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Abstract:  Hand-offs in cellular communication systems cause interactions among cells 
that can be modeled using multi-dimensional birth-death process approaches and the 
concept of system state.  However, exact numerical calculation of traffic performance 
characteristics is hindered by unmanageably large system state spaces even for systems of 
modest size.  Previous analytical models get around the difficulty by isolating a cell of 
interest and invoking a Poisson process assumption for hand-off arrivals to the cell.  
Interactions among cells are characterized by relating the mean hand-off and departure 
rates from cells.  The current paper seeks to explore the interactions in more detail.  Two 
additional approximate analytical models are developed for this purpose.  Each of these is 
more complicated than the simple Poisson process model, but is analytically tractable – at 
least for small system sizes.  One model isolates a cluster of cells (rather than just the cell 
of interest) from the system and invokes a Poisson process assumption for cells on the 
cluster periphery.  Performance is calculated for the central cell.  The second model also 
isolates a cluster of cells surrounding the cell of interest, but uses an equivalent two-state 
Markov Modulated Poisson Process (MMPP) to characterize hand-off arrival processes to 
the cell of interest from each of the neighboring cells. Poisson hand-off arrivals to cells 
on the cluster periphery are assumed.  This approach has fewer states than the cluster 
approach.  Finally we present the exact solution for a regional coverage area consisting of 
a single seven-cell cluster.   Teletraffic performance characteristics are computed for each 
modeling technique and are compared.  It was found that all are in close agreement with 
the original “single isolated cell, Poisson hand-off arrival model,” which requires the 
least states.   
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I. Introduction 

Computing the traffic performance characteristics of cellular communication 

systems has been the focus of much research reported in the literature.  Specifically, an 

analytical model based on multidimensional birth death processes has previously been 

developed [1].  The basic methodology set forth in [1] and [2] requires the representation 

of a cell by a suitable state description. Since individual cells interact with neighboring 

cells through the hand-off process, a complete representation would require consideration 

of system states – concatenations of the states of all the cells in the region of coverage.  

The size of the system state space is so overwhelmingly large, that some reasonable 

assumptions and approximations are required for analytical tractability. 

If one assumes that the hand-off arrival process to a cell follows a Poisson point 

process, relating the mean hand-off arrival rates and departure rates (to/from) a cell can 

capture the interactions between a cell and its neighbors.  The detailed dependence of 

instantaneous hand-off arrival rates to a cell on knowledge of the states of neighboring 

cells is obviated.  This eventually allows decoupling an individual cell from the system 

with the result that only the state of an individual cell (rather than the state of the system) 

must be considered.  The size of the cell state space for cases of practical interest is quite 

manageable and performance characteristics can be computed.  In the current paper we 

consider several potentially more thorough models of a cell’s interaction with it 

neighbors.  First, we use an approximation, in which a cluster of cells surrounding the 

cell of interest is considered, and hand-off arrivals to the cells on the periphery of the 

cluster are assumed to be Poisson.  We call this the “isolated cluster, Poisson hand-off 

arrival model.”  This approach requires the consideration of cluster states 

(i.e., concatenations of the states of all cells in the cluster).   

To reduce the number of cluster states that must be considered, we next consider 

a similar model in which again a cluster of cells surrounding the neighbors of the cell of 

interest is isolated.  But for the purpose of determining the hand-off arrival process to the 

cell of interest, each of the neighboring cells is assumed to generate hand-off arrivals 

according to a two-state Markov-Modulated Poisson Process.   We call this the “two-state 

MMPP neighbor model.”  Finally, a cellular system whose coverage region consists of a 
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single seven-cell cluster is solved exactly. Performance characteristics for the three 

models are computed and compared with the “single isolated cell, Poisson hand-off 

arrival model” proposed in [1].   

Two related studies of the hand-off arrival process appear in [6] and [7].  In [6] 

the hand-off arrival process is shown to be Poisson for a nonblocking system and the 

authors conclude that the Poisson approximation for a blocking system yields reasonable 

results.  In [7] the authors analyze hand-off traffic between cells using a moment 

matching technique and a “virtual cell.”  The “virtual cell” is a mathematical abstraction 

that is used to determine the offered traffic to neighboring cells.  It is similar to the use of 

an infinite server queue to model overflow traffic from a queuing system.  In this way, 

the authors are able to match the mean and variance of the hand-off arrival process.  The 

current work is different in that we analyze an entire cluster.  The hand-off process 

between cells in the cluster is completely determined by the resulting birth-death 

equations.  In addition, our MMPP approximation allows higher order moments to be 

considered and does not require the use of a virtual cell as the hand-off process is again 

accounted for in the birth-death equations that are developed.      

 This paper is organized as follows: In section II we describe the system under 

consideration and the “single isolated cell, Poisson hand-off arrival model” that was used 

in [1] [2].  In section III we describe “isolated cluster, Poisson hand-off arrival model” 

and the procedure to compute cluster state probabilities.   In section IV we present the 

“two-state MMPP neighbor model.  We conclude the paper with a discussion of the 

calculation of relevant performance measures,(in section V), and a comparison of the 

(models being discussed) and the exact solution of a seven-cell system (section VI).  

