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Abstract: Hand-offsin cellular communication systems cause interactions among cells
that can be modeled using multi-dimensional birth-death process approaches and the
concept of system state. However, exact numerical calculation of traffic performance
characteristics is hindered by unmanageably large system state spaces even for systems of
modest size. Previous analytical models get around the difficulty by isolating a cell of
interest and invoking a Poisson process assumption for hand-off arrivals to the cell.
Interactions among cells are characterized by relating the mean hand-off and departure
rates from cells. The current paper seeksto explore the interactionsin more detail. Two
additional approximate analytical models are devel oped for this purpose. Each of theseis
more complicated than the simple Poisson process model, but is analytically tractable — at
least for small system sizes. One model isolates a cluster of cells (rather than just the cell
of interest) from the system and invokes a Poisson process assumption for cells on the
cluster periphery. Performance is calculated for the central cell. The second model also
isolates a cluster of cells surrounding the cell of interest, but uses an equivalent two-state
Markov Modulated Poisson Process (MMPP) to characterize hand-off arrival processesto
the cell of interest from each of the neighboring cells. Poisson hand-off arrivalsto cells
on the cluster periphery are assumed. This approach has fewer states than the cluster
approach. Finally we present the exact solution for aregional coverage area consisting of
asingle seven-cell cluster. Teletraffic performance characteristics are computed for each
modeling technique and are compared. It was found that all are in close agreement with
the original “singleisolated cell, Poisson hand-off arrival model,” which requires the
|east states.
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|. Introduction

Computing the traffic performance characteristics of cellular communication
systems has been the focus of much research reported in the literature. Specifically, an
analytical model based on multidimensional birth death processes has previously been
developed [1]. The basic methodology set forth in [1] and [2] requires the representation
of acell by a suitable state description. Since individual cells interact with neighboring
cells through the hand-off process, a complete representation would require consideration
of system states — concatenations of the states of all the cellsin the region of coverage.
The size of the system state space is so overwhelmingly large, that some reasonable
assumptions and approximations are required for analytical tractability.

If one assumes that the hand-off arrival processto a cell follows a Poisson point
process, relating the mean hand-off arrival rates and departure rates (to/from) a cell can
capture the interactions between a cell and its neighbors. The detailed dependence of
instantaneous hand-off arrival ratesto a cell on knowledge of the states of neighboring
cellsisobviated. Thiseventually alows decoupling an individual cell from the system
with the result that only the state of an individual cell (rather than the state of the system)
must be considered. The size of the cell state space for cases of practical interest is quite
manageable and performance characteristics can be computed. In the current paper we
consider several potentially more thorough models of acell’ sinteraction with it
neighbors. First, we use an approximation, in which a cluster of cells surrounding the
cell of interest is considered, and hand-off arrivalsto the cells on the periphery of the
cluster are assumed to be Poisson. We call this the “isolated cluster, Poisson hand-off
arrival model.” This approach requires the consideration of cluster states
(i.e., concatenations of the states of all cellsin the cluster).

To reduce the number of cluster states that must be considered, we next consider
asimilar model in which again a cluster of cells surrounding the neighbors of the cell of
interest isisolated. But for the purpose of determining the hand-off arrival processto the
cell of interest, each of the neighboring cellsis assumed to generate hand-off arrivals
according to atwo-state Markov-Modulated Poisson Process. We call this the “two-state
MMPP neighbor model.” Finaly, acellular system whose coverage region consists of a
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single seven-cell cluster is solved exactly. Performance characteristics for the three
models are computed and compared with the “single isolated cell, Poisson hand-off
arrival model” proposed in [1].

Two related studies of the hand-off arrival process appear in [6] and [7]. In[6]
the hand-off arrival processis shown to be Poisson for a nonblocking system and the
authors conclude that the Poisson approximation for a blocking system yields reasonable
results. In[7] the authors analyze hand-off traffic between cells using a moment
matching technique and a*“virtual cell.” The“virtual cell” isamathematical abstraction
that is used to determine the offered traffic to neighboring cells. 1t is similar to the use of
an infinite server queue to model overflow traffic from a queuing system. Inthisway,
the authors are able to match the mean and variance of the hand-off arrival process. The
current work is different in that we analyze an entire cluster. The hand-off process
between cellsin the cluster is completely determined by the resulting birth-death
equations. In addition, our MM PP approximation allows higher order moments to be
considered and does not require the use of avirtual cell as the hand-off processis agan
accounted for in the birth-death equations that are devel oped.

This paper is organized as follows: In section |1 we describe the system under
consideration and the “single isolated cell, Poisson hand-off arrival model” that was used
in[1] [2]. Insection Il we describe “isolated cluster, Poisson hand-off arrival model”
and the procedure to compute cluster state probabilities. In section IV we present the
“two-state MM PP neighbor model. We conclude the paper with a discussion of the
calculation of relevant performance measures,(in section V), and a comparison of the

(models being discussed) and the exact solution of a seven-cell system (section V).

