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1. Introduction.

The mathematical models of the renal concentrating mechanism contribute towards

an increased understanding of renal function. These models involve the solution of

a system of differential e~uations for the renal counterflow systems. Analytic

solutions of these differential e~uations, except for very simple models, cannot

be obtained. Therefore numerical methods have to be used. One of the principal

considerations, in the selection of a numerical method, is to strike a proper balance

between the total computational effort and the minimization of discretization

(truncation) errors, so that the resulting numerical solution is a reasonably close

approximation to the correct solution of the differential e~uations. There are two

ways in which the discretization error can be decreased. First, by decreasing the

size of the discretization step - usually called the space chop or step size.

Na~urally,this leads to an increase in the total amount of storage and computation

and often also an increase in the computer round-off errors. The second alternative

is to select a numerical method which, for a given space chop, has a small discretiza-

tion error. This also leads to an increase in the computational effort, particularly

in the number of function evaluations.

In a recent paper in this journal (1) we described how the physiological

connectivity and flow directions in the various tubules constituting a nephron can

be exploited to develop sparse matrix methods which lead to a decrease in the com-

'putational effort and storage re~uirements for a simple numerical method that uses

small space chops. In the present paper we focus our attention on several other

methods, which, for a given space chop, lead to less discretization error than the

method described in (1). We give estimates for the error bounds for each of these

methods. Results of some computational experience with the various methods are



also given. It turns out that S8me of these methods have very little effect on

the overall connectivity and therefore sparse matrix methods described in (1) can

als8 be used with these methods to obtain highly accurate solutions without the

expenditure of an inSJrdinately large amount of storage and cSJmputing time.

One of the principal reasons for developing fast, accurate and compact

numerical methSJds for solving the differential equations arising in the mathematical

models of the kidney is that any realistic model of the kidney involves the solution

of a large system of coupled differential equatiSJns,and to estimate the parameters

of the model, these equations have to be 8o1v6:'drepeatedly, Thus any improvement

in storage, run time and accuracy is magnified by a large amount.

This paper is organized as follows.

In the next section, first we briefly describe a six tube vasa recta model

of the medulla and then shaw h~T the Trapezoidal R~e can be used to numerically

.
solve the differential equations for the model. We have also di~eussed how the errSJr

bounds for the discretization errors can be obtained. For additional details re-

garding this and other kidney models the reader is referred to (1, 2, 3 and 4).

A preliminary version of the analysis given in the next section was announced

earlier (5). In Section 3, we have described five other methods and given es-

timates for the discretization error bounds for each SJfthem. The last section

contains some of the results of our extensive computational experiments with the

various methods.

2. The Mathematical Model and the Trapezoidal Rule

Let us consider a six tube vasa recta model of the medullary counterflow system

(Figs. 1 and 2). This is the same model that we have described in (1), except that

tubes 3, 4 and 6 in this paper were labelled respectively, as 6, 3 and 4 in (1).

'">c...



Fluid (from the proximal tubule) enters tube 1 (the .descending Henle's limb-miL),

then flm'ls through tube 2 (the ascendingHenle's limb-AHL), tube 3 (the distal

nephron-DN)and tube 4 (the collecting duct-CD), in sequence, to emerge from tube 1.[

as fina 1 urine. Blood enters tube 5 (the descending vasa recta-DVR) and emerges

from tube 6 (the ascending vasa recta-AVR). We aSSQme that tube 3 exchanges solutes

and "rater with the cortical interstitium (Cl) and the concentrations of the various

solutes in the Cl remain unaltered. All the other tubes exchange solutes and water

with tube 6 as shown in Fig. 2.

The differential equations for the model are (1,2,3)

~ F° (x) = - J. (x),
ax lV lV [2.1]

and

d- F (x) - J (X )
dx ik - - ik '

[2.2J

where the subscripts i, v and k refer respectively to tube i, volume and the

kth solute. F is the axial flow, J the transmural flux (transverse flovl per unit

length), and x, vrhich varies from 0 to 1, is the distance measured d:JVm the medulla

from the cortico-medullary junction. For tube 3, x is measured in the direction of

the flovl, viz., from the top of tube 2 to the top of tube 4. F. (x) and Fo (x)
lk lV

are related by the equation

F'k(x) - F. (X)Cok(X) = 0,
2 lV 2

where c. (x) is the concentration of the kth solute at level x in tube i.
lk

L2.3]

~o (x) and JOk (X) are functions of c (x),where p includes tube i and all the
l v l pq

other tubes transversly interacting vlith it, q denotes all the solutes. In this

model, we considertwo solutes (salt and urea). The entering flaHs and concentrations
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in tubes 1 and 5 and the concentrations in the CI are given. In all the tubes,

the flows and concentrations match at the points where a tube flaws into the next

~ne. Our problem is to determine the soll~e concentrations and volume flaws in

all the tubes for 0 ~ x ~ 1.

