Solution of Large Sparse Systems of Non-Linear Equations™
R. P. Tewarsont and J. L. Stephenson*

Abstract:

Three algorithms for solving large sparse systems of non-linear equations
are given. The algorithms are particularly suitable for handling equations that
can be partitioned into two sets, sich that the first set is large and easy to
solve for most of the variables as functions of the remaining variables and the
second set i s small. This partitioning i s done by using graph theoretic methods
and/or the available information about the model structure. The algorithms are
based on the Gaussian elimination, the Implicit Function Theorem and a Quasi-
Newton Method. They require only a fraction of the storage and computing time

that would be required to solve the complete system together without using sparse

matrix methods; this feature makes them attractive in handling large problems.

*This Research was supported i n part by the National Institute of Arthritis, Metabolism

and Digestive Diseases, National Institutes of Health, Bethesda, Md Grant No.
RMO1 AM 17593-02.

*Applied Mathematics and Statistics Department, State University of Nav York at Stony
Brook, New York 11794.

++Section on Theoretical Biophysics, National Heart and Lung Institute and Mathematical
Research Branch, National Institute of Arthritis, Metabolism and Digestive Diseases,
NIH, Bethesda, Maryland 20014.

Solution of Large Sparse Systems of Non-Linear Equations

R. P. Tewarson and J. L. Stephenson

I. Introduction

Solving a large sparse system of non-linear equations is often one of the
important steps i n handling large non-linear electrical networks, flow networks
in physiological models, finite analogs of various other non-linear boundary value
problems, and certain econometric models, etc. In dealing with boundary value
problems, it is possible to avoid solving large systems of equations by making
use of the shooting (or multiple shooting) methods [16]; but this leads to slow
convergence and unstable behavior in many cases. As an example, we can cite the
mathematical models of kidney function [18], where shooting (or multiple shooting)
methods turned out to be completely unsatisfactory [25]. 1Iid view of the above
facts, we have, i n many cases, no choice but to solve a large system of non-linear
equations. Fortunately such equations tend to be sparse (most equations involve
only a few variables) and it is therefore possible t o develop algorithms which
require only a small subset of equations at a time for the solution of the whole
system. A description of some efficient methods for solving such problems con-
stitutes the primary basis of this paper.

we will assume that all the known information about the desired solution of
a given system of non-linear equations that can be reasonably quantified has al -
ready been incorporated in the system. For example, quite often it is known that
the solution vector x is an exponential function of the distance t from some origin
(this is true of meny biological models), then x = x(t) and the given system should
be rewritten as a function of t rather than x. Various other types of information
e.g., smoothing, can also be incorporated either 'priori' in the system or in the
solution process [22, 267. This generally increases the size of the given system.

In the design and selection of methods for solving large systems of non-linear
equations, many problems have to be considered, e.g., large storage requirements,
slow rate of convergence, enlarging the domain of attraction of a root and choosing

the initial approximation i n such domain, computational instability and large

programming costs. We will now briefly discuss each of these problems.

1. Large storage requirement. The algorithm for the solution of the given problem
mey require an amount of computer storage which is not readily available in the
primary high speed storage of the computer. In this case some auxiliary slow
storage must be used and the overall solution time increases by several orders
of magnitude. This is especially true when algorithmic languages like Fortran
are used. The situation can be somewhat improved by using some assembly language
and exploiting the input-output features of the machine but this involves a major
programming effort and the inevitable debugging problems.

Even i f the problem i s such that it can be accommodated in the primary storage
and no auxiliary storage i s required, the cost for the large amount of primary
storage is significant. For example, in each Newton step, it is well known that
the usual Gaussian elimination method for solving a non-sparse system of linear
equations requires an order of n® or 0(n®) multiplications and uses 0(n®) cells
for storage (27]. For large amounts of storage one is usually charged for storage
in addition to the charge for the run time, and therefore in the Gaussian elimina-
tion, we use 0(n®) storage for 0(n®)time units and the total charge will be 0(n®).
From this it is evident that any saving in the storage requirements which does not
lead to an increase of the same order in the number of arithmetical operations
(primarily multiplications) is very worthwhile.

If the cost of solving the problem is not the primary consideration, then the
user mey still want to decrease the storage requirements for the sake of a quick
turn around time. Because, in most computer installations, particularly those
using time sharing, problems requiring an inordinately large amount of storage need
a long turn around time; generally such problems can only be run overnight.

