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Abstract : 

I Three algorithms fo r  solving large sparse systems of non-linear equations 

a re  given. The algorithms a re  par t icu la r ly  su i tab le  f o r  handling equations t h a t  

can be par t i t ioned i n t o  two s e t s ,  slch t h a t  the  f i r s t  s e t  i s  large and easy t o  

solve fo r  most of the variables a s  functions of the  remaining variables and the 

second s e t  i s  small. This par t i t ion ing  i s  done by using graph theore t ic  methods 

and/or the available information about the  model s t ruc ture .  The algorithms a re  

based on the Gaussian elimination,  the  Implicit  Function Themem and a Quasi- 

Newton Method. They require only a f r ac t ion  of the storage and computing time 

t h a t  would be required t o  solve the complete system together without using sparse 

r' fi matrix methods ; t h i s  feature  makes them a t t r a c t i v e  i n  handling large problems. 
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Solut ion of Large Sparse Systems of Non-Linear Equations 

R. P. Tewarson and J. L. Stephenson 

I. Int roduct ion 

Solving a l a rge  sparse system of non- linear equations i s  o f ten  one of t h e  

important s t eps  i n  handling l a rge  non- linear e l e c t r i c a l  networks, flow networks 

i n  physiological  models, f i n i t e  analogs of various other non- linear boundary value 

problems, and c e r t a i n  econometric models, e t c .  I n  deal ing with boundary value 

problems, it i s  poss ible  t o  avoid s ~ l v i n g  l a rge  systems of equations by making 

use of t he  shooting (o r  mult iple shooting) methods [16]; but t h i s  leads t o  slow 

. convergence and unstable behavior i n  many cases.  A s  an example, we can c i t e  t he  

mathematical models of kidney funct ion [18], where shooting (or  mult iple shooting ) 

methods turned out t o  be completely unsa t i s fac to ry  [ 2 5 ] .  1n view of the  above 

f a c t s ,  we have, i n  many cases ,  no choice but t o  solve a l a rge  system of non- linear 

equations. For tunate ly  such equations tend t o  be sparse (most equations involve 

only a few va r i ab l e s )  and it i s  the re fore  poss ible  t o  develop algorithms which 

requ i re  only a small  subset of equations a t  a  time f o r  t h e  so lu t ion  of t he  whole 

system. A descr ip t ion  of some e f f i c i e n t  methods f o r  solving such problems con- 

s t i t u t e s  t he  primary bas i s  of t h i s  paper. 

We w i l l  assume t h a t  a l l  t h e  known information about the  desired so lu t ion  of 

a given system of non- linear equations t h a t  can be reasonably quant i f ied  has a l -  

ready been i n c o r p ~ r a t e d  i n  t h e  system. For example, qu i te  o f ten  it i s  knuwn t h a t  

t h e  so lu t ion  vector x i s  an exponential  funct ion of t he  dis tance  t from some o r ig in  

( t h i s  i s  t r u e  of many b io log ica l  models), then x = x ( t )  and t he  given system should 

be rewr i t t en  a s  a funct ion of t r a the r  than x. Various o ther  types of information 

e.g.,  smoothing, can a l s o  be incorporated e i t h e r  ' p r i o r i '  i n  the  system or i n  t he  

so lu t i on  process [22, 261. This general ly  increases  the  s i z e  of the  given system. 

I n  t h e  design and s e l ec t i on  of methods f o r  solving large  systems of non- linear 

. equations,  many problems have t o  be considered, e .g. ,  l a rge  s torage requirements, 

slow r a t e  of convergence, enlarging the  domain of a t t r a c t i o n  of a roo t  and choosing 

the  i n i t i a l  approximation i n  such domain, computational i n s t a b i l i t y  and large  



programming cos t s .  We w i l l  now b r i e f l y  d iscuss  each of these  problems. 

1. Large storage requirement. The algori thm f o r  t h e  so lu t ion  of the  given problem 

may require  an amount of computer storage which i s  not  r e ad i l y  ava i l ab le  i n  t he  

primary high speed storage of t he  computer. I n  t h i s  case some aux i l i a ry  slow 

s torage must be used and t he  ove ra l l  so lu t ion  time increases  by severa l  orders 

of magnitude. This is  espec ia l ly  t r u e  when algori thmic languages l i k e  For t ran 

a r e  used. The s i t u a t i o n  can be somewhat impr~ved  by using some assembly language 

and exp lo i t ing  t he  input-output f e a tu r e s  of t h e  machine but t h i s  involves a major 

programming e f f o r t  and t he  inev i tab le  debugging problems. 