[1. System Description
We consider a cellular communication system in which each cell has atotal of C
channels available for calls. Some number, C;,, of these channelsis reserved for arriving
hand-off calls, but specific channels are not reserved. Therefore, new calls arising within
acell will be served if the total number of calls already in progressis less than C-C;, but
a hand-off call be served unless all C channels are occupied. For conveniencein
demonstrating the approach we assume that the system has hexagonal geometry and that



the cellular system is homogeneous. That is, al cells areidentical and have the same
statistical behavior.

Mobile platforms traverse the region and generate call demands. Each platform
can have at most one call at atime. The total number of noncommunicating platformsin
each cell isdenoted by No. Each platform generates calls according to a Poisson process

withintensity, L. We assume that Ny >>C so that each cell receives new call arrivals at

rateof L, = L* Noregardless of the number of calls already in progress.
The unencumbered session time is arandom variable, denoted by T and is

assumed to have a negative exponential distribution. Its pdf is given by
fr (t) = ms exp(- mgt). D

The mean of Tis T_:}/ng' The dwell time of a platform is denoted by Tp. We also

assume that Tp follows a negative exponentia distribution. Its pdf is given by

fr, (1) = m exp(- mpt). )
The negative exponential assumptions for T and Tp can be relaxed and a devel opment
following [3] can be used. However, for simplicity in the current discussion we will
assume T and Tp are negative exponential random variables. The problem isto compute
the performance characteristics for the system described above.

A thorough approach would be to consider system states [1]. Thiswould be the
concatenation of all the cell states. From this description of the system the solution for the
equlibrium system state probabilities may proceed. Unfortunately, this approach is
unfeasible in most situations. The number of states required to describe an entire system
of cellsisnormally very large and only small systems with afew cells can be considered
in this manner.

To circumvent this difficulty it was proposed in [1][2] that asingle cell be
considered. The interaction of this cell with its neighbors (due to hand-off) is
represented by relating the average hand-off departure rate to the average hand-off
arrival rate. Thistechnique has allowed many interesting systems to be studied.

The solution method presented in [1] and [2] can be used for the problem stated
above. One would proceed as follows:



The state of asingle cell can be defined as the number of channels currently in
use. We denoted the state with the variable v, note that v takes integer valuesin
theset {0,1,...,C}. Following the approach set forth in [1] we can identify the
driving processes. These are the random events that cause the state of a cell to
change. We have the following driving processes: 1) Generation of new calls 2)
Completion of calls 3) Arrival of hand-off calls 4) Departure of hand-off calls.
We can identify the state transitions and write the flow balance equations. The
iterative procedure described in [1] can then be used to solve for the state

probabilities, P(s), (s= 0,1,...,C), and the average hand-off arrival rate, ?.

Asdescribed in [1] the state transitions in a cell are coupled with the state
transitions of its neighbors. Thisis because a hand-off arrival to the cell of interest
corresponds to a hand-off departure from one of its neighbors. A rigorous solution would
require the computation of the system state probabilities. The method proposed in [1]
and [2] assumes that the hand-off arrivals comprise a Poisson point process with mean
arrival rate L. Thisallowsthe state transitions of a cell to be decoupled from the states
of its neighboring cells. The result isthat only asingle cell has to be considered and the
state space is of manageable size for many reasonable parameters of interest. Here we

will call this approach the original “single isolated cell, Poisson hand-off arrival model.”

I11. Isolated Cluster, Poisson Hand-off Arrival Model
A. State description

We consider acluster of seven cells, as shown in Figure 1. The state of the
cluster isastring of integers, which specifies the number of channelsin usein each cell.
For ssimplicity, we do not consider limit or quota constraints here[1]. So astateis
represented by a 7-tuple of integers, VoVvi V2 V3 V4 V5 Vg inwhich v | {0,1,2,...,C} for
i=0,1,...6. Thecell of interest has index i=0 and is located at the center of the cluster.
The states can be ordered |exicographically with astate index s, s=0,1,...,Smax, SO that
state s=0 corresponds to the all zeros sequence (000 0 0 0 0) and state S=Smax
corresponds to the sequence (C C C C C C C), dthough any ordering will suffice. The

state of the cluster can then be written so that each state variable is expressed as a



function of theindex s. That is, the string, (Vo(S), Va(S), Va(9), Va(S), Va(9), Vs(S), Ve(S))
gives the state variable values when the cluster isin state, s. The number of occupied

channelsin cell i of the cluster when the cluster isin state s, is Vi(S).