2. Slow rate of convergence. This involves the cost per iteration step and
the total number of iterations required for a specified accuracy. These two factors
generally work in opposite directions, e.g., the Gauss-Seidel method is fast per
iteration but requires a large number of iterations and Newton's method has exactly
the opposite characteristics [12]. In our experiments with flow network problems
of kidney transport models, the block Gauss-Seidel method turned out to be quite
unsuitable, not due to the cost per iteration but due to the very large number of

iterations required for convergence. Even acceleration techniques did not significantly

2

improve the situation.

3. Enlarging the domain of attraction of a root and choosing the initial
approximation i n such a domain. For most methods the initial choice of an
approximation is extremely critical." It must lie in the domain of attraction of
one of the roots, otherwise convergence will not take place to this particular
root. The process may converge to some other undesirable root or may even diverge.
It i s known that this domain shrinks with the increase in the size of problems [13].
The above facts lead to the following important questions: Hw to enlarge the domain?
How to choose an initial approximation for the root and desensitise the solution
algorithm to this choice? Partial answers to these problems will now be given.

V¢ can make use of the continuation methods [6, 14]. These essentially in-
volve the solution of a series of problems, starting with a problem whose solution
is easy to find and slowly perturbing it, a step at a time to get to the desired
problem. At each step the solution of the previous problem is used as an initial
approximation to the solution of the new problem. For example, in the case of
flow network problems [20] the continuation method can be realized by varying the
transverse permeabilities from zero to their final values in several small steps.

We can also proceed as follows [13]. If the system of non-linear equations
was a result of discritizing a continuous problem, then first we choose the dis-
cretization parameter (or parameters) large and solve the resulting small sized
problem, then we solve a series of problems of increasing sizes by successively
decreasing the discretization parameter, until it is of the desired size. At
each stage, the solution of the smaller problem (with the intermediate values
obtained by interpolation) is used as a starting solution for the next (bigger)
problem.

A simpler way than either of the above two procedures is to use simple iterative
methods, like the Gauss-Seidel or the Successive Over-relaxation,” i n the beginning
and then switch over to rapidly convergent iterative methods |ike Newton's method
near the root. This turns out to be useful in practice, because it is well known
that the former methods have a slow convergence rate but large domains of attraction
and the latter have fast convergence but smaller domains of attraction. The
Levenberg-Marquardt damping [6] used i n Newton's method, to some extent, utilizes

the above mentioned hybrid technique. Because in the beginning a large value for the

3.

damping factor is used which makes the method closer to the steepest descent method
and near the root a small damping factor makes the method like the Gauss-Newton
method [67].

4. Computational Instability. - The rounding errors mey have a significant
effect on the stability of the solution algorithm. For example, in each step of
Newton's method a system of linear equations must be solved. For large sparse
systems, the choice of pivots is critical. Reasonable sized pivots which do not
create too manwy additional nonzero elements during the elimination process are
generally desirable [9, 10, 23]. Small pivots should be avoided. It is our ex-
perience that in flow network problems [25], if a whole row has small pivots, setting
that row and the corresponding right hand size to zero, does not significantly affect
the convergence i n Newton's method.

5. Large Programming costs. To implement any method or a set of methods for
solving a given class of problems requires a large amount of investmentin programning
and debugging. If problems of a similar structure are being repeatedly solved, then
sich an investment i s usually justified. Another programming consideration is the
amount of storage used by the program itself; it should be reasonably small relative
to the size of the problems it is designed to handle.

It is evident that all of the above mentioned facts must be kept in mind when
choosing an algorithm for solving a large system of non-linear equations. In the
next section, we will describe some methods which have been found especially useful
in practice for flow network problems. we will focus our attention on algorithms
based on discretized Newton method which do not require the full approximate

Jacobian in storage but use only parts of it at a time.

II. Methods Requiring # Small Amount of Storage

We shall first briefly describe a discretized Newton method for the solution

of the set of non-linear equations

H(w) = O, (2.1)

where H and w are p dimensional column vectors.