Even i f  t he  problem i s  such t h a t  it can be accommodated i.n t he  primary storage 

and no aux i l i a ry  storage i s  required,  t h e  cos t  f o r  t he  l a rge  amount of primary 

storage i s  s i gn i f i c an t .  For example, i n  each Newton s tep ,  it i s  we l l  known t h a t  

the  usual  Gaussian e l iminat ion method f o r  solving a non-sparse system of l i n e a r  

equations requ i res  an order of n3 o r  0(n3)  mul t ip l i ca t ions  and uses 0(n2 ) c e l l s  

f o r  s torage [27 ] .  For l a rge  amounts of s torage one i s  usual ly  charged f o r  s torage 

i n  add i t ion  t o  t he  charge f o r  t h e  run time, and the re fore  i n  t h e  Gaussian elimina- 

t i o n ,  we use 0(n2 ) storage f o r  0(n3).time un i t s  and the  t o t a l  charge w i l l  be 0(n5) .  

From t h i s  it i s  evident  t h a t  any saving i n  t h e  s torage requirements which does not 

lead t o  an increase  of t he  same order i n  t he  number of a r i t hme t i ca l  operations 

(pr imar i ly  mul t ip l i ca t ions  ) i s  very worthwhile. 

If t h e  cos t  of solving the  problem i s  not t he  primary considerat ion,  then  t he  

user may s t i l l  want t o  decrease t he  s torage requirements f o r  t h e  sake of a quick 

t u r n  around time. Because, i n  most computer i n s t a l l a t i o n s ,  p a r t i c u l a r l y  those 

using time sharing,  problems requ i r ing  an  inord ina te ly  l a rge  amount of storage need 

a long t u r n  around time; general ly  such problems can only be run overnight. 

2. Slow r a t e  of convergence. This involves t he  cos t  per i t e r a t i o n  s t e p  and 

t he  t o t a l  number of i t e r a t i o n s  required f o r  a speci f ied  accuracy. These two f a c t o r s  

general ly  work i n  opposite d i r ec t i ons ,  e .g. ,  t h e  Gauss-Seidel method i s  f a s t  per 

i t e r a t i o n  but requ i res  a l a rge  number of i t e r a t i o n s  and Newton's method has exact ly  

t h e  opposite cha r ac t e r i s t i c s  [121. I n  our experiments with flow network problems 

of kidney t ranspor t  models, t h e  block Gauss-Seidel method turned out t o  be qu i te  

unsuitable,  not due t o  t he  cos t  per i t e r a t i o n  but due t o  t he  very l a rge  number of 

i t e r a t i o n s  required f o r  convergence. Even acce le ra t ion  techniques did  not s i gn i f i c an t l y  

2. 



improve t he  s i t ua t i on .  

3. Enlarging the  domain of a t t r a c t i o n  of a roo t  and choosing t he  i n i t i a l  

approximation i n  such a domain. For most methods the  i n i t i a l  choice of an 

approximation i s  extremely c r i t i c a l . '  It must l i e  i n  t he  domain of a t t r a c t i o n  of 

one of t he  roo t s ,  otherwise convergence w i l l  not t ake  place t o  t h i s  pa r t i cu l a r  

roo t .  The process may converge t o  some other  undesirable roo t  o r  may even diverge. 

It i s  known t h a t  t h i s  domain shrinks with t he  increase  i n  the  s i z e  of p r~b l ems  1132. 
The above f a c t s  lead t o  the  following important questions:  How t o  enlarge t he  domain? 

How t o  choose an i n i t i a l  approximation f o r  t he  roo t  and desens i t i se  t h e  so lu t ion  

algori thm t o  t h i s  choice? P a r t i a l  answers t o  these  problems w i l l  now be given. 

We can make use of the  continuation methods [6, 141. These e s s e n t i a l l y  i n-  

volve the  so lu t ion  of a s e r i e s  of problems, s t a r t i n g  wi th  a problem whose so lu t ion  

i s  easy t o  f i nd  and slowly perturbing it, a s t e p  a t  a  time t o  get  t o  t he  des i red 

problem. A t  each s t e p  the  so lu t ion  of t he  previous problem i s  used a s  an i n i t i a l  

approximation t o  t he  so lu t ion  of t he  new problem. For example, i n  the  case of 

flow network problems [ 20 ]  t h e  continuation method can be rea l i zed  by varying t he  

t ransverse  permeabi l i t ies  from zero t o  t h e i r  f i n a l  values i n  severa l  small s t eps .  
* 

We can a l s o  proceed a s  follows [13]. If t he  system of non- linear equations 

was a r e s u l t  of d i s c r i t i z i n g  a continuous problem, then  f i r s t  we choose t he  d i s -  

c r e t i z a t i o n  parameter (o r  parameters) large  and solve t he  r e s u l t i n g  small s ized 

problem, then we solve a s e r i e s  of problems of increas ing s i z e s  by successively 

decreasing t he  d i s c r e t i z a t i o n  parameter, u n t i l  it i s  of t h e  desired s ize .  A t  

each s tage ,  t he  so lu t ion  of t h e  smaller problem (with t he  intermediate values 

obtained by i n t e rpo l a t i on )  i s  used a s  a s t a r t i n g  so lu t ion  f o r  the  next (b igger)  

problem. 