 

II. System Description 

 We consider a cellular communication system in which each cell has a total of C 

channels available for calls. Some number, Ch , of these channels is reserved for arriving 

hand-off calls, but specific channels are not reserved.  Therefore, new calls arising within 

a cell will be served if the total number of calls already in progress is less than C-Ch, but 

a hand-off call be served unless all C channels are occupied.  For convenience in 

demonstrating the approach we assume that the system has hexagonal geometry and that 
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the cellular system is homogeneous. That is, all cells are identical and have the same 

statistical behavior.  

 Mobile platforms traverse the region and generate call demands. Each platform 

can have at most one call at a time.  The total number of noncommunicating platforms in 

each cell is denoted by N0.  Each platform generates calls according to a Poisson process 

with intensity, Λ.  We assume that N0  >>C so that each cell receives new call arrivals at 

rate of Λn = Λ∗ N0 regardless of the number of calls already in progress. 

 The unencumbered session time is a random variable, denoted by T and is 

assumed to have a negative exponential distribution. Its pdf is given by 

)exp()( ttf SST µµ −= .       (1) 

The mean of T is 
S

T µ
1= .  The dwell time of a platform is denoted by TD.  We also 

assume that TD follows a negative exponential distribution.  Its pdf is given by 

)exp()( ttf DDTD
µµ −= .       (2) 

The negative exponential assumptions for T and TD can be relaxed and a development 

following [3] can be used.  However, for simplicity in the current discussion we will 

assume T and TD are negative exponential random variables.  The problem is to compute 

the performance characteristics for the system described above. 

A thorough approach would be to consider system states [1].  This would be the 

concatenation of all the cell states. From this description of the system the solution for the 

equlibrium system state probabilities may proceed.  Unfortunately, this approach is 

unfeasible in most situations.  The number of states required to describe an entire system 

of cells is normally very large and only small systems with a few cells can be considered 

in this manner. 

To circumvent this difficulty it was proposed in [1][2] that a single cell be 

considered.  The  interaction of this cell with its neighbors (due to hand-off) is 

represented by relating the average hand-off departure rate  to the  average hand-off 

arrival rate.  This technique has allowed many interesting systems to be studied. 

The solution method presented in [1] and [2] can be used for the problem stated 

above.  One would proceed as follows: 
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The state of a single cell can be defined as the number of channels currently in 

use.  We denoted the state with the variable v, note that v takes integer values in 

the set {0,1,…,C}.  Following the approach set forth in [1] we can identify the 

driving processes.  These are the random events that cause the state of a cell to 

change.  We have the following driving processes: 1) Generation of new calls 2) 

Completion of calls 3) Arrival of hand-off calls 4) Departure of hand-off calls.  

We can identify the state transitions and write the flow balance equations.  The 

iterative procedure described in [1] can then be used to solve for the state 

probabilities, P(s), (s= 0,1,…,C), and the average hand-off arrival rate, ?h. 

 

 As described in [1] the state transitions in a cell are coupled with the state 

transitions of its neighbors.  This is because a hand-off arrival to the cell of interest 

corresponds to a hand-off departure from one of its neighbors.  A rigorous solution would 

require the computation of the system state probabilities.   The method proposed in [1] 

and [2] assumes that the hand-off arrivals comprise a Poisson point process with mean 

arrival rate Λh.  This allows the state transitions of a cell to be decoupled from the states 

of its neighboring cells.  The result is that only a single cell has to be considered and the 

state space is of manageable size for many reasonable parameters of interest.  Here we 

will call this approach the original “single isolated cell, Poisson hand-off arrival model.” 

 

III. Isolated Cluster, Poisson Hand-off Arrival Model 

A. State description 

 We consider a cluster of seven cells, as shown in Figure 1.  The state of the 

cluster is a string of integers, which specifies the number of channels in use in each cell.  

For simplicity, we do not consider limit or quota constraints here [1].  So a state is 

represented by a 7-tuple of integers, v0 v1 v2 v3 v4 v5 v6 in which vi ∈{0,1,2,…,C} for 

i=0,1,…6.  The cell of interest has index i=0 and is located at the center of the cluster.   

The states can be ordered lexicographically with a state index s, s=0,1,…,smax, so that 

state s=0 corresponds to the all zeros sequence (0 0 0 0 0 0 0) and state s=smax 

corresponds to the sequence (C C C C C C C), although any ordering will suffice.  The 

state of the cluster can then be written so that each state variable is expressed as a 
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function of the index s.  That is, the string, (v0(s), v1(s), v2(s), v3(s), v4(s), v5(s), v6(s)) 

gives the state variable values when the cluster is in state, s.  The number of occupied 

channels in cell i of the cluster when the cluster is in state s, is vi(s).   

 

B. Driving Processes 

Five driving processes can be identified which cause the state of the cluster to change.  

These are: 

1. New call arrivals - newly generated calls that arise within cells of the cluster.  

2. Call completions - calls that are completed within cells of the cluster.  

3. Hand-offs within the cluster - calls that are on platforms that move from some cell of 

the cluster to some other cell of the cluster.   