B. Driving Processes
Five driving processes can be identified which cause the state of the cluster to change.
These are:
1. New call arrivals - newly generated calls that arise within cells of the cluster.
2. Cal completions - calsthat are completed within cells of the cluster.
3. Hand-offswithin the cluster - calls that are on platforms that move from some cell of
the cluster to some other cell of the cluster.
4. Hand-off departures - calls that are on platforms that move from some cell of the
cluster to some other cell that is outside the cluster.
5. Hand-off arrivals — calls that are on platforms that move form some cell outside the
cluster to some other cell that isin the cluster.
A predecessor state for state sis any state x that can immediately give rise to state s upon
occurrence of an event in any of the driving processes. For each driving process and any
given state, s, the predecessor state can be found.
1. New call arrivals.
A cluster state x, is a predecessor state for state s due to new call arrivalsin thei™
cell if the state variables have the following relation
V.(S) =V (x,)+1 ©)
vi(s)=v(x,)  for it ] (4)

Recall that anew call will be served only if the number of occupied channelsin the
center cell islessthan C-C;,. So the above transition will take place only if vi(x,)< C-C.
The transition rate into cluster state sfrom cluster state x, is denoted as g,(X,,S) thisis

given by
9, (%, 8) =L, ®)

2. Call completions



When acall completesin thei™ cell, the state variable v; will decrease by one. A state
Xc is a predecessor of state sfor call completions if the state variables have the following
relationships

Vi(9) =vi (%)~ 1 (6)

Vi (s) =v;(x.) for i1 ] ()

Thetransition rate into s from X is given by
gc(xc’S) :VO(XC)NT% (8)
3. Hand-offswithin the cluster

A call that departs cell i, destined for cell j can experience one of two possible
outcomes. The destination, cell j, may have an available channel for the call, in this case
the call is served and the state variable v; will decrease by one while the state variable v,
will increase by one. One the other hand, the destination cell may have all of itsC
channelsin use. In this case, the state variable v; will remain unchanged while v; will

decrease by one.

Generaly, we will say that two cells, i and j, are neighborsiif it is possible for a
call to hand-off from one cell to the other. Since hand-offs are determined by power
measurements, the two cells need not necessarily be physically adjacent. Usually, andin
the simple model they are. Not all cellsin the cluster are neighbors of a particular cell i.
In the usual simple hexagonal case shown in Figure 1, the indices of neighboring cells are
related as follows: If i=0 then cellsj=1,2,3,4,5,6 are all neighbors of cell 0. However, if i
isdifferent from O then cell j isaneighbor of cell i if any one of the following holds: @)
]=0, b) [i-j|=1, c) |i-j|=5. Thelast condition allowsfor cells 6 and 1 to be neighbors.

For the case in which the hand-off is served in the target cell, the following
relationships must hold between a state and its predecessor state. A cluster state x4, isa
predecessor of cluster state s due to a hand-off departure from cell i destined for neighbor
J if the following relationships hold

Vi(s) =Vvi(xg) +1 )



V() =v;(x4)-1 (20)
Vv, (S) =V, (Xy) fork?i,]j (1)

For the case in which the target cell, j is fully occupied the following relationships
must hold:

Vi(s) =vi(xy) +1 (12)
Vi(s) =v;(x4) =C (13)
Vv, (S) =V, (Xy) for k1i,] (14

For convenience we assume that a hand-off departure froma cell isequaly likely to
target any of its (six, for the usual hexagonal case) neighboring cells. For ether case

described above the transition rate into cluster state s from cluster state x4 is given by
1
94 (X4:S) =gVi(Xd)>‘nb (15)

4. Hand-off departures

A platform in any of the outer cells (cells 1,2,3,4,5,6) may depart its current cell
and leave the cluster. If acall isin progress on board the platform then a hand-off
departure from the cluster is generated. In this scenario, only one state variableis
involved. A hand-off departing cell i (i=1,2,3,4,5,6), destined for a cell outside the
cluster will cause the state variable v; to decrease by one. Therefore, astate X, isa
predecessor state for state s due to a hand-off departure from cell i to acell outside the
cluster if the following relationships between the state variables hold:

Vi(9) =V (%) - 1 (16)

V;(8) =V, (x,) for j1i a7)

For the geometry shown in Figure 1, one half of the hand-off departures from acell on
the periphery of the cluster will be targeted to cellsthat are outside the cluster. Thusthe
flow into state s from state x, is given by

9,(X,,9) :%n'b %/, (X,) for 1=1,23456. (18)

5. Hand-off arrivalsto the cluster



An outer cell, say cell i (i=1,2,3,4,5,6), may receive hand-off arrivals from cells
that are outside the cluster. If this occurs the state variable v; will increase by one. A
cluster state x;, is a predecessor of cluster state sif the following relationships hold

V.(S) =V (x,)+1 (29

Vv, (s) =V, (%) for jti (20)