A simpler way than  e i t h e r  of t h e  above two procedures i s  t o  use simple i t e r a t i v e  

methods, l i k e  t he  Gauss-Seidel or  t he  Successive Over-relaxation,' i n  the  beginning 

and then  switch over t o  rap id ly  convergent i t e r a t i v e  methods l i k e  Newton's method 

near the  roo t .  This tu rns  out t o  be useful  i n  p rac t i ce ,  because it i s  we l l  known 

t h a t  the  former methods have a slow convergence r a t e  but  l a rge  domains of a t t r a c t i o n  

and t h e  l a t t e r  have f a s t  convergence but smaller domains of a t t r a c t i on .  The 

Levenberg-Marquardt damping [6] used i n  Newton's meth3d, t o  some ex ten t ,  u t i l i z e s  

t he  above mentioned hybrid technique. Because i n  t he  beginning a large  value f o r  t h e  



damping f a c t o r  i s  used which makes the  method c lose r  t o  t he  s teepes t  descent method 

and near t he  roo t  a small damping f a c t o r  makes t he  method l i k e  t he  Gauss-Newton 

method [ 6 ] .  

4. Computational I n s t a b i l i t y .  ' The rounding e r r o r s  may have a s i gn i f i c an t  

e f f ec t  on the  s t a b i l i t y  of t he  so lu t ion  algorithm. For example, i n  each s t e p  of 

Newton's method a system of l i n e a r  equations must be solved. For large  sparse 

systems, t he  choice of p ivots  i s  c r i t i c a l .  Reasonable s ized pivots  which do not 

c r ea t e  t oo  many add i t iona l  nonzero elements during t he  e l iminat ion process a r e  

general ly  des i rab le  [ g ,  10, 231. Small p ivots  should be avoided. It i s  our ex- 

perience t h a t  i n  flow network problems [25], if a whole row has small p ivots ,  s e t t i n g  

t h a t  row and t he  corresponding r i g h t  hand s i z e  t o  zero, does not s i g n i f i c s n t l y  a f f e c t  

t he  convergence i n  Newton's method. 

5. Large Programming cos t s .  To implement any method or a s e t  of methods f o r  

solving a given c l a s s  of problems requ i res  a l a rge  amount of i nves tmen t in  program:ning 

and debugging. I f  problems of a s imi la r  s t r uc tu r e  a r e  being repeatedly solved, then 

such an investment i s  usually j u s t i f i e d .  Another programming considera t ion i s  t h e  

amount of s torage used by the  progrsm i t s e l f ;  it should be reasonably small r e l a t i v e  

t o  t he  s i z e  of the  problems it i s  designed t o  handle. 

It i s  evident  t h a t  a l l  of t he  above mentioned f a c t s  must be kept i n  mind when 

choosing an algori thm f o r  solving a l a rge  system of non- linear equations.  I n  t he  

next sec t ion ,  we w i l l  describe some methods which have been f ~ u n d  espec ia l ly  useful  

i n  p r ac t i c e  f o r  flow network problems. W w i l l  f ~ c u s  our a t t e n t i o n  on algorithms 

based on d i s c r e t i z ed  Newton method which do not require  t he  f u l l  approximate 

Jacobian i n  storage but use only p a r t s  of it a t  a time. 

11. Methods Requiring t3 Small Amounk of Storage 

We s h a l l  f i rs t  b r i e f l y  describe a d i s c r e t i z ed  Newton method f o r  the  s ~ l u t i o n  

bf the  s e t  of non- linear equations 

H(W) = 0, (2*1)  

where H and w a r e  p dimensional column vectors .  

I f  w0 i s  t he  i n i t i a l  approximation t o  a roo t  w* of t h e  system (2.1) and z0 i s  

4. 



t h e  cor rec t ion  vector  such t h a t  w0 - zO = w*, then H(wO - z O )  = 0 and t h e  use of 

Taylor ' s  theorem leads t o  t h e  equation 

where H'(wO) i s  t h e  Jacobian of H evaluated a t  wO. I f  t h e  second der iva t ives  