If w0 isthe initial approximation to a root w* of the system (2.1) and z° is

4,

the correction vector such that w° - z° = wt, then H(w® - 2°) = 0 and the use of

Taylor's theorem leads to the equation
HOWP®) - H (W) 2° + ++v = 0, (2.2)

where H'(w®) i s the Jacobian of H evaluated at w°. |f the second derivatives
(Hessians) of H are bounded near w° and ||z°||, the norm of z°, is small, then the

solution of the linear system
H' W) 2° = HW®)

gives an approximate value for Z° and the next approximation for w* is w®, which
. . . . th : .
is given by w* =w° - z° In general, if WS i's the k approximation for w¥,

then the next approximation is given by

k k
wEt oy -z, (2.3)

k . . -
where z is the solution of the linear system
k k
H (w)z = H(w"). (2.4)

The iterative process i s terminated when a suitable norm of H(wk) and/or zk is
reasonably small.

The Jacobian H’(vvk) i s generally determined by using numerical techniques,
because analytic differentiation is difficult to carry out for a large number of
equations, which are often not explicitly given, but only a subroutine for com~
puting H(w) for any given w is available. The Jacobian H’(wk) can be computed
a column at a time by the formula

H(w+hye ;)-H(w)

k .
H (W)e, = - 53 =12, 00, p, (225)
k

, . - th ; th '
.- where ej is the J column of the p order identity matrix I. The parameter hk

is generally chosen in a heuristic manner, e.g.,

n_=min (ollne)l, e,) (2.6)

where T is the machine tolerance and @ and 8 are suitable weight factors [2]. |If
H’(wk) is computed by (2.5) or some other discrete numerical method, then this
method is called a discretized Newton's method.

The main work at each step k of the discretized Newton's method given by (2.3),
(2.4) and (2.5) is the solution of the linear system (2.4). In this paper we will
be primarily concerned with techniques which reduce the amount of storage required
by the Jacobian H'(wk) at each stage k of Newton's method. V¢ will now describe
three algorithm which require only parts of H'(wk) i n storage at a time.

Let P and Q be two permutation matrices such that

£(x,5)

PH(Qw) = = 0, . (2.7)

| g(x,y)
where f(x,y) = 0 is 'easy' to solve-for x if y is given. Note that if wis
thought of as a row vector, thenin (2.7) Qw should be replaced by wQ. It is
easy to see that the vector x can be expressed as a function of y by using
f (x,y) = 0. Once this is done, then g(x,y) = o can be written as g(x(y),y) and it
can now be thought of asa function of y only. If g and y are both m dimensional
and f and x are n dimensional vectors such that m < < p, where p = m + n, then
g(x(y), y) = o is a small system of equations. Its solutionwill require only
the storage of a small sized m x m Jacobian %g?. Thus instead of a p x p Jacobian
H(wk), we only store an m x m Jacobian. This is a large saving in storage. But,
as we shall see later, there is a price to be paid for this saving.

In many cases it is possible to find P and Q such that in the system
f(x,y) = o, if y is given, the first equation can be solved for x; (the first
component of Xx), then the second one for x,, and so on. For example, the set
of equations

TR o R T R i

f1(X1sY) =0

fz(x1 sX3 y) =o0 (2.8)

fn(x“ Xz s ety X y) =o

can be solved in sequence for xy, Xz, «+s > X

Equations like the above are said to be lower triangular in x. In order
to fully discuss the structure of the original non-linear system H(w) = 0, we
define an occurrence matrix M of H(w) such that the ith row ,jJDh column element
of M is unity, if the variable wj occurs in the equation H, and i s zero otherwise.

1
In equations(2.8), if y is a scalar, then the occurrence matrix associated with

f(x,y) is

The occurrence matrix M for the system H(w) = o can be obtained from H'(w°),

oH, (w)
provided that for a1l i and j, a:’v
. J

at w* is zeroif and only if Hi i s independent

of WJ_ (there are no horizontal tangents). Quite often M can be obtained from the
model structure. The components of the model that interact with each other directly
lead to a one in the associated matrix entry, the rest of the elements of M are zero.
The rearrangement of the equations and variables (which determines P and Q)
such that the 'difficult' equations and variables can be isolated i s not an easy
problem, unless this information can be obtained from the structure of the model.
For example, if a number of semi-permeable flow tubes interact transversly with a
common bath, but not directly with each other, then the mess balance equations,
and concentrationsand other variables associated with the bath are g = o and v,
respectively, and the rest of the systemisf = 0. Therefore, given y (the bath

variables), the equations for all the other tubes f(x,y) = o can be easily solved

for x interms of y in the flow direction [11, 19, 24].