4. Hand-off departures - calls that are on platforms that move from some cell of the 

cluster to some other cell that is outside the cluster. 

5. Hand-off arrivals – calls that are on platforms that move form some cell outside the 

cluster to some other cell that is in the cluster.   

A predecessor state for state s is any state x that can immediately give rise to state s upon 

occurrence of an event in any of the driving processes.  For each driving process and any 

given state, s, the predecessor state can be found.    

1. New call arrivals. 

A cluster state xn is a predecessor state for state s due to new call arrivals in the ith  

cell if the state variables have the following relation 

1)()( += nii xvsv          (3) 
jixvsv njj ≠= for           )()(        (4) 

Recall that a new call will be served only if the number of occupied channels in the 

center cell is less than C-Ch.  So the above transition will take place only if vi(xn)< C-Ch. 

The transition rate into cluster state s from cluster state xn is denoted as γn(xn,s) this is 

given by  

 nnn sx Λ=),(γ          (5) 

2.  Call completions 
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When a call completes in the ith cell, the state variable vi will decrease by one.  A state 

xc is a predecessor of state s for call completions if the state variables have the following 

relationships 

1)()( −= cii xvsv          (6) 
jixvsv cjj ≠= for           )()(        (7) 

The transition rate into s from xc is given by 

Sccc xvsx µγ ⋅= )(),( 0         (8) 

3.  Hand-offs within the cluster 

A call that departs cell i, destined for cell j can experience one of two possible 

outcomes.  The destination, cell j, may have an available channel for the call, in this case 

the call is served and the state variable vi will decrease by one while the state variable vj 

will increase by one.  One the other hand, the destination cell may have all of its C 

channels in use.  In this case, the state variable vj will remain unchanged while vi will 

decrease by one.   

Generally, we will say that two cells, i and j, are neighbors if it is possible for a 

call to hand-off from one cell to the other.  Since hand-offs are determined by power 

measurements, the two cells need not necessarily be physically adjacent.  Usually, and in 

the simple model they are.  Not all cells in the cluster are neighbors of a particular cell i. 

In the usual simple hexagonal case shown in Figure 1, the indices of neighboring cells are 

related as follows: If i=0 then cells j=1,2,3,4,5,6 are all neighbors of cell 0.  However, if i 

is different from 0 then cell j is a neighbor of cell i if any one of the following holds: a) 

j=0, b) |i-j|=1, c) |i-j|=5.  The last condition allows for cells 6 and 1 to be neighbors.  

 

For the case in which the hand-off is served in the target cell, the following 

relationships must hold between a state and its predecessor state.  A cluster state xd, is a 

predecessor of cluster state s due to a hand-off departure from cell i destined for neighbor 

j if the following relationships hold 

1)()( += dii xvsv         (9) 
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1- )()( djj xvsv =         (10) 

jikxvsv dkk ,for         )()( ≠=       (11) 
 
For the case in which the target cell, j is fully occupied the following relationships 

must hold: 

1)()( += dii xvsv         (12) 
Cxvsv djj == )()(         (13) 

jikxvsv dkk ,for          )()( ≠=       (14) 

For convenience we assume that a hand-off departure from a cell is equally likely to 

target any of its (six, for the usual hexagonal case) neighboring cells.  For either case 

described above the transition rate into cluster state s from cluster state xd is given by 

 Ddidd xv
6
1

sx µγ ⋅= )(),(        (15) 

4.  Hand-off departures 

A platform in any of the outer cells (cells 1,2,3,4,5,6) may depart its current cell 

and leave the cluster.  If a call is in progress on board the platform then a hand-off 

departure from the cluster is generated.  In this scenario, only one state variable is 

involved.  A hand-off departing cell i (i=1,2,3,4,5,6), destined for a cell outside the 

cluster will cause the state variable vi to decrease by one.  Therefore, a state xo is a 

predecessor state for state s due to a hand-off departure from cell i to a cell outside the 

cluster if the following relationships between the state variables hold:   

1)()( −= oii xvsv         (16) 
 ijxvsv ojj ≠= for           )()(        (17) 

For the geometry shown in Figure 1, one half of the hand-off departures from a cell on 

the periphery of the cluster will be targeted to cells that are outside the cluster.  Thus the 

flow into state s from state xo is given by 

 )(),( oiDoo xv
2
1

sx ⋅= µγ  for  i = 1,2,3,4,5,6 .      (18)     

5.  Hand-off arrivals to the cluster 
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An outer cell, say cell i (i=1,2,3,4,5,6), may receive hand-off arrivals from cells 

that are outside the cluster.  If this occurs the state variable vi will increase by one.  A 

cluster state xh is a predecessor of cluster state s if the following relationships hold 

 1)()( += hii xvsv         (19) 
 ijxvsv hjj ≠= for           )()(        (20) 

To determine the transition rate into state s from state xh, we let Λh denote the average 

rate of hand-off arrivals to the cluster.  For now we assume that Λh is given but 

subsequently we will solve for this quantity.  If there are six cells on the periphery of the 

cluster, a particular cell in the outer ring will receive 1/6 of the total number of hand-offs 

entering the cluster.  Thus the transition rate into state s from state xh due to a hand-off 

arrival from outside the cluster is  

 hhh 6
1

sx Λ⋅=),(γ         (21) 

. 