To determine the transition rate into state s from state x,,, we let L, denote the average
rate of hand-off arrivals to the cluster. For now we assume that L, is given but
subsequently we will solve for this quantity. If there are six cells on the periphery of the
cluster, aparticular cell in the outer ring will receive 1/6 of the total number of hand-offs
entering the cluster. Thus the transition rate into state s from state x, due to a hand-off

arrival from outside the cluster is

gh(xhns)zéxth (21)

C. Balance Equationsand Solution

We can write transition rate from cluster state x into cluster states. Thisissimply
the sum of all component flows under each driving process. Let q(x,s) be the transition
rate state x to state s (for x* s). Thisisgiven by

q(x,8) =9, (X, 8) +9.(X,8) + 9, (X,5) +g,(X,5) +g,,(X,9) (22)
Notethat if cluster state x is not a predecessor state of sunder any of the driving
processes then q(x,s)=0. Thetotal flow out of state s (s=0,1,2,...,Smax), Can be expressed
as

459 =- & als.k) 23

k=0
kls

In order to find the equilibrium cluster state probabilities, we write the flow
balance equations for the cluster states. These comprise the following set of
simultaneous equations for the unknown cluster state probabilities, P(s).

P06 )=0 . j=0L2Smx 2

i=0



Sigax
a

=0

P(J)=1 (25)

The above equations express that in equilibrium the net probability flow into astateis

zero and the sum of the probabilitiesis unity.

D. Determination of the hand-off arrival rate

The solution of the cluster state probabilities, P(s) s=0,1,2,...,Smax requires
knowledge of the hand-off arrival rate in the Markov chains representing the neighbors.
In the derivation of the flow balance equations we assumed that L, (the average hand-off
arrival rate to the cluster) was known. However, L, isafunction of the cluster state
probabilities and the system parameters. Its value can be determined by noting that for a
homogeneous system in statistical equilibrium, the average hand-off departure rate from
a cluster must equal the average hand-off arrival rate to the cluster. ThevaluelL, can be
determined by an iterative computation. From the cluster state probabilities we can
compute the average hand-off departure rate. Let Dy, be the average hand-off departure

rate from the cluster it is found from the following

o 6 1
D, = Z%o é?’i (5)%m, *P(3) (26)

As stated before, when the system isin statistical equilibrium the average hand-off
departure rate from a cluster is equal to the average hand-off arrival rateto acluster. This
is expressed mathematically by the following

L, =D, (27)
Equations (31)-(34) can be used in the iterative procedure described in [1]. The
following steps are used to compute the cluster state probabilities P(s) and the hand-of f
arrival rate to the cluster, Ly
1. Makeaninitial guessat L.
Solve the flow balance equations ((24) and (25))
Compute Dy, from equation (26)
Update L =D
Goto step 2.

g A~ W D
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The above procedure is repeated until the relative change in the state probabilities, P(s),
and the hand-off arrival rate, L, iswithin a set tolerance.

The method above produces the cluster state probabilities, P(s), which can be
used to compute performance characteristics such as blocking probability, hand-off
failure probability, carried traffic, hand-off activity, and forced termination probability.
Before discussing the performance measures we next discuss an additional approximation

that can reduce the number of states needed to describe a cluster.

V. Two-State MM PP Neighbor Model

In order to use the isolated cluster, Poisson hand-off arrival model to compute
cluster state probabilities, the number of occupied channels in each cell of the cluster is
used to describe the state of the cluster. This can lead to an extremely large number of
cluster states. In general, the number of states needed for a cluster with seven cellsand C
channels per cell is(C+1)’. Asan example, if each cell depicted in Figure 1, had only
five channels, the total number of states needed to describe the cluster is 6'= 279,936.
We see that the size of the state space can quickly become overwhelming.

We consider approximating each of the cells that are neighbors of the (center) cell
of interest, atwo state Markov Chain. This approximation technique is based on work
presented in [4] and [5]. Following the notation of [5] atwo state MMPPis
parameterized by an infinitesimal generator matrix Q® and by L, both are 2x2 matrices

and have the form

&er, Iyu

Q®@= & o o L'J (28)
eh - ha
d, Ou

L®@= éO | a (29)
e 1u

Figure 2 shows atwo state Markov chain in which the flow out of state O isro and the
flow out of state 1isry. Thel o and| 1 beside state O and state 1 are meant to remind the
reader that when the chainisin state O Poisson arrivals occur at rate L o and when the
chainisin state 1 Poisson arrivals occur at ratel ;. We aso define the vector P=[Pg, P4]

as the equilibrium state probabilities for the 2 state Markov chain. The vector P isthe
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solution to the balance equation PQ®=0 and the normalization equation Pg+P;=1. This

leads to the following expressions for the equilibrium state probabilities

(30)

(31)

We will need expressions for the moments of the MMPP’ s arrival rate for use in the
approximation. The n™ moment of the arrival rate of the atwo state MM PP, denoted by
m", is found by the following

m'=P[L @]"1 (32)

