L

o
[

o]

9/6\ 8C NP =2

o
"
AY)
i

t2

inolo

A

ter

col

o

are

LH
£

AT

o
3

st

0

e

T

DPEr CO!

]

&

P




o

Composition of fanction

.

s
Wilad

ion; thus ck repres

Definition 1. Let il he a to

1is

r

A £
8L}

is said tc be regular iff A a

(=

will be denoted by

-

-1
Il'g

ent c(ki) for A <

re will write x for A.

pological

c¢losged

point not in A imply x and A have disjoint neighborhoods,
Definition 2. A set~valued set~function n from the

power set, of I, to itself is said to he a neighdborhood
function for M iff for all subsets A,B of H
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at each point I,

It is easy to shor» that f is continuous iff
n. mo i,

Let R be the reals. Define a neighborhood function
r for the reals as follovs, u, v will denote rezl numbers,

(175,50 ) if 1/2 < u
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5 - Mo (1/4,00 ) if /3 & u £1/2
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(1L/(n+2), 1,/(:13-—1,‘3 if 1/{n+1)< u €1l/a,mn=73
(~0,0] difu s 0

P rA s U{ru tu & A ift A (= 00,0} (\m) (v 00)
for some O<Lv

s rh = (U {:m u & } (J ro if (0,1/m) < &
for gofie M = 132; 5554

It is obvious that a set A is a neighborhood of a
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Lemme. Let (3i,k) be a tonological space, S(t) = K

let S(%t) be on

open set such that k3(t) < S(u) when % u. Define a

function ¥ froaz M to the neighborhood spzce (R,r} by

£(x) inf {JG X S(t}} for 211 x in .
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Proof, Lel y & k., First consider the case where
S s \ i | D Loz ; B
£(y) is in (1/(n+1)}, 1/n] , m = 3,4,..+.. It ig enough

to show that the inverse under £ of (1/(m +2), 1/(n-1)

is a2 meighborhocd of y. Let {x : 3y & 1/n -—1)}
THEH & 98 40 Kk 9fP %38 13 S1/C 1)) and so A = S€1/Cm=1)).

It is clear that y is in A end so A is & neighborhood of
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y. Next take B = {x ) i'(;{}>1/(3‘:+2}} « Then x in
eS(1/(m 4222 inplies £(x) > 1/(m+2), since f(x)gs1/(n+42
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would mean x & S(1/(m+2)), and so ¢S(1/(n+2)) C B,

Now y € eS(l/(tn+1)) since y & S5(1/(n+1)) would mean
f(y)sl/(m+1). de also know S{(1/(m+2)) C ksS(1/(m+2))
< S(1/(m+1)). Hence it follows v & ¢S{1/(m+1))

of y. This proves the continuity of f at v.
If £(y) < 0 then S(I/m) = { x s £(x)s1/n} is =
neighborhood of y for each m = 1,2,.... If f(y) is in
15, "'/c,] then }Lx x BLw) )1/4} ig a neighborhood of ¥
and if f(y)>1/2 then {xc P OPR) D13 } is & neighborhood

of y. Hence f is continuouns.

Theorem. A topological space (il,k) is regular iff
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A a closed subset and x a point, of M, not in A imply
there is a continuous function f from (li,k) to (R,r)
such that £f(x) = 0 and f is 1 on A,

Proof. Let the space be regular. Teke 3(t) = M for
t>1 and 5(1) = cA. Since (IM,k) is regular we can defin

by induction open neirghborhoods (%) of x such that
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1,245,444 together with an entity which is not a positive

integer and define r in the odbvious way.
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