If it is not possible to identify g and y from the model structure or if the model
is not known to the equation solver, then we proceed as follows [(23]. First we
determine the occurrence matrix M, then permute it to get a set of ones on the
main diagonal and call it M. (In the literature on graph theory this process is
called getting the maximum transversal.) Then we determine the'points of attachment'
of the graph associated with M. Various methods for doing this are available and
are often called 'tearing and partitioning' methods {7, 23]. Essentially, they in-
volve looking at the associated directed graph (or bipartite graph) of M and breaking
larger loops which identify a set of rows and columns of M, such that after the
removal of this set, the rest of the rows and columns of M can be permuted to a
'desirable form' for a particular algorithm. For a list of desirable forms for the
Gaussian elimination see [23].

We have already mentioned the fact that a bordered lower triangular matrix
can be made lower triangular if the variables and equations associated with the
border are removed. Generally speaking, such 'partitioning and tearing' methods
for identifying and removing the border are computationally slow and difficult
to implement. W will not burden tt;e reader with additional details as this is

still an active area of research. The interested reader is referred to [23].

Let us now direct our attention to the solution of the equations g(x(y), y) = o
for y. For this purpose, we will require the evaluation of the small Jacobian

3—5 at the point (x(yk), yk). We will describe three methods that can be used for
this purpose. The aim of this article is to describe how the storage requirements
can be minimized, and not to burden the reader with mathematical rigor. Therefore,
conditions of continuity, differentiability and non-singularity will be implicitely
assumed whenever they are required in the derivation of a particular equation. For
rigorous mathematical analyses of the various methods for solving a system of non-
linear equations, the reader is referred to [12].

To compute the small Jacobian Cal% from the equations f(x,y) = o and
g(x,y) = o we proceed as follows.

Let the partial derivatives of f and g with respect to x and y be denoted by

fx, gx and fY, gY, respectively. Then differentiating f(x,y) = o, we have

8.

N g

.éf_:f g_x.+f = 0O,

dy x dy y

or
dx - _gptp (2.9)
dy x ¥

Nw from g(x,y) we have
dg _ dx
Iy & @'Y

and using (2.9) we get
dg _ -g £7r (2.10)
ay & "% x'y

In order to meke use of the above equation, the Gaussian elimination can be

utilized as follows.

£(x,y)
If the occurrence matrix for i s of bordered lower triangular form,
g(x,y')
f f
then x Y is also of the same form (but it may have more zeroes than
gx gy

the occurrence matrix, due to the parallel tangents) and fx isanxn lower

f

y

triangular matrix, the p x m block column comprises the border.

g
Yy

Now to compute 3—5 according to (2.10) we first generate and store the block

f : f
y
border in a p x m storage, say W, and then generate the columns of

gy i ' €x

one at a time (this requires a small amount of storage) starting from the top left

ity e

hand corner and transform them by elementary raw operations (Gaussian elimination)
to become unit vectors. The same transformations are applied toW. At the
termination of this procedure, gY will have been replaced by Eidé « This can be

X

seen easily f rom (2.10) and the following equation

70 £ f I £71f
X X y Xy

= . (2.11)
-g f—l T g g 0 g - g f—lf
X X

| f fx is a lower block triangular matrix, but its diagonal blocks are small
relative to its overall size n, then the elimination is performed i n several steps,
starting with the top left hand diagonal block and proceeding down the main diagonal
a block at a time. In each step, first the relevant diagonal block is generated
in a storage, say V, and then transformed to an identity matrix of the appropriate
order by the forward'and backward courses of the Gaussian elimination. The same
operations are performed on W. Then the rest of the elements of the columns having
elements in that particular diagonéII block are generated, one column at a time in
V plus any more storage if needed, and the forward course of the Gaussian elimination
isused on V and W to meke V zero. If any element on the diagonal of a particular
diagonal block i s small, then either partial or complete pivoting [23] can be used
within the block. If even this does not lead to an acceptable pivot, then the rows
of W which correspond to the elements in the diagonal block can be considered for
pivoting. If a suitable pivot is available in W, then we have to interchange a
column of Wwith a column of fX having elements in the diagonal block. If a whole
row of W and the corresponding ron of the diagonal block under consideration have
small elements, then the whole row can be set to zero. This creates no problems
in practice and is theoretically justified [1,25].