Where 1 isa2x1 column vector of ones. From the above we can compute the variance of

the arrival rate as s=m?—(m)?. Asin [4] and [5] we define atime constant for the process

& (at (33)

In the above equation r (t) is the covariance function of the arrival rate. If | (t) represents
the instantaneous arrival rate of the MMPP at timet thenr (t) is defined by r (t)=E{ (I (t)-
m)(I (t+t)-m)}. For ageneral MMPP with infinitesimal generator Q, rate matrix L and

equilibrium probability vector P, the covariance function is given by
r (t)=PL (exp(Qt)-1P)L 1 (34)

where 1 is an appropriately dimensioned column vector of ones. (see[4] and [5] for

details). For the two state MM PP we have the following expression for the time constant
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1%
:S—d(t)dt
1(;'3 Iy uo d 0 el u (39
~gP, P wé]ﬂp P, "o m?U
5 g ]QO I ] r - 1ug e 1@{1

Our approximation of the neighborsis based on fitting the mean, m, variance, s,
third moment, m® and the time constant, t, of the MM PPs to appropriate values which

are determined from the hand-off departure process from the center cell.
A. Cluster State Description

Consider figure 1 again, we wish to use the two-state MM PP discussed in the
previous section. In this case we describe the state of the cluster (shown in Figure 1) as
the number of occupied channelsin the center cell along with the state of the MMPP in
each neighbor (either O or 1). We will denote the state of the cluster as
(Vo,a1,82,83,84,85,85). The state variable v isthe number of occupied channelsin the
center cell and it takesvauesintheset {0,1,...,C}. The statevariable a;, i=1,2,...,6,
denotes the state of the MM PP describing the i neighbor. Each a; takes on valuesin the
set {0,1}. We can again order the states using theindex s, s=0,1,...,.Smax. N this casethe
state s=0 is the all zero sequence (0,0,0,0,0,0,0) while state s=Smax IS the sequence
(C1,1,1,1,1,1). We note that modeling the neighbors with two state MM PPs greatly
reduces the number of states required to describe the cluster. In general the number of
cluster states needed is (C+1)* 2°. For a system with five channelsin each cell the
number of cluster statesis 6*2°=384. Recall that for the same number of channels the
number of cluster states needed in the corresponding isolated cluster, Poisson hand-off
arrival model is 6’= 279,936. When using the two-state MMPP neighbor model, we will
let vo(s) denote the number of occupied channelsin the center cell when the cluster isin
state s, and we will let a(s) denote the state of the i™ neighbor’s MM PP when the cluster
isin state s.
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B. Predecessorsand Rate equationsfor 2-state Approximation

A similar approach to finding the cluster state probabilitiesisused. Specificaly,
we find al permissible states and their predecessor’ s under each of the driving processes.
For this case we can identify 5 driving processes, these are
1. New cdl arrivalsin the center cell.

Call completionsin the center cell.
Hand-off departures from the center cell.
Hand-off arrivals to the center cell.
Changesin the state of a neighbor’s MM PP.

o b~ W DN

The resulting flow balance equations are then solved iteratively.

Recall that we have reduced the number of states used to represent the neighbors
of the cell of interest. Therefore, we cannot say that a hand-off departure from the center
will cause a change in the state of the MMPP in the destination cell. Likewise, a hand-off
arrival to the center cell from the i™ neighbor will not necessarily decrease the state
variable . Thisisthe mgor difference between the 2-state MM PP approximation and
the model discussed earlier.

1. New call arrivalsto the center cell.
A cluster state x, is a predecessor state for state s due to new call arrivalsin the center
cell if the state variables have the following relation
Vo(S) =V (x,) +1 (36)
a(s)=a(x,) for i=12,...6 (37)

Recall that anew call will be served only if the number of occupied channelsin the
center cell islessthan C-C;.. So the above transition will take place only if vo(X,)< C-Ci.
The transition rate into cluster state s from cluster state x, is denoted as g,(X,,S) thisis

given by
0,(x,,8) =L, (38)

2. Call completionsin the center cell

14



A cluster state X is a predecessor of state s due to call completions in the center

cell if the following holds

Vo(S) =Vo(X:)- 1 (39)
a(s)=a(x.) for i=12,..6 (40)

The flow into state s from state x. is given by
gc(xcls) :VO(Xc)an (41)

Where vo(Xc) isthe number of occupied channelsin the center cell when the cluster isin
state Xc.