C.  Balance Equations and Solution 

We can write transition rate from cluster state x into cluster state s.  This is simply 

the sum of all component flows under each driving process.  Let q(x,s) be the transition 

rate state x to state s (for x ≠  s).  This is given by 

),(),(),(),(),(),( sxsxsxsxsxsxq hodcn γγγγγ ++++=    (22) 

Note that if cluster state x is not a predecessor state of s under any of the driving 

processes then q(x,s)=0.  The total flow out of state s (s=0,1,2,...,smax), can be expressed 

as 

 ∑
≠
=

−=
max

0

),(),(
s

sk
k

ksqssq         (23) 

In order to find the equilibrium cluster state probabilities, we write the flow 

balance equations for the cluster states.  These comprise the following set of 

simultaneous equations for the unknown cluster state probabilities, P(s). 

 ∑
=

=⋅
max

0

0),()(
s

i

jiqiP  ,  j = 0,1,2,...,smax    (24) 
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 ∑ =
=

max

)(
s

0j
1jP          (25) 

The above equations express that in equilibrium the net probability flow into a state is 

zero and the sum of the probabilities is unity.   

 

D.  Determination of the hand-off arrival rate 

The solution of the cluster state probabilities, P(s) s=0,1,2,…,smax, requires 

knowledge of the hand-off arrival rate in the Markov chains representing the neighbors.  

In the derivation of the flow balance equations we assumed that Λh (the average hand-off 

arrival rate to the cluster) was known.  However, Λh is a function of the cluster state 

probabilities and the system parameters.  Its value can be determined by noting that for a 

homogeneous system in statistical equilibrium, the average hand-off departure rate from 

a cluster must equal the average hand-off arrival rate to the cluster.  The value Λh can be 

determined by an iterative computation.  From the cluster state probabilities we can 

compute the average hand-off departure rate.  Let ∆h be the average hand-off departure 

rate from the cluster it is found from the following 

∑ ∑ ⋅⋅=∆
= =

max

)()(
s

0s

6

1i
Dih sPsv

2
1

µ        (26) 

As stated before, when the system is in statistical equilibrium the average hand-off 

departure rate from a cluster is equal to the average hand-off arrival rate to a cluster.  This 

is expressed mathematically by the following 

 hh ∆=Λ          (27) 

Equations (31)-(34) can be used in the iterative procedure described in [1].  The 

following steps are used to compute the cluster state probabilities P(s) and the hand-off 

arrival rate to the cluster, Λh: 

1. Make an initial guess at Λh. 

2. Solve the flow balance equations ((24) and (25)) 

3. Compute ∆h from equation (26) 

4. Update Λh=∆h. 

5. Goto step 2. 
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The above procedure is repeated until the relative change in the state probabilities, P(s), 

and the hand-off arrival rate, Λh, is within a set tolerance. 

 The method above produces the cluster state probabilities, P(s), which can be 

used to compute performance characteristics such as blocking probability, hand-off 

failure probability, carried traffic, hand-off activity, and forced termination probability.  

Before discussing the performance measures we next discuss an additional approximation 

that can reduce the number of states needed to describe a cluster.  

 

IV.  Two-State MMPP Neighbor Model 

In order to use the isolated cluster, Poisson hand-off arrival model to compute 

cluster state probabilities, the number of occupied channels in each cell of the cluster is 

used to describe the state of the cluster.   This can lead to an extremely large number of 

cluster states. In general, the number of states needed for a cluster with seven cells and C 

channels per cell is (C+1)7.  As an example , if each cell depicted in Figure 1, had only 

five channels, the total number of states needed to describe the cluster is 67= 279,936.  

We see that the size of the state space can quickly become overwhelming. 

We consider approximating each of the cells that are neighbors of the (center) cell 

of interest, a two state Markov Chain.  This approximation technique is based on work 

presented in [4] and [5].  Following the notation of  [5] a two state MMPP is 

parameterized by an infinitesimal generator matrix Q(2) and by Λ(2), both are 2x2 matrices 

and have the form 

Q 







−

−
=

11

00)2(

rr
rr

        (28) 

Λ 







=

1

0)2(

0
0
λ

λ
        (29) 

Figure 2 shows a two state Markov chain in which the flow out of state 0 is r0 and the 

flow out of state 1 is r1.  The λ0 and λ1 beside state 0 and state 1 are meant to remind the 

reader that when the chain is in state 0 Poisson arrivals occur at rate Λ0 and when the 

chain is in state 1 Poisson arrivals occur at rate λ1.  We also define the vector P=[P0, P1] 

as the equilibrium state probabilities for the 2 state Markov chain.  The vector P is the 
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solution to the balance equation PQ(2)=0 and the normalization equation P0+P1=1.  This 

leads to the following expressions for the equilibrium state probabilities 

10

1
0 rr

r
P

+
=          (30) 

10

0
1 rr

r
P

+
=          (31) 

We will need expressions for the moments of the MMPP’s arrival rate for use in the 

approximation.  The nth moment of the arrival rate of the a two state MMPP, denoted by 

mn, is found by the following 

 mn=P[Λ(2)]n1         (32) 