(Hessians) of H a r e  bounded near wO and llzo 11, t h e  norm of z" , i s  small ,  then t h e  

so lu t ion  ~f  t h e  l i n e a r  system 

1 gives  an approximate value f o r  zO and t h e  next approximation f o r  w* i s  wl,  which 
t h  

i s  given by w1 = w0 - zO.  I n  genera l ,  i f  w
k 

i s  t h e  k approximation f o r  w', 

1 .  t h e n  the  next approximation i s  given by 

k 
where z  i s  t h e  so lu t ion  of t h e  l i n e a r  system 

k k 
The i t e r a t i v e  process i s  terminated when a  s u i t a b l e  norm of H(W ) and/or z i s  

reasonably small.  
k 

The Jacobian H '  (w ) i s  genera l ly  determined by using numerical techniques,  

because a n a l y t i c  d i f f e r e n t i a t i o n  i s  d i f f i c u l t  t o  ca r ry  out  f o r  a  l a rge  number of 

equations,  which a r e  o f t en  not e x p l i c i t l y  given, but only a  subroutine f o r  com- 
k 

put ing H(w) f o r  any given w i s  ava i l ab le .  The Jacobian H'(w ) can be computed 

a  column a t  a  time by t h e  formula 



i s  general ly  chosen i n  a h e u r i s t i c  manner, e.g., 

where T i s  t he  machine to lerance and cr and 0 a r e  su i t ab l e  weight f a c to r s  [21. I f  
k 

~ ' ( w  ) i s  computed by (2.5) or some other d i s c r e t e  numerical method, then t h i s  

method i s  ca l l ed  a d i s c r e t i z ed  Newton's method. 

The main work a t  each s t e p  k of t he  d i sc re t i zed  Newton's method given by (2.3), 

(2.4) and (2.5) i s  the  so lu t ion  of the  l i nea r  system (2.4). I n  t h i s  paper we w i l l  

be pr imar i ly  concerned with techniques which reduce the  amount of storage required 

by t he  Jacobian H'(wk) a t  each s tage  k of Newton's method. We w i l l  now describe 
k 

t h r ee  a l g o r i t h m  which require  only pa r t s  of H'(w ) i n  storage a t  a time. 

Let P and Q be two permutation matrices such t h a t  

where f ( x , y )  = 0 i s  'easy'  t o  solve- for  x i f  y i s  given. Note t h a t  i f  w i s  

thought of a s  a row vector ,  then  i n  (2.7) Qw should be replaced by wQ. It i s  

easy t o  see  t h a t  t he  vector  x can be expressed a s  a funct ion of y by using 

f (x ,y)  = o. Once t h i s  i s  done, then  g (x ,y )  = o can be wr i t t en  a s  g (x (y ) , y )  and it 

can now be thought of as  a funct ion of y only. If g and y a r e  both m dimensional 

and f and x a r e  n dimensional vectors  such t h a t  m < < p, where p = m + n,  then 

g (x (y ) ,  y )  = o i s  a small  system of equations. Its so lu t ion  w i l l  require  only 

t h e  storage of a small  s ized m x m Jacobian dg Thus ins tead of a p x p Jacobian 
k 

KT* 
H(W ), we only s t o r e  an m x m Jacobian. This i s  a large  saving i n  storage.  But, 

a s  we s h a l l  see l a t e r ,  t h e r e  i s  a p r i c e  t o  be paid f o r  t h i s  saving. 

In  many cases it i s  poss ible  t o  f i nd  P and Q such t h a t  i n  the  system 

' f (x ,y)  = o, i f  y i s  given, t h e  f i r s t  equation can be solved f o r  x l  ( the f i r s t  

component of x ) ,  then  the  second one f o r  x2, and so on. For example, +he s e t  

of equations 



can be solved i n  sequence f o r  xl , +, . . , X g  
n 

Equations l i k e  t h e  above a r e  sa id  t o  be lower t r i angu l a r  i n  x. I n  order 

t o  f u l l y  d iscuss  t he  s t r uc tu r e  of the  o r i g i n a l  non- linear system ~ ( w )  = o,  we 
t h  

define an occurrence matrix M of ~ ( w )  such t h a t  t he  i row jth column element 

of M i s  uni ty ,  i f  the  va r iab le  w occurs i n  t h e  equation H. and i s  zero otherwise. 
j 1 

I n  equations (2.8), i f  y is a s ca l a r ,  then the  occurrence matrix associa ted with 

I The occurrence matrix M f o r  t he  system ~ ( w )  = o can be obtained from H'(wO), 

aHi (W ) 
provided t h a t  f o r  a11 i and j ,  a t  w0 i s  zero i f  and only if H i s  independent 

i I h"j 
i 

I 

of w ( the re  a r e  no hor izon ta l  tangents) .  Quite o f ten  M can be obtained from the  
j 

model s t r uc tu r e .  The components of t h e  model t h a t  i n t e r a c t  with each other  d i r e c t l y  

lead t o  a one i n  the  associa ted matrix en t ry ,  t he  r e s t  of the  elements of M a r e  zero.  

The rearrangement of t he  equations and var iab les  (which determines P and Q) 

such t h a t  t he  ' d i f f i c u l t '  equations and var iab les  can be i so l a t ed  i s  not an easy 

problem, unless t h i s  information can be obtained from the  s t r uc tu r e  of the  model. 