In any case, if d is the size of the largest diagonal block in f < then the
total storage S needed for the above method t o compute g;g- s given by S =
mp + max (d?, p-d2). We know that the storage S for the whole Jacobian H (w) is
given by S = p?, therefore

10.

iy g

o e

51 . + max (Q; R

o
S P P

g+

) =~ m;l,ifd<<p.

"d{J Q

Thus there i s a considerable amount of saving in the storage requirements i f the

set of difficult equations g(x,y) has a small dimension m relative to p.

dg . . : .
Once & 'S available only m® cells of storage are required to store it and

the same 98 can be used for several steps to compute the new approximations for
dy

the root. This makes the method somewhat like the fixed slope method and the con-
vergence i s not quadratic as i n Newton's method, but the saving in storage is more

than before, as only n? cells of storage are now needed for %_%. . If we let
¥y

a A 2 IS . . .
S;=m? then§, /s =™ <2 - 21 ' Thus we have shown that in comparison with

the usual Newton method thepabovesmethod requires only a fraction % of cells for
the first stage (when g% i s being computed) and (.lpn_)2 i n the subsequent stages,
during which the storage used by f, for computing 2_5 i S not needed.

Prior to a discussion of two other methods which require only m? storage
cells throughout their operation, we briefly describe how de¢ can be used to
compute the next approximation (xE*', yk+') from (xk, yk). We consider g as
a function of y and y alone. For this purpose, we express x as a function of y
such that f(x(yk), yk) = 0. In the following discussion we assume that all functions
are evaluated at (xk, y), unless indicated otherwise. Let

x(yk) = xk - gxk, (2.12)
then f(Xk - gxk, yk) = 0 and from Taylor's theorem we have f - fxaxk + ... = 0.
Neglecting higer order terms in Sxk, we have

-k
:f‘xéx ~f, (2.13)

now since g is a function of y alone, the kth step of Newton's method applied

to g(x(y),y) = o is

11.

o ey g -

k -1 k k
yEH -yt o <§§> g(x(y), v).

But in view of (2.12) and (2.13), we have

k

k k A 1
~ - d ~ - f- fa
sV) ~g-gdx ~g -l

gy)y) = el - dx

Now, from the above equation, (2.11) and the fact that

£ oo | £ f-ir
X X

_ f—l I - -1p
gt g g gxfx f

f
. . £ .
It follows that if the column vector [g] was appended to the matrix gy inWw

f

y

and the same operations were performed on it as on then g would be trans-

g
y

-

k
formed to g(x(yk), y). This requires only a small amount of increase in the storage

W. Once y**™ is known, x*** is given by

k k k
k4 x, yETY) £(x

X =x - f2 yk+1).

b

We will now describe the other two methods for computing %% . Both methods

require m* storage cells but take longer than the method we have just described above.

The first one makes use of the implicit function theorem and the second i s based on

the Quasi-Newton updates t o transform gY to 38 ,

dy
The small Jacobian 98 can be evaluated, as in (2.5), a column at a time. Its
th L dy
J column Is given by
g(X(yk+hKej),yk+hkej)—g(X(yk), ™)
e, w~ s (2.14)
y J hk

. th
where ej isthe j column of an identity matrix of order m and hk i s a suitably

chosen small positive number as in (2.6). To evaluate x(yk+hkej.), we must use

Wty peara

k k
f(x,y) = 0. Therefore f(x(y + hkej)’ y + hkej) =oandif we let

k k -~k
x(y + hkej) =x - éx , then we have f(xk - 6xk, yk + hkej) = 0 and the use

of Taylor's theorem gives
k k k k 2k
f(x , Yy +hkej)'fx(x,y +hkej)6x‘ + eee = O

If & is small, then an approximation for it can be obtained by solving the linear

system

£ dx = f, (2.15)

Wheref and f are evaluated at (x , y + h e .). Note that if for J = owe let
ej = 0, then yk + hke = y and the evaluatlon of g(x(y), ¥) i s a particular case
of the computation of g(x(yk + hkej), yk + h e .). It isclear that for each j
the linear system (2.15) has to be solved. Therefore the evaluation of %
according to (2.14) will require the solution of (2.15) m t A times (j = 0,1, " , m}
where for j = 0,6 =0 and x(yk) i s computed).
The above method will turn out-to be very slow unless f(x,y) = 0 is an easy
and fast system to solve for X, given y. However, in all cases, if mis small,
the situation i s not bad.

Note that the columns of fX can be generated one at a time, if fX i s lower

triangular (or some other desirable form; see [23] for other desirable forms).