Where 1 is a 2x1 column vector of ones.  From the above we can compute the variance of 

the arrival rate as σ=m2 –(m)2.  As in [4] and [5] we define a time constant for the process 

as 

 dttc )(
1

0
∫
∞

= ρ
σ

τ         (33) 

In the above equation ρ(t) is the covariance function of the arrival rate.  If  λ(t) represents 

the instantaneous arrival rate of the MMPP at time t then ρ(t) is defined by ρ(t)=E{(λ(τ)-

m)(λ(τ+t)-m)}.  For a general MMPP with infinitesimal generator Q, rate matrix Λ and 

equilibrium probability vector P, the covariance function is given by 

 ρ(t)=PΛ(exp(Qt)-1P)Λ1       (34) 

where 1 is an appropriately dimensioned column vector of ones.  (see [4] and [5] for 

details).  For the two state MMPP we have the following expression for the time constant 
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dttc

λ
λ

λ
λ

σ
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σ
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  (35)  

 Our approximation of the neighbors is based on fitting the mean, m, variance, σ, 

third moment, m3 and the time constant, τc, of the MMPPs to appropriate values which 

are determined from the hand-off departure process from the center cell. 

A.  Cluster State Description 

Consider figure 1 again, we wish to use the two-state MMPP discussed in the 

previous section.  In this case we describe the state of the cluster (shown in Figure 1) as 

the number of occupied channels in the center cell along with the state of the MMPP in 

each neighbor (either 0 or 1).  We will denote the state of the cluster as 

(v0,a1,a2,a3,a4,a5,a6).  The state variable v0 is the number of occupied channels in the 

center cell and it takes values in the set {0,1,…,C}.  The state variable ai, i=1,2,…,6, 

denotes the state of the MMPP describing the ith neighbor.  Each ai takes on values in the 

set {0,1}.  We can again order the states using the index s, s=0,1,…,smax.  In this case the 

state s=0 is the all zero sequence (0,0,0,0,0,0,0) while state s=smax is the sequence 

(C,1,1,1,1,1,1).  We note that modeling the neighbors with two state MMPPs greatly 

reduces the number of states required to describe the cluster.  In general the number of 

cluster states needed is (C+1)*26.  For a system with five channels in each cell the 

number of cluster states is 6*26=384.  Recall that for the same number of channels the 

number of cluster states needed in the corresponding isolated cluster, Poisson hand-off 

arrival model is 67= 279,936.  When using the two-state MMPP neighbor model, we will 

let v0(s) denote the number of occupied channels in the center cell when the cluster is in 

state s, and we will let ai(s) denote the state of the ith neighbor’s MMPP when the cluster 

is in state s. 
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B.  Predecessors and Rate equations for 2-state Approximation 

 A similar approach to finding the cluster state probabilities is used.  Specifically, 

we find all permissible states and their predecessor’s under each of the driving processes.   

For this case we can identify 5 driving processes, these are  

1. New call arrivals in the center cell. 

2. Call completions in the center cell. 

3. Hand-off departures from the center cell. 

4. Hand-off arrivals to the center cell. 

5. Changes in the state of a neighbor’s MMPP. 

The resulting flow balance equations are then solved iteratively.  

Recall that we have reduced the number of states used to represent the neighbors 

of the cell of interest.  Therefore, we cannot say that a hand-off departure from the center 

will cause a change in the state of the MMPP in the destination cell.  Likewise, a hand-off 

arrival to the center cell from the ith neighbor will not necessarily decrease the state 

variable ai.  This is the major difference between the 2-state MMPP approximation and 

the model discussed earlier.      
1.  New call arrivals to the center cell. 

A cluster state xn is a predecessor state for state s due to new call arrivals in the center 

cell if the state variables have the following relation 

1)()( 00 += nxvsv          (36) 
621ifor           xasa nii ,...,,)()( ==       (37) 

Recall that a new call will be served only if the number of occupied channels in the 

center cell is less than C-Ch. So the above transition will take place only if v0(xn)< C-Ch. 

The transition rate into cluster state s from cluster state xn is denoted as γn(xn,s) this is 

given by  

 nnn sx Λ=),(γ          (38) 

2.   Call completions in the center cell 
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A cluster state xc is a predecessor of state s due to call completions in the center 

cell if the following holds 

1)()( 00 −= cxvsv         (39) 
621ifor           xasa cii ,...,,)()( ==       (40) 

The flow into state s from state xc is given by 

Sccc xvsx µγ ⋅= )(),( 0         (41) 

Where v0(xc) is the number of occupied channels in the center cell when the cluster is in 

state xc.   