3. Hand-off departuresfrom the center cell

A cluster state xq, is a predecessor of cluster state s due to a hand-off departure from

the center cell if the following hold

Vo(8) =Vo(Xy) - 1 (42)
a(s)=a(xy) for i=12,..6 (43)

The transition rate is given by

Jq (X4,S) = Vo(Xy) XM, (44)
4. Hand-off arrivalsto the center cdll

A hand-off arrival will be served in the center cell when the cluster isin state sif the
state variable vo(s) islessthen C. A state x;, is a predecessor for state s due to a hand-off
arrival to the center cell if the state variables are related by

Vo (S) = V(%) +1 (45)
a(s)=a(x,) for i=12,..,6 (46)
Recall that each neighbor’s MMPP can be in one of two states (either O or 1). When a
neighbor'sMMPPisin statei it generates hand-offs at ratel ;. So the flow into cluster

state s from cluster state x, due to hand-off arrivals to the center cell is given by

1¢
On (%, 8) = gg‘ll a (%) (47)
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5. Changesin the state on the neighboring MM PPs.

From Figure 2 we see that for any cluster state x, the state variables a;(x) may
either increase from 0 to 1 (if &(x)=0) or decrease from 1 to O (if a(x)=1). We call these

right transitions and left transitions respectively.

A state x is a predecessor for state s due to aright transition in the i neighbor if
the following holds

a(s)=1 and a(x)=0 (48)

a(s) = a(x) ifjr i andwvo(s) = Vo(x) (49

The rate of flow into cluster state s from cluster state x; is
g,(x.,s)=r, (50)

A state x is a predecessor for state s due to aleft transition in the i neighbor if
the following holds

a(s)=0 and a(x)=1 (51)

aj(s) = ay(x) ifj* i andwvo(s) = vo(x) (52)

The rate of flow into cluster state s from cluster state x; is

9,(x,8)=r (53)
As before we can write the total flow out of cluster state x into cluster state s. In this case
we write

A(%,9) =7, (X, 9) +7,(%,9) + Gy (X,9) +G, (X S) +7, (X,9) +g, (X, 9) (54)

We also have the same balance and normalization equations as (24) and (25). The
bal ance equations can be solved to find the cluster state probabilities for the system in
which each neighbor of the cell of interest is modeled as a two-state state MMPP.

C. Solution of Equilibrium State Probabilities

Again our development has assumed that the two-state MM PP parameters are

known. Specifically, we assumed that | o, | 1, ro, and r; were known when we devel oped
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the previous flow balance equations. However, these parameters must be related to the
hand-off departure process from the center cell. We choosel o, | 1, o, and r; so that the
first three moments and the time constant (defined in (35)) of the MMPP arrival rate are
equivalent to those of the hand-off departure process from the center cell. The moments
and the time constant are chosen to be equivalent because the system has been assumed
to be homogeneous, therefore, the hand-off departure and arrival processes should be
identical.

From the cluster state probabilities we can compute the moments of the hand-off

departure rate from the center cell. Thei™ moment is denoted by D_h and itisgiven by

1ax

(Vo (K)xmy ) <P(K) (55)

Qo?

D, =

=~
1l

0

The variance of the hand-off departure rate is given by
5 —\2
VAR(D,) =D, - (D) (56)

Computing the time constant of the hand-off departure rate is slightly more involved.
When the cluster isin state s hand-off departures from the center cell occur at arate of
Vo(S)*mp. So we see that hand-off departures from the center cell form an MMPP as well.

We can define the covariance function, r (t), asin (34) we repeat it here
r (t)=PL (exp(Qt)-1P)L 1 (57)

In the equation above P is the equilibrium cluster state probabilities, Q isthe

(Sxt1)” (Smext1) transition rate matrix. That is, Q has elements q(x,s) denoting the
flow into cluster state s from cluster state x. These are simply the coefficients of the
balance equations and are given by (54). The diagona elements of Q, q(s,s), are found
using (23). Thematrix L isan (Smaxt1)” (Smax+1) diagonal matrix that gives the hand-

off departure rate from the center cell for each cluster state. It has the following form
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&0 m 0 - Y
e u
= 0 v, (D* 0 .
L=e O w@™m > (58)
g : : ‘. : u
g O O VO(Smax)*n]DH

We denote the time constant for the hand-off departure process from the center cell as T

it can be computed from the following

1

_ Ll 1./ P
T_W[PLQP Q™L1-(0, )] (59)

The reader isreferred to [4] and [5] for details of the MM PP modeling that was adapted
for the present paper.

For a homogeneous system we must have the following relationships for the

moments of the hand-off departure process from the center cell and the hand-off arrival

process.
m=D, (60)
s = VAR(D,) (61)
m® =D, (62)
te=T (63)

We see from equations (60)-(63) that we must choose the 2-state MM PP parameters (1 o,

| 1, ro, and r4) so that the moments and the time constant match those of the hand-off
departure process from the center cell. The equationsto computel o, | 1, ro, and r1 from a
set of desired moments and time constant (D_h VAR(Dy), Eh ,and T) aregivenin [4], we

repeat them here

1

= Ten) (4
_h

fo= T(1+h) (65)

| , =D, ++/VAR(D,)/h (66)
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|, =D, - \/VAR(D,)h (67)

where

n=1+3p- Vara?] (©)
and

i - D. - 3D,VAR(D,)- (D, f (69)

