to P defined by f(x)d = x for each d in G

and each x in M. Then 1 is the coarsest topology for M such that f is

continuous. But f is one to one and hence f is a homeomorphism.
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Next assume j is Hausdorff and use the same notation as in the

preceding paragraph. Now the pseudometric space (M, d) is isometric

under a map hd to a metric. space (Md*' d*) and so j is the coarsest

topology making each of the functions hd continuous.
Let N be the

Cartesian product of Md~ for d in G and define the function h from M to

N by h(x)d = hd(x), Assigning the product topology to N we see that r

is the coarsest topology for which h is continuous. Let x, y be two

distinct points of M. If hex) = hey) then hd(x) = hd(Y) for each d

in G and sod(x, y) = 0 for each d in G. But then M is not Ha~sdorff.

Hence h is 011e to one and in this case h is a homeomorphism. ~~e~

have:

Theorem 7. Let (M, r) be a ,completely regular space and G the

gage of r. Then M is homeomorphic to a subspace (actually the diagonal)

of the product of all the pseudometric spaces (M, d) for d in G. If

T is Hallsdorff then 11 is homeomorphic to a subspace of the product of

all the metric spaces (Md*' ~*) for d'in G.

We also have the following result. Let (M, 1) be a completely
.

regular space, G the gage of T and u the uniformity generated by G.

Then the proximity 6 of U is the finest:.. proximity whose topology is

T. This is because if 6 I is a proximi ty whose topology is r then 6'

is the proximity of some uniformity U' and ul is coarser than U.
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