For example, i f  a number of semi-permeable flow tubes i n t e r a c t  t r ansvers ly  wi th  a 

common bath,  but not d i r e c t l y  with each other ,  then the  mass balance equations,  

and concentrationsand other  va r iab les  associa ted wi th  t he  bath a r e  g = o and y ,  

r espec t ive ly ,  and t he  r e s t  of t he  system i s  f = o. Therefore, given y ( the  bath 

va r i ab l e s ) ,  the  equations f o r  a l l  t he  other tubes f ( x , y )  = o can be e a s i l y  solved 

7. 



f o r  x i n  terms of y i n  the  flow d i r ec t i on  [ll, 19, 241. 

I f  it i s  not possible t o  i d e n t i f y  g and y from the  model s t r uc tu r e  or i f  the  model 

i s  not known t o  the  equation solver ,  then we proceed a s  follows [23]. F i r s t  we 

determine t h e  occurrence matrix My then permute it t o  get  a s e t  of ones on t he  

main diagonal  and c a l l  it I?. (1n the  l i t e r a t u r e  on graph theory t h i s  process i s  

ca l l ed  ge t t i ng  the  maximum t r ansve r sa l . )  Then we determine t he ' po in t s  of attachment'  

of the  graph associa ted with c. Various methods f o r  doing t h i s  a r e  ava i l ab le  and 

a r e  of ten  ca l l ed  ' t e a r i ng  and pa r t i t i on ing '  methods [7 ,  231. Essen t ia l ly ,  they i n-  

volve looking a t  the  associated d i rec ted  graph (or  b i p a r t i t e  graph) of and breaking 

l a rger  loops which i den t i f y  a s e t  of rows and columns of M y  such t h a t  a f t e r  t he  

removal of t h i s  s e t ,  the  r e s t  of t he  r w s  and columns of M can be permuted t o  a 

'des i rable  form' f o r  a pa r t i cu l a r  algorithm. For a l i s t  of des i rab le  forms f o r  t he  

Gaussian e l iminat ion see [23]. 

We have already mentioned the  f a c t  t h a t  a bordered l m e r  t r i angu l a r  matrix 

can be made lower t r i angu l a r  i f  the  va r iab les  and equations associa ted with t he  

border a r e  removed. Generally speaking, such ' p a r t i t i on ing  and t e a r i ng '  methods 

f o r  iden t i fy ing  and removing the  border a r e  computationally slow and d i f f i c u l t  -. 
t o  implement. We w i l l  not burden t he  reader wi th  add i t i ona l  d e t a i l s  a s  t h i s  i s  

s t i l l  an ac t ive  area  of research.  The in te res ted  reader i s  re fe r red  t o  [ 2 3 ] .  

Let us now d i r e c t  our a t t e n t i o n  t o  t he  so lu t ion  of t h e  equations g (x (y ) ,  y )  = o 

fo r  y. For t h i s  purpose, we ~~4.11 require  t he  evaluat ion of t he  small  Jacobian 

k k  
a t  the  p-iint ( r ( y  ), y ). We w i l l  describe th ree  methods t h a t  can be used f o r  

dy 
t h i s  purpose. The aim of t h i s  a r t i c l e  i s  t o  describe how the  storage requirements 

can be minimized, and not t o  burden the  reader with mathematical r i go r .  Therefore, 

condit ions of cont inui ty ,  d i f f e r e n t i a b i l i t y  and non- singulari ty w i l l  be impl ic i t e ly  

assumed whenever they a r e  required i n  t he  der iva t ion  of a particuEgr equation. For 

r igorous mathematical analyses of t h e  various methods f o r  solving a system of non- 

i i n e a r  equations,  the  reader i s  re fe r red  t o  [121. 

To compute the  small Jacobian dg from the  equations f ( x , y )  = o and 
5 

g(x,y)  = o we proceed as  follows. 

Let t he  p a r t i a l  de r iva t ives  of f and g with respect  t o  x and y be denoted by 

fx '  gx 
and f , g , respect ively .  Then d i f f e r e n t i a t i n g  f ( x , y )  = o, we have 

Y Y 



Now from g(x,y) we have 

and using (2.9) we get  

I n  order t o  make use of t h e  above equation, t he  Gaussian el imination can be 

u t i l i z e d  a s  follows. 

If the  occurrence matrix f o r  [::::::I i s  of bordered lower t r i angula r  form, 

then  [: i s  a l s o  of t he  same form (but it may have more zeroes than 

the  occurrence matrix, due t o  t he  p a r a l l e l  tangents)  and f i s  a n x n lower 
X 

t r i angu la r  matrix, t h e  p x m block column [I:] comprises t he  border. 