This requires only p cells. In case fX i s block lower triangular then, as in the

first method, the storage for solving equation (2.15) will be max (d2, p-d®). O

course, requires m® cells. Thus the total storage for this method i s given
dy .

by S; = m° + max (%, p-a?).
In the third method we update g to get g—% and at the same time update the
\approximations (x y Y) We can use any one of the rank one or rank two Quasi-
Newton methods for this purpose [12, 15]. Essentially, we find a zero of the
functions g(x(yk), yk), where x(yk) i s chosen such that f(x(yk), yk) = o for all yk.
As in the second method, if (xk, yk) is given, then x(srk) i s obtained by
solving (2.13) for &x and then using (2.12). W are now in a position to describe

& Quasi-Newton method (3] for the solution of the system

13.

) - - > " _ . . o ; Liviiisae el

g(x(y), y) =0

with the condition that for a giveny, x(y) will always be obtained by using

(2.13) and (2.12). It is convenient' to describe this method in an algorithmic

form as follows.

Given (x°, y°).
Compute x(y°) = x° - f;lf, where f_ and f are evaluated at (x°, y°).

Let B = (§—§>-1 at (x(y°), ¥°).

For k =0, 1, 2, --- perform the following steps
k _kk k ky K
1. y™ -y _Hg, where g = g(x(y), y).
2. x(yk*Y) = X(yk) - f)‘(lf; f and f are evaluated at (x(yk), yEr).

K K
3. 8g =gttt - g, where gf*t = g(x(yE), yF*.

4, 6yk = yiH K

T
5. S o, (arReuKeg®)og"

T
egk Sgk

Stop when Hgkll and /or H&ykn i's small.

Note that in computing H°, we take

g(x(y°),¥° +hoe 5)-g (x(y7),y°)

3y I he

In Step 5 of the above algorithm, it is possible to update Hk in may ways; we
have used a rank one correction. Various other rank one and rank two uptdate
formulas are given in [4,5,8,15,17,21].

For faster convergence, Step 1 of the algorithm can be replaced by

k+1 Kk k k
Y= " =¥ -aH g, where the scalar a is chosen such that [|g5**| < Hgkll, but this

increases the computation time per step. It was pointed out by Broyden [6] that
in many cases a = 1 is a good choice. This was found to be the case in practice

when we solved our flow network problems.

1k,

ITI Concluding Remarks

In this paper we have discussed some of the important problems that one
faces when attempting to solve a large system of non-linear equations. If the
system i s sparse, then it is possible to save storage and computing time. W
have shown that if the equations and variables can be rearranged in such a manner

that in the resulting system

o

£(x,y)

g(x,y)

H

O

the first set £(x,y) = o can be solved 'easily' for x in a sequential or other
manner for any given y in some neighborhood of a 'desirable' root and in com-
parison with f the set g consists of only a small number of equations, then it
is possible to solve g as a function y alone. This requires only a small amount.
of storage as compared with that required to solve the whole problem together.

We have described how the computation of the small Jacobian %%— , which is
required for the solution of the small system g(x(y), y) = o for y, can be done
by any one of three methods: the Gaussian elimination, use of the Implicit Function
Theorem and a rank one Quasi-Newton method. For the first two methods, we have
shown that it is not necessary to compute %% at every iteration, but the same
value can be used for several iterations to save the computation time.

We have applied all three methods to the flow network problems arising in
the mathematical modelling of mammalian kidneys. W found that the computation
of the small Jacobian %% was much faster in the first method than in the other
two, but this advantage was offset by the relatively large storage requirement of
this method. On the average in our problems p = 6 m, and therefore the first
method, needed more than six times the storage required by the other two. Due
to this fact, the first method could not be used for solving may large problems.

In terms of the overall cost all the three methods were competitive with each other.

Acknowledgements: The authors would like to thank Mrs. L.L. Juang, Mr. RH. Mejia,

Dr. A. H. Kydes and Professor B. Kellogg for many helpful comments and suggestions.

15.

1

10.

12.

13.

References

A. Ben-lsrael, "A NWewton-Raphson method for the solution of systems of
equations”, J. Math. Anal. Appl., Vol. 15, pp. 243-252, 1%6.