3.  Hand-off departures from the center cell 

A cluster state xd, is a predecessor of cluster state s due to a hand-off departure from 

the center cell if the following hold  

1xvsv d00 −= )()(         (42) 
621ifor           xasa dii ,...,,)()( ==       (43) 

The transition rate is given by 

 Dddd xvsx µγ ⋅= )(),( 0        (44) 

4.  Hand-off arrivals to the center cell 

A hand-off arrival will be served in the center cell when the cluster is in state s if the 

state variable v0(s) is less then C.  A state xh is a predecessor for state s due to a hand-off 

arrival to the center cell if the state variables are related by 

 1)()( 00 += hxvsv         (45) 
 621ifor         xasa hii ,...,,)()( ==       (46) 

Recall that each neighbor’s MMPP can be in one of two states (either 0 or 1).  When a 

neighbor’s MMPP is in state i it generates hand-offs at rate λi.  So the flow into cluster 

state s from cluster state xh due to hand-off arrivals to the center cell is given by 

 ∑=
=

6

1i
xahh hi6

1
sx )(),( λγ        (47) 
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5.  Changes in the state on the neighboring MMPPs. 

From Figure 2 we see that for any cluster state x, the state variables ai(x) may 

either increase from 0 to 1 (if ai(x)=0) or decrease from 1 to 0 (if ai(x)=1).  We call these 

right transitions and left transitions respectively. 

A state xr is a predecessor for state s due to a right transition in the ith neighbor if 

the following holds 

ai(s)=1   and  ai(xr)=0        (48) 
 
aj(s) = aj(xr)  if j i≠  and v0(s) =  v0(xr)     (49) 

The rate of flow into cluster state s from cluster state xr is  

 0),( rsxrr =γ          (50) 

A state xl is a predecessor for state s due to a left transition in the ith neighbor if 

the following holds 

ai(s)=0   and  ai(xl)=1         (51) 
 
aj(s) = aj(xl)  if j i≠  and v0(s) =  v0(xl)     (52) 

The rate of flow into cluster state s from cluster state xl is  

 1),( rsxll =γ          (53) 

As before we can write the total flow out of cluster state x into cluster state s.  In this case 

we write 

),(),(),(),(),(),(),( sxsxsxsxsxsxsxq lrhdcn γγγγγγ +++++=   (54) 

 We also have the same balance and normalization equations as (24) and (25).   The 

balance equations can be solved to find the cluster state probabilities for the system in 

which each neighbor of the cell of interest is modeled as a two-state state MMPP.   

C.  Solution of Equilibrium State Probabilities 

 Again our development has assumed that the two-state MMPP parameters are 

known.  Specifically, we assumed that λ0, λ1, r0, and r1 were known when we developed 
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the previous flow balance equations.  However, these parameters must be related to the 

hand-off departure process from the center cell.  We choose λ0, λ1, r0, and r1 so that the 

first three moments and the time constant (defined in (35)) of the MMPP arrival rate are 

equivalent to those of the hand-off departure process from the center cell.  The moments 

and the time constant are chosen to be equivalent because the system has been assumed 

to be homogeneous, therefore, the hand-off departure and arrival processes should be 

identical. 

 From the cluster state probabilities we can compute the moments of the hand-off 

departure rate from the center cell.  The ith moment is denoted by i
h∆  and it is given by 

 ( ) )()( 
max

0
0 kPkv

s

k

i
D

i
h ⋅⋅=∆ ∑

=

µ        (55) 

The variance of the hand-off departure rate is given by 

 VAR(∆h) = ( )22
hh ∆−∆         (56) 

Computing the time constant of the hand-off departure rate is slightly more involved.  

When the cluster is in state s hand-off departures from the center cell occur at a rate of 

v0(s)*µD.  So we see that hand-off departures from the center cell form an MMPP as well.  

We can define the covariance function, ρ(t), as in (34) we repeat it here 

 ρ(t)=PΛ(exp(Qt)-1P)Λ1       (57) 

In the equation above P is the equilibrium cluster state probabilities, Q is the 

(smax +1)× (smax +1) transition rate matrix.  That is, Q has elements q(x,s) denoting the 

flow into cluster state s from cluster state x.  These are simply the coefficients of the 

balance equations and are given by (54).  The diagonal elements of Q, q(s,s), are found 

using (23).  The matrix Λ is an (smax +1)× (smax +1) diagonal matrix that gives the hand-

off departure rate from the center cell for each cluster state.  It has the following form 
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 Λ












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



=

D

D

D

sv

v
v

µ

µ
µ

*)(00

0*)1(0
00*)0(

max0

0

0

L
MOMM

L
L

    (58) 

We denote the time constant for the hand-off departure process from the center cell as Τ 

it can be computed from the following 

 =T
)(VAR

1

h∆
[PΛ(1P-Q)-1Λ1- ( )2

h∆ ]     (59) 

The reader is referred to [4] and [5] for details of the MMPP modeling that was adapted 

for the present paper. 