NSW t o  compute @ according t o  (2.10) we f i r s t  generate and s to r e  t he  block 
dy 

one a t  a time ( t h i s  requires  a small amount of s to rage)  s t a r t i n g  from the  t o p  l e f t  



~ 
hand corner and transform them by elementary raw operations ( ~ a u s s i a n  e l imina t ion)  

I 

I .  t o  become un i t  vectors .  The same transformations a r e  applied t o  W. A t  the  

termination of t h i s  procedure, g w i l l  have been replaced by dg . This can be 
Y dx 

seen e a s i l y  f r 3 m  (2.10) and t he  following equation 

I f  f i s  a lower block t r i angu l a r  matrix, but i t s  diagonal blocks a r e  small 
X 

r e l a t i v e  t o  i t s  overa l l  s i z e  n, then the  e l iminat ion i s  performed i n  severa l  s t ep s ,  

s t a r t i n g  with t he  t o p  l e f t  hand diagonal block and proceeding down the  main diagonal 

a block a t  a time. I n  each s t ep ,  f i r s t  the  re levant  diagonal  block i s  generated 

i n  a s torage,  say V,  and then transformed t o  an  i d e n t i t y  matrix of t he  appropriate 

order by the  forward'and backward courses of t he  Gaussian el imination.  The same 

operations a r e  performed on W. Then the  r e s t  of the  elements of the  columns having 
... 

elements i n  t h a t  pa r t i cu l a r  diagonal block a r e  generated, one column a t  a time i n  

V p lus  any more storage if needed, and t he  forward course of the  Gaussian e l iminat ion 

i s  used on V and W t o  make V zero. I f  any element on the  diagonal of a pa r t i cu l a r  

diagonal  block i s  small,  then  e i t h e r  p a r t i a l  or  complete pivoting [23] can be used 

wi th in  t he  block. If even t h i s  does not lead t o  an acceptable p ivo t ,  then the  rms 

of W which correspond t o  t he  elements i n  t he  diagonal block can be considered f o r  

pivoting.  If a su i t ab l e  p ivot  i s  ava i l ab le  i n  W ,  then we have t o  interchange a 

column of W with a column of f having elements i n  the  diagonal block. I f  a whole 
X 

row of W and the  co r r e sp~nd ing  row of t he  diagonal  block under considerat ion have 

small elements, then the  whole row can be s e t  t o  zero. This c rea tes  no problems 

i n  p rac t i ce  and i s  t heo re t i c a l l y  j u s t i f i e d  [1,25]. 

I n  any case,  i f  d i s  t he  s i z e  of t he  l a rge s t  diagonal block i n  f then t he  
x ' 

t o t a l  s torage S, needed f o r  t h e  above method t o  compute dg i s  given by S, = 5 k 
mp + max (d2,  p-d2 ). We know t h a t  t h e  storage S f o r  the  whole Jacobian ~ ' ( w  ) i s  ~ 
given by S = p2, the re f  ore 



1 .  Thus t he r e  i s  a considerable amount of saving i n  the  storage requirements i f  the  

I -  s e t  of d i f f i c u l t  equations g (x ,y )  has a small dimension m r e l a t i v e  t o  p. 

Once dg i s  ava i l ab le  only m2 c e l l s  of storage a r e  required t o  s t o r e  it and ;r5r 

t h e  same dg can be used f o r  severa l  s t eps  t o  compute the new approximations f ~ r  
dy 

t he  roo t .  This makes the  method somewhat l i k e  the  f ixed slope method and t h e  con- 

vergence i s  not quadratic a s  i n  Newton's method, but the  saving i n  storage i s  more 

than  before, a s  only m2 c e l l s  of s torage a r e  now needed f o r  dg . If we l e t  
dy 

A A m2 < m+l - S1= m2, then  S,/S = - -  Sl - . Thus we have shown t h a t  i n  comparison with 
P P S 

t he  usual  Newton method the  above method requ i res  only a f r a c t i o n  !!? of c e l l s  f o r  
P 

t h e  f i r s t  s tage  (when dg i s  being computed) and i n  t h e  subsequent s t ages ,  
a.7 P 

I , during which t he  storage used by f  f o r  computing dg i s  not needed. 
I - Y dy 

Pr io r  t o  a discussion of two other  methods which require  only m2 s t ~ r a g e  

c e l l s  throughout t h e i r  o p e r a t i ~ n ,  we b r i e f l y  describe how dg can be used t o  
k k dy 

compute the  next approximation (xk+l , yk+l ) from (x , y ). We consider g a s  

a funct ion of y and y alone.  For t h i s  purpose, we express x a s  a funct ion of y 
k k  

such t h a t  f ( x ( y  ), y ) = o. I n  the  following discuss ion we assume t h a t  a l l  funct ions  
k k  

a r e  evaluated a t  (x  , y ), unless indicated otherwise. Let 

k h k  k  A k  
then  f ( x  - 6x , y ) = o and from Taylor 's  theorem we have f  - f  dx + * * *  = o. 