K. M. Brown, "computer-oriented algorithms for solving systems of simultaneous
nonlinear algebraic equations”, pp. 281-348 in Numerical Solution of Systems

of Nonlinear Algebraic Equations, G. Byrne and C. Hall, Eds., Nawv York: Academic
Press, 1973.

C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations",
Math. Comp, Vol. 19, pp. 577-593, 1965.

C. G. Broyden, "Quasi-Newton methods and their applications to function
minimization", Math. Comp., Vol. 21, pp. 368-381, 1967.

C. G. Broyden, "A new method for solving nonlinear simultaneous equations",
Comput. J., Vol. 12, pp. 94-99, 1969,

C. G. Broyden, "Recent developments in solving nonlinear algebraic systems",
i n Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, Ed.,
Nav York: Gordon and Breach, pp. 61-74, 1970.

L. K. Cheung and E. S. Kuh, "The bordered block triangular matrix and
minimum essential sets of a dig}ap ", Memorandum No. EIR-M375. Electronic
Research Lab., Univ. of Calif. at Berkeley, Berkeley, Feb, 1973.

R. Fletcher, "A new approach to variable metric algorithms", Computer J.,
Vol. 13, pp. 317-322, 1970.

H. Y. Hsieh and M. S. Ghausi, "On optimal pivoting algorithms in sparse
matrices", IEEE Trans. on Cir. Th., Vol., 19, pp. 93-96, Jan, 1972.

H. Y. Hsieh and M. S. Ghausi, "A probabilistic approach to optimal pivoting
and prediction of fill-in for random sparse matrices", | EEE Trans. on Cir. Th.,
Vol. 19, No. 4, pp. 329-336, July, 1972.

L. L. Juang, J. L. Stephenson and R. P. Tewarson, "Sclution of bordered type
nonlinear systems of equations", submitted for publication, 1975.

J. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables. Nav York: Academic Press, 1970.

W. C. Rheinboldt, "Oon the solution of large, sparse sets of nonlinear equations"
in Computational Mechanics-Lecture Notes i n Mathematics, Vol. 461, A. Dold and

B. Eckmann, Eds., Neav York: Springer-Verlag, pp. 169-194%, 1975.

16.

14. w. C. Rheinboldt, "An adaptive continuation process for solving systems of
nonlinear equations™, Technical Report TR-393, Comp. Sc. Dept., Univ. of
Maryland, July, 1975.

15. W. C. Rheinboldt and J. S. Vandergraft, "On local convergence of update
methods”, SIAM J. on Numer. Anal., Vol. 11, pp. 1069-1085, 1974,

16. S. M. Roberts and J. S. Shipman, Two Point Boundary Value Problems: Shooting
Methods. Nawv York: American Elsevier, 1972.

17. D. Shanno, "conditioning of Quasi-newton methods for function minimization",
Math. Comp., Vol. 24, pp. 647-656, 1970.

18. J. L. Stephenson, "The mathematical theory of renal function"”, in
Engineering Principles in Physiology, JH.U. Brown and D. S. Gann, Eds.,
Vol. 2, pp. 283-320, New York: Academic Press, 1973.

19. J. L. Stephenson, "Equations for solute and water transport i n models of
biological flow systems", to be submitted for publication, 1975.

20. J. L. Stephenson, R. P. Tewarson and R. Mejia, "Quantitative Analysis of
mass and energy balance in non-ideal models of the renal counterflow system",

Proc. Nat. Acad. Sci. USA, Vol. 71, pp. 1618-1622, 1974.

21. R. P. Tewarson, "On the use of generalized inverses in function minimization",
Computing, Vol. 6, pp. 241-248, 1970,

22. R. P. Tewarson, "solution of linear equations i n remote sensing and picture
reconstruction", Computing, Vol. 10, pp. 221-230, 1972.

23. R. P. Tewarson, Sparse Matrices, Nav York: Academic Press, 1973.

24. R. P. Tewarson and L. L. Juang, "Kidney modelling and sparse matrices",
submitted for publication, 1974

25. R. P. Tewarson, J. L. Stephenson, A. Kydes and R. Mejia, "Use of sparse
matrix techniques i n numerical solution of differential equations for
renal counterflow systems", (Abstract 74T-C34), Notices Am. Math. Soc.
21(1974), p. ALY8.

26. R. P. Tewarson,'Use of Smoothing and damping techniques in the solution
of nonlinear equations", submitted for publication, 1975.

27. J. R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of
Linear Equations. Nav York: Wiley, 1968.

17.