 For a homogeneous system we must have the following relationships for the 

moments of the hand-off departure process from the center cell and the hand-off arrival 

process. 

 hm ∆=          (60) 

 σ = VAR(∆h)          (61) 

 33
hm ∆=          (62) 

 τc = Τ           (63) 

We see from equations (60)-(63) that we must choose the 2-state MMPP parameters (λ0, 

λ1, r0, and r1) so that the moments and the time constant match those of the hand-off 

departure process from the center cell.  The equations to compute λ0, λ1, r0, and r1 from a 

set of desired moments and time constant ( h∆ ,VAR(∆h), 3
h∆ , and Τ) are given in [4], we 

repeat them here 

 ( )η+Τ
=

1
1

0r          (64) 

 ( )η
η
+Τ

=
10r          (65) 

 ηλ /)(VAR0 hh ∆+∆=        (66) 
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 ηλ ⋅∆−∆= )(VAR1 hh        (67) 

where  

 [ ]24
2

1 δδ
δ

η +−+=        (68) 

and 

 
( )

[ ] 2
3

33

)VAR(

)VAR(3

h

hhhh

∆

∆−∆∆−∆
=δ       (69) 

Using equations (64)-(69) and applying them to the problem on hand, we have a method 

to compute the two state MMPP parameters so that the mean, variance, third moment and 

the time constant are equivalent to those of the hand-off departure process from the center 

cell.  To compute the equilibrium cluster state probabilities, P(s), we used the following 

algorithm 

1. Make an initial guess at the MMPP parameters λ0, λ1, r0, and r1. 

2. Solve resulting flow balance equations for P(s). 

3. Compute hand-off departure statistics ( h∆ ,VAR(∆h), 3
h∆ , and Τ) using (55), (56), 

and (59). 

4. Update MMPP parameters using (64)-(69). 

5. Goto step 2. 

The above process is stopped when the relative change in the MMPP parameters is less 

than a set tolerance. 

V. Seven-Cell System – Exact Solution  

For comparison we compute the performance of a simple seven-cell system.  The 

analysis is very similar to that used for the isolated cluster with Poisson hand-off arrivals 

(to the cluster) that was discussed earlier.  In this case however, the entire system consists 

of just seven cells (see Fig. 1).  This implies that we have no hand-off arrivals into the 

cluster, since there are no cells outside the cluster that are servicing calls. 



 20

To describe the system we require (C+1)7 system states and we identify the 

following driving processes: 

1. New call arrivals - newly generated calls that arise within cells of the cluster.  

2. Call completions - calls that are satisfactorily completed.   

3. Hand-offs within the cluster - calls that are on platforms that move from some to 

another cell.  

4. Hand-off departures - calls that are on platforms that move from some cell of the 

system to some other cell that is outside the system.  

Note that these processes are identical to the first four driving processes of the isolated 

cluster model.  In this case, the hand-off departure process (number 4 in the above list) 

represents the departure of calls from the system/coverage area.  The identification of 

predecessor states and transition rates flows is essentially similar to that already described 

for the isolated cluster model.  The resulting flow-balance equations can then be solved to 

find the system state probabilities.  The flow-balance equations are of the same form as 

(24) and (25), but the transition rate from state i into state j is given by 

 ),(),(),(),(),( jijijijijiq odcn γγγγ +++=     (70) 

The only difference between (70) and (22) is that the component due to hand-off arrivals 

to the cluster (γh(i, j)) is not present.  The solution for the state probabilities requires the 

solution of the probability flow balance equations, (24) and (25).  Note that the solution 

does not require an iterative procedure like to ones described above.  This is because all 

cell-to-cell interactions are accounted for by using system states.   

 

VI.  Performance Measures 

Using the modeling techniques described above we can compute the equilibrium 

cluster state probabilities, P(s) were s=0,1,…,smax.  We can compute various performance 

characteristics from the cluster state probabilities.  We will be concerned with the 

performance in the center cell of the cluster.  All the following discussions will assume 

that we are measuring the performance of the center cell in the cluster.  Since we have 

assumed a homogeneous system, all the other cells in the system should have the same 

performance characteristics. 



 21

A. Blocking probability 

The blocking probability is defined as the fraction of new call attempts that are 

denied access to a channel.  Recall that a new call will be blocked if the number of 

occupied channels in the cell is greater than C – Ch.  So for a given cluster state s, a new 

call attempt will be blocked if v0(s) ≥  C – Ch.  We can compute blocking probability as 

follows 

∑
−≥

=
})(:{ 0

)(
hCCsvs

B sPP         (71) 

B. Hand-off failure probability 

The hand-off failure probability is the fraction of hand-off attempts that fail to 

capture a channel in their target cell.  A hand-off attempt will fail if the number of 

occupied channels is equal to C.  We can compute the hand-off failure probability as   

∑∑

∑ ∑

= =

= =

⋅⋅⋅
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=
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The above is the hand-off failure probability for the general cluster model.  For the two-

state MMPP model we have the following  

 

∑∑

∑ ∑
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C. Forced termination Probability 

The forced termination probability is defined as the probability that a call that 

initially gains access to the system is interrupted due to a hand-off failure during its 

lifetime.  We denote the forced termination probability by PFT.  Let D be the probability 

that a active call will require a hand-off before its unencumbered session time expires.  
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Since both T and TD are negative exponential random variables D= ( )µµ
µ

+D

D .  The 

probability that a call is force to terminate on its kth hand-off attempt is denoted as Yk = 

Dk*(1-PH)k-1*PH.  The forced termination probability is then given by 

[ ]
)1(1

)1(
)1(11 H

Hk
H

k H

H

k
kFT PD

DP
PD

P
P

YP
−−

=−⋅
−

== ∑∑
∞

=

∞

=

   (74) 

VII.  Discussion of Results 

Numerical results were obtained using the models described above.  For all the 

reported results we set the mean unencumbered session duration to 100s ( 100=T ) and 

the mean dwell time was set to 200s ( 200=DT ).  Figure 3 is a plot of blocking 

probability versus new call arrival rate per platform (Λ).  The number of channels per cell 

was set at 5 (C=5), and the number of noncommunicating platforms per cell was 50 

(ν0 = 50).  The probabilities where computed using the approximate models developed in 

this paper and by the “single isolated cell, Poisson hand-off arrival model” discussed in 

[1].   In addition, exact results for a seven-cell system were computed. 