[VAR(D,)]

Using equations (64)-(69) and applying them to the problem on hand, we have a method
to compute the two state MM PP parameters so that the mean, variance, third moment and
the time constant are equivalent to those of the hand-off departure process from the center
cell. To compute the equilibrium cluster state probabilities, P(s), we used the following
algorithm

1. Makeaninitia guess at the MMPP parameters| o, | 1, ro, and rs.
2. Solve resulting flow balance equations for P(s).

3. Compute hand-off departure statistics (D_h VAR(Dy), D; , and T) using (55), (56),
and (59).

4. Update MMPP parameters using (64)-(69).

5. Goto step 2.

The above process is stopped when the relative change in the MM PP parametersis less

than a set tolerance.
V. Seven-Cedl System — Exact Solution

For comparison we compute the performance of asimple seven-cell system. The
analysisisvery similar to that used for the isolated cluster with Poisson hand-off arrivals
(to the cluster) that was discussed earlier. In this case however, the entire system consists
of just seven cells (see Fig. 1). Thisimpliesthat we have no hand-off arrivalsinto the

cluster, since there are no cells outside the cluster that are servicing cals.

19



To describe the system we require (C+1)” system states and we identify the
following driving processes.
1. New call arrivals - newly generated calls that arise within cells of the cluster.
2. Cal completions - calsthat are satisfactorily completed.
3. Hand-offswithin the cluster - calls that are on platforms that move from someto

another cell.
4. Hand-off departures - calls that are on platforms that move from some cell of the
system to some other cell that is outside the system.

Note that these processes are identical to the first four driving processes of the isolated
cluster model. In this case, the hand-off departure process (number 4 in the above list)
represents the departure of calls from the system/coverage area. The identification of
predecessor states and transition rates flows is essentially similar to that already described
for the isolated cluster model. The resulting flow-bal ance equations can then be solved to
find the system state probabilities. The flow-balance equations are of the same form as
(24) and (25), but the transition rate from state i into statej is given by

q(i, 1) =9, 0, J) +9.30, J) +94 (1, J) +9, (. ) (70)
The only difference between (70) and (22) is that the component due to hand-off arrivals
to the cluster (gu(i, j)) is not present. The solution for the state probabilities requires the
solution of the probability flow balance equations, (24) and (25). Note that the solution
does not require an iterative procedure like to ones described above. Thisis because all

cell-to-cell interactions are accounted for by using system states.

V1. Performance M easures

Using the modeling techniques described above we can compute the equilibrium
cluster state probabilities, P(s) were s=0,1,...,Smax. We can compute various performance
characteristics from the cluster state probabilities. We will be concerned with the
performance in the center cell of the cluster. All the following discussions will assume
that we are measuring the performance of the center cell in the cluster. Since we have
assumed a homogeneous system, all the other cellsin the system should have the same
performance characteristics.
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A. Blocking probability

The blocking probability is defined as the fraction of new call attempts that are
denied access to achannel. Recall that a new call will be blocked if the number of
occupied channelsin the cell is greater than C — C,. So for a given cluster state s, anew
call attempt will be blocked if vo(s)3 C— C,,. We can compute blocking probability as

follows

P,= aP®© (72)

{svp(s)*C-Cy}
B. Hand-off failure probability

The hand-off failure probability is the fraction of hand-off attempts that fail to
capture achannel in their target cell. A hand-off attempt will fail if the number of
occupied channelsis equal to C. We can compute the hand-off failure probability as

o o] 1
a a vi(9xm P(s)
PH - {s.v(;;a))(:(;} |;-1 (72)
ad (s) xmy, xP(s)

s=0 i=1

The above is the hand-off failure probability for the general cluster model. For the two-
state MM PP model we have the following

6
1
P, = {Srvso‘;:):;:} ;1 -
o
a a 6 * a (s) XP(S)

o

1

172}

C. Forced termination Probability

The forced termination probability is defined as the probability that a call that
initially gains access to the system is interrupted due to a hand-off failure during its
lifetime. We denote the forced termination probability by Per. Let D be the probability
that a active call will require a hand-off before its unencumbered session time expires.
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Since both T and Tp are negative exponential random variables D= ”% The

m, +m)’
probability that acall is force to terminate on its K™ hand-off attempt is denoted as Y, .=
D% (1-P)*™* Py. The forced termination probability isthen given by

P,D

1- D(1- P,) (74)

3 s P
P =a Y= .
K=

Yo=a oy ipa- Pl =

VI1I. Discussion of Results

Numerical results were obtained using the models described above. For all the
reported results we set the mean unencumbered session duration to 100s ('T =100) and
the mean dwell time was set to 200s ('I'_D = 200). Figure 3isaplot of blocking

probability versus new call arrival rate per platform (L). The number of channels per cell
was set at 5 (C=5), and the number of noncommunicating platforms per cell was 50
(no=50). The probabilities where computed using the approximate models developed in
this paper and by the “single isolated cell, Poisson hand-off arrival model” discussed in

[1]. Inaddition, exact results for a seven-cell system were computed.