X 
A k  

Neglecting h iger  order terms i n  6x , we have 

t h  
now s ince  g i s  a funct ion of y a lone,  the  k  s t e p  of Newton's method applied 



But i n  view of (2.12) and (2.13), we have 

Now, from the  above equation, (2.11) and t he  f a c t  t h a t  

g-g f ' l f  
X X X X 

it follows t h a t  i f  t he  column vector  [:I was appended t o  t he  matrix 

and the  same operations were performed on it a s  on , then g would be t r an s -  

k k 
formed t o  g(x(y  ), y ). This requ i res  only a small amount of increase i n  t he  storage 

I W. Once ykfl i s  known, xk" i s  given by 

We w i l l  now describe t he  other two methods f o r  computing dg . Both methods 
dy 

require  m2 storage c e l l s  but take longer than t he  method we have jus t  described above. 

The f i r s t  one makes use of t h e  imp l i c i t  funct ion theorem and t he  second i s  based on 

t h e  Quasi-Newton updates t o  transform g t o  dg . 
Y dy 

The small  Jacobian dg can be evaluated,  a s  i n  (2.5) ,  a column a t  a time. I t s  
t h  dy 
j column i s  given by 

k k 
g ( X ( Y  'hhe ) ,Y 'hke )-g ( X  (yk) yk)  

$$ej = Y (2.14) 
h 
k 

where e is t h e  jth column of an i d e n t i t y  matrix of order m and h i s  a su i t ab ly  
j k 

Ir 
chosen small pos i t ive  number a s  i n  (2.6 ) . To evaluate  x(y  + h e . ) , we must use 

k J 

12. . 

.,- ,. ..-. . . - "-.--, -;- - - - Y 1 7 '  I F i a  



k k 
f ( x , y )  = o. Therefore f ( x ( y  + . h  e ), y + h e ) = o and i f  we l e t  

k j k  j 

k  k " k  
x(y + h e ) = x - 8x , then we have f ( x

k  - 6xk, yk + h e ) = o and t he  use 
k j  k j 

of Taylor ' s theorem gives 

k k  k 
f ( x  , y + h e . )  - fx(xk,  yk + h e . )  6x. + * * *  = o. 

k J  k~ 
A k  

I f  8x i s  small,  then an approximation fo r  it can be obtained by solving the  l inear  

system 

where f and f a r e  evaluated a t  (xk, yk + h e ). Note t h a t  i f  f o r  j  = o we l e t  
X 

k k k 3 k 
e = o, then y + h e = y and t he  evaluation of g(x(y ), yk)  i s  a pa r t i cu l a r  case 
j k o k k 

of t he  computation of g(x(y + h e ), y + h e ). It i s  c l ea r  t h a t  f o r  each j 
k j k j 

t h e  l i nea r  system (2.15) has t o  be solved. Therefore, t h e  evaluation of dg fi 
according t o  (2.14) w i l l  require  t he  solut ion of (2.15) m t 1 times ( j  = O , l ,  * * *  

3 m; 
k 

where f o r  j = o , e  = o and x(y ) i s  computed). 
3 

The above method w i l l  t u rn  out- to be very slow unless f ( x , y )  = o i s  an easy 

and f a s t  system t~ solve f o r  x, given y. However, i n  a l l  cases,  i f  m i s  small,  

the  s i t u a t i m  i s  not bad. 

Note t h a t  the columns of f can be generated m e  a t  a time, i f  f i s  lower 
X X 

t r i angu la r  (or some other des i rable  fo rm;  see [231 f o r  other des i rable  forms ). 

This requires  only p c e l l s .  I n  case f i s  block lower t r i angula r  then,  a s  i n  the 
X 

f i r s t  method, the  storage f o r  s ~ l v i n g  equation (2.15) w i l l  be max (d2, p-d2 ). Of 

course, requires  ma c e l l s .  Thus the  t o t a l  storage f o r  t h i s  method i s  given 
dy 

by sz = m2 + rnax (d2, P-d2) .  

I n  t he  t h i r d  method, we update g t o  get  and a t  t h e  same time update the 
1- 1- Y dy 
K K 

\approximations (x , y ). We can use any one of t he  rank one or rank two Quasi- 

Newton methods f o r  t h i s  purpose [12, 151. Essen t ia l ly ,  we f i nd  a zero of t he  
k k  k  k k 

functions g(x(y ) y ), where X ( Y  ) i s  chosen such t h a t  f (x(y ) yk) s o f o r  a l l  y . 
k  ' k 

As i n  t he  second method, i f  (x , yk) i s  given, then x(y ) i s  obtained by 
" k  

solving (2.13) f o r  &x and then using (2.12). We a re  n w  i n  a posi t ion t o  describe 



wi th  t h e  c o n d i t i m  t h a t  f o r  a given y ,  x (y )  w i l l  always be obtained by using 

(2.13) and (2.12). It i s  convenient' t 3  descr ibe  t h i s  method i n  an a lg3r i thmic  

form a s  f o l l m s .  