We see that over the range of arrival rates shown, the “single isolated cell, 

Poisson hand-off arrival model” and the “more general cluster model” yield nearly 

identical results.  When the “2-state MMPP neighbor model” is used the blocking 

probability is seen to be slightly higher.  The blocking probability for the seven-cell 

system is lower than the other three models over the entire range of arrival rates.  This 

result is expected since the cells surrounding the center cell carry less traffic, due to the 

lack of hand-off arrivals.  Therefore, they will tend to offer fewer hand-offs to the center 

cell.  

Figure 4 is a plot of hand-off failure probability for the same parameter values 

given for figure 3.  Again we see very close agreement between the “isolated cell” and 

the “isolated cluster” models.  The “2-state MMPP neighbor model” produces a larger 

hand-off failure probability.  As expected the hand-off failure probability is lowest when 

we consider a seven-cell system. 



 23

From figures 3 and 4 we notice that as the call demand increases the differences 

between the three approximate models decreases.  This is because the MMPP arrival 

streams are beginning to behave like Poisson streams.  As the call demand increases all 

the cells in the system will tend to have more channels in use.  The MMPP from each of 

the neighboring cells will tend to remain in its highest (largest arrival rate offered to the 

center cell) state.  In the limit, the MMPPs/neighbors will always be in a single state 

representing a heavily loaded neighbor.  Thus the MMPP streams reduce to simple 

Poisson arrival streams.   We also note that the results are reported for a relatively few 

channels.  We would expect that there would be a greater difference in computed 

performance among the three models if the number of channels per cell were increases.   

Figure 5 demonstrates the behavior of the two-state MMPP model and the simple 

Poisson model as the number of channels per cell increases.  We have plotted the 

blocking probability versus the number of channels per cell.  We define χ as the offered 

traffic per channel per cell. This is given by C⋅
⋅Λ= µ
νχ 0 .  To compare the models as 

C increases we wish to keep χ fixed for all values of C.  This is achieved by letting the 

new call arrival rate per platform vary according to 

0ν
µχ C⋅⋅

=Λ          (74) 

For the system performance shown in Figure 5 we have let ν0 = 200.  We have also let C 

vary from 3 to 19 and χ vary from 0.07 to 0.9.  As expected we see that for low new call 

offered traffic (χ) the two models produce significantly different blocking probabilities.  

However, for higher new call offered traffic the difference is less.  We also see that as the 

number of channels per cell increases the difference between the two blocking 

probabilities also increases.  Also note that for all values of χ the curves have a 

downward slope as C increases.  We are observing the well-known queueing result that a 

large number of servers are more efficient than a small number for the same offered load 

per server.   
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Figure 6 shows the hand-off failure probability for the same system as Figure 5.  

We see that for a lightly loaded system the 2-state MMPP model produces higher hand-

off failure probabilities. 

VII. Conclusions 

We have discussed two new approximate models to compute the performance 

characteristics of cellular communication systems.  Both consider a cluster of cells, in 

which the hand-off arrival process to the center cell from a neighboring cell is modeled as 

an MMPP.  The first model considered a cluster of seven cells and assumed that hand-off 

arrivals to the cluster followed a Poisson point process.  The second model considered a 

cluster of seven cells where the neighbors of the center cell were modeled using 2-state 

MMPPs.    The differences in performance characteristics generated via the various 

models are small.   

The greatest differences occur at low loading.  The MMPP models differ from the 

isolated cell, Poisson model, with the MMPP models and show higher probabilities of 

call blocking and forced termination.  Results for the cluster model lie between the 

isolated cell model and the two-state MMPP model.   Under heavy traffic loading the two 

models produce results that are even closer to the “single isolated cell, Poisson hand-off 

arrival model.” In the range of most interest, PB=10-2-10-3, the difference between the 

three models is small.  These results provide additional evidence that the “single isolated 

cell, Poisson hand-off arrival model,” [1], (which requires the fewest number of states) 

can be used with increased confidence.   
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Figure 1: Cluster of seven cells. 
Arrows represent hand-off departures and arrivals to center cell. 
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Figure 2: Two-state Markov modulated Poisson Process. 
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Figure 3:  Blocking probabilities.  sT 100= , sTD 100= , C = 5, ν0 = 50. 
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Figure 4:  Hand-off failure probabilities.  sT 100= , sTD 100= , C = 5, ν0 = 50. 
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Figure 5:  Blocking  probabilities. sT 100= , sTD 100= , ν0 = 50. 
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Figure 6:  Hand-off failure probabilities.  sT 100= , sTD 100= , ν0 = 50. 
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