We see that over the range of arrival rates shown, the “single isolated cell,
Poisson hand-off arrival model” and the “more general cluster model” yield nearly
identical results. When the * 2-state MM PP neighbor model” is used the blocking
probability is seen to be dightly higher. The blocking probability for the seven-cell
system islower than the other three models over the entire range of arrival rates. This
result is expected since the cells surrounding the center cell carry lesstraffic, due to the
lack of hand-off arrivals. Therefore, they will tend to offer fewer hand-offs to the center
cell.

Figure 4 isaplot of hand-off failure probability for the same parameter values
given for figure 3. Again we see very close agreement between the “isolated cell” and
the “isolated cluster” models. The “2-state MM PP neighbor model” produces a larger
hand-off failure probability. As expected the hand-off failure probability is lowest when

we consider a seven-cell system.
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From figures 3 and 4 we notice that as the call demand increases the differences
between the three approximate models decreases. Thisis because the MMPP arrival
streams are beginning to behave like Poisson streams. Asthe call demand increases all
the cellsin the system will tend to have more channelsin use. The MMPP from each of
the neighboring cells will tend to remain in its highest (largest arrival rate offered to the
center cell) state. Inthelimit, the MMPPs/neighbors will always be in asingle state
representing a heavily loaded neighbor. Thus the MM PP streams reduce to ssmple
Poisson arrival streams. We also note that the results are reported for arelatively few
channels. We would expect that there would be a greater difference in computed

performance among the three models if the number of channels per cell were increases.

Figure 5 demonstrates the behavior of the two-state MM PP model and the smple
Poisson model as the number of channels per cell increases. We have plotted the

blocking probability versus the number of channels per cell. We define ¢ as the offered
traffic per channel per cell. Thisisgivenby ¢ = L m%nxc . To compare the models as

C increases we wish to keep ¢ fixed for al values of C. Thisisachieved by letting the

new call arrival rate per platform vary according to

(74)

For the system performance shown in Figure 5 we have let np = 200. We haveasolet C
vary from 3to 19 and c vary from 0.07 to 0.9. As expected we see that for low new call
offered traffic (c) the two models produce significantly different blocking probabilities.
However, for higher new call offered traffic the differenceisless. We also see that as the
number of channels per cell increases the difference between the two blocking
probabilities also increases. Also note that for all values of ¢ the curves have a
downward slope as C increases. We are observing the well-known queueing result that a
large number of servers are more efficient than a small number for the same offered load

per server.
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Figure 6 shows the hand-off failure probability for the same system as Figure 5.
We see that for alightly loaded system the 2-state MM PP model produces higher hand-
off failure probabilities.

VI1l. Conclusions

We have discussed two new approximate models to compute the performance
characteristics of cellular communication systems. Both consider a cluster of cells, in
which the hand-off arrival processto the center cell from a neighboring cell is modeled as
an MMPP. Thefirst model considered a cluster of seven cells and assumed that hand-off
arrivalsto the cluster followed a Poisson point process. The second model considered a
cluster of seven cells where the neighbors of the center cell were modeled using 2-state
MMPPs. The differences in performance characteristics generated via the various

models are small.

The greatest differences occur at low loading. The MMPP models differ from the
isolated cell, Poisson model, with the MM PP models and show higher probabilities of
call blocking and forced termination. Results for the cluster model lie between the
isolated cell model and the two-state MMPP model.  Under heavy traffic loading the two
model s produce results that are even closer to the “single isolated cell, Poisson hand-off
arrival model.” In the range of most interest, Pg=102-107, the difference between the
three modelsis small. These results provide additional evidence that the “single isolated
cell, Poisson hand-off arrival model,” [1], (which requires the fewest number of states)

can be used with increased confidence.
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Figure 1: Cluster of seven cdlls.
Arrows represent hand-off departures and arrivals to center cell.



Figure 2: Two-state Markov modulated Poisson Process.
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Figure 3: Blocking probabilities. T =100s,T, =100s, C =5, 1p = 50.




Probability

1.0E-1

1.0E-2 +
- S P\, isolated cluster
1.0E-3 Py, 7 cell exact
E —————— — PH isolated cell
_ Py 2-state MMPP neighbor

/
1.0E-4 — ,/

NN

Note: isolated cell and isolated cluster
coincide within accuracy of plot

1OE_5 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I | |
7.50E-5 1.75E-4 2.75E-4 3.75E-4 4.75E-4
New cdl arrivd rae

Figure4: Hand-off failure probabilities. T =100s,T, =100s, C =5, 1 = 50.
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Figure 6: Hand-off failure probabilities. T =100s,T, =100s, Vo = 50.
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