Given (xO, yo ). 

Compute x(yO ) = x0 - f ' l f ,  where f and f a r e  evaluated a t  (xO,  yo ). 
X X 

Let f = (%)-I a t  (x(yO ), yo ). 
ay 

For k = 0, 1, 2,  * * *  perform t h e  f ~ l l o w i n g  s t eps  

k k k  k k k  
1. yk+l = y  - H g  , where g = g ( x ( y  ), y ). 

k k 
2.  x(ykil) = x(y  ) - f - I f ;  f and f a r e  evaluated a t  (x(y ) , yk+l ). 

X X 

k k 
3. 6g = gk+l - g , where gk+l = (x (yk+'), yk+l. 

4. syk = yk+l 
k - Y 

k k k  kT 
5 .  Hk+' = Hk +(by -H 6g 1 6 ~  

k k 
Stop when IIg \ I  and/3r 116~ I /  i s  small .  

N3te t h a t  i n  c ~ m p u t i n g  HO, we take  

k 
I n  S tep  5 of t h e  a b m e  algori thm, it i s  p ~ s s i b l e  t=, update H i n  many ways; we 

have used a rank one c o r r e c t i ~ n .  Various 3 ther  rank one and rank two uptdate 

formulas a r e  given i n  [4,5,8,15,17,213. 

For f a s t e r  c3nvergenceY S tep  1 of the  a1gori:hm can be replaced by 

k k k  
yk++' = Y - ct H g , where t h e  s c a l a r  a. i s  chosen such t h a t  l / g k + l  /I < 1lgk// , but t h i s  

increases  t h e  computation time per  s t e p .  It was pointed out  by Broyden [6] t h a t  

i n  many cases a. = 1 i s  a g o ~ d  choice. This was found t o  be t h e  case i n  p rac t i ce  

when we solved our f l ~ w  network problems. 



I11 Concluding Remarks 

I n  t h i s  paper we have discussed some 3f t h e  important problems t h a t  one 

f a c e s  when at tempting t o  solve a l a rge  system of non- linear equations.  I f  t h e  

system i s  sparse ,  then it i s  poss ib le  t o  save storage and computing time. We 

have shown t h a t  i f  the  e q u a t i m s  and va r iab les  can be rearranged i n  such a manner 

t h a t  i n  t h e  r e s u l t i n g  system 

t h e  f i rs t  s e t  f ( x , y )  = o can be solved ' e a s i l y '  f o r  x i n  a sequen t ia l  or  o ther  

manner f o r  any given y i n  some neighborhood of a  ' des i rab le  ' roo t  and i n  com- 

par ison with f the  s e t  g cons i s t s  of only a small  number of equations,  then  it 

i s  poss ib le  t o  solve g a s  a funct ion y alone.  This r equ i res  only a small  amount. 

of s torage a s  compared with t h a t  required  t c ~  solve t h e  whole problem together .  

We have described h~ the  computation of t h e  small Jacobian % , which i s  
dy 

required  f o r  t h e  so lu t ion  of t h e  small  system g ( x ( y ) ,  y )  = o fcIr y, can be done 

by any one of t h r e e  methods: t h e  Gaussian e l iminat ion,  use of the  Impl ic i t  Function 

Theorem and a rank one Quasi-Newton method. For t h e  f i r s t  two methods, we have 

shown t h a t  it i s  not necessary t o  compute & a t  every i t e r a t i o n ,  but t h e  sarne 

I dy 
value can be used f o r  severa l  i t e r a t i m s  t o  save t h e  computation time. 

We have applied a l l  t h r e e  meth3ds t o  t h e  f low network problems a r i s i n g  i n  

t h e  mathematical modelling of mammalian kidneys. We found t h a t  t h e  computation 

3f t h e  small  Jacobian dg was much f a s t e r  i n  t h e  f i r s t  method than i n  t h e  o ther  
dy 

two, but  t h i s  advantage was o f f s e t  by t h e  r e l a t i v e l y  l a rge  storage requirement of 

t h i s  method. On t h e  average i n  our problems p 2 6 m, and the re fo re  t h e  f i r s t  

method, needed more than s i x  times t h e  storage required by t h e  o ther  two. Due 

t o  t h i s  f a c t ,  t h e  f i r s t  method could not be used f o r  solving many large  problems. 

I n  terms of t h e  o v e r a l l  cos t  a l l  t h e  th ree  methods were competitive with each other .  
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