To this end, for a space chop of size h, from [2.1J we have

x+h
F. (x+h)= F. (x) - r J. (y)dy,
lV lV Vx lV

[2 . 4]

and

x
F. (x) =.F. (0) - r J. (y)dy.
lV lV Co 0 lV

[2 . 5J

The discretization of the x range [0, lJ into n equal parts yields the value l/n

for the space chop h. Let x = jh, where j = 0, l,...,n, and F. . = F. (jh),
lVJ lV

then [2.4J can be written as

:F'. . =F - S
(j+l)h

lV,J+l iVJ' .h
J. (y)dy,

J lV

and the use of Trapezoidal Rule (TR) leads to the equation (6, p. 287)

. 1 3

- - TRJ+ -I- hI/I

Fiv,j+l - Fivj j' 12 JiV~j)'
[2.6 J

where

j+l
TR. = (J. . + J. .) h/2 and j h :e;:11.~(j+l)h.
J lV,J+l lVJ J

[2 .7J

Similarly, using the composite Trapezoidal Rule (6, p. 293) in [2.5J and

assuming that J~ (x) is continuous in [0, 1] we have
lV

. 3

F. . = F. - TRJ + ~2 j J~ (Ti.),0 ~ 11. ~ j h.
lVJ lVO 0 L lV J J

[2.8J
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j
where TR

a (J. + 2 J. +.. ~ + 2 J, . + J. . )h/2.
lVO . lv1 lV,J-l lVJ

The f8rmulas [246J and [2.8J hold-f8r i = 1, 3, 4 and 5. For tubes 2 and 6

the integration is done from 1 to 0 and the corresponding formulas are

.
1 3

--J 1 Ii
( )F. . = F. - 1 + TH.

1
-

12 ~T. 11.
lVJ lV,J+~ J+ lV J

[2 .9]

and

F = F + TR,1
ivj ivn n

h3

12 (n-j) J~ (~.), j h ~ ~. ~ 1.
lV J J

[2.10J

In order to use [2.8J we have to drop the last term which cannot be easily

determined. Let

jF = F - TR
ivj ivo 0

[2.11 J

and

h3 , If -,E. . = _]2 J J. (11.) + E. ,
lVJ. lV J lVO

[2 .12 J

where E = E ~ 0 , E. = E. , i = 2, 6, E3
= E

2
and

Ivo 5vo lvn 1-1,vn vo va

E4 = E , then from [2.8J we have
vo 3vn

F. . =F. . +E. .
lVJ lVJ lVJ.

[2. 13J

A bound on the error E can be obtained as fol10':t{s.
ivj

Let

IJ~ (x)\ ~A, for all i and 0 ~ x ~ 1,lV [2.14 J

and t. = number of tubes upstream to tube i; "t. = i - 1 for i ~ 4 and t. = i - 4
). 1 1

for i ~ 4, then from [2.12J we have the required result

3 t

IE I ~ ~ I. i
i v j 12 \ J + h) A. [2.15 ]
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In view of [2.10J, for tubes 2 and 6, j must be replaced by n-j in the right hand

side of [2.15J. N~te that E.
J'+llV,

E. . is equal to the error term in [2.6J
lYJ

and therefore using [2.14J we have

IE. . - - E. . I ::; h3 A.
lV,J+l lVJ 12

[2.161.J

So far we have seen how F. . can be obtained from F. and J. ,

lVJ lVO lvm

m = j, j-l, ...,2,1 or from F, and J. , m => n, n-l, ..., j.lvn lVID
Unfortunately,

<T. (x) is a function of c (x) for all solutes k and tubes interacting with tube i
lV pk

(including itself) and c (x)'s are not known. To overcome this problem, we aSSQ~e
pk .

the values of c (jh) = c . for all p, k and j and then c~mpute F. .'s as functions of
pk pkJ lVJ

c .'s. In order to improve the assumed c . values, we will now use [2.2J and
pkJ pkJ

[2.3J to define functions cpo .'s which are functions of c .IS.
l~ p~

From [2.2J and [2.3J we have

d
dx CF. (x)c'

k (X)] = - J., (x).lV 1 lK

Integrating the above equation and calling~. . as the difference between the
.lkJ

left and right hand sides of the resulting equation, we have

rO +l)hCPok
. = F. . lc. . - F. .c.k . + J J.k(y)dy.

l J lV,,1+ lk,J+l lVJ 1 J jh l

If the correct F. .'s and c'k "s were known and substituted in the above equation,
lVJ 1 J

then rn == O.
't'ikj

Let us use the Trapezoidal rule in the above equation to get

j+l
CP.k

. =F. . lc.k . 1 - F. ..c .k . + TR. - E.k .,

1 J lV,J+ 1 ,J+ lVJ 1 ~ J 1 J
[2 . 17J

where

Eikj -
h3 N ~

)
~

( )- J ( 11 , :i h ::; 1'i ::; J'+l h.
12 ik 'j ~ 'j

[2 . 18 J
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The error E cannot be evaluated, h~wever a bound for it can be found as
i~

foll~ws . Let

I J ~ - (x) I ~ B, for a11 i, k and x,lk [2.19J

then from [2.18J we have

h3

IEikj I ~ 12 B.
[2.20J

We will now define a function ~'k ' which is closely related to~. . and can
1 J 1.kJ

be easily computed. From [2.13J and [2.17J we have

j+l
CPok

. = F. . lc.k . 1 - F. .c. k . + TR. - E.k . + E. .
l
c.k .

1
- E. .c.

k
.

1 cJ 1.V,J+ 1 ,J+ 1VJ 1 J J 1 '-J 1V,J+ 1 ,J+ 1VJ l-J

= ~. k . + R.k .'
1 J 1 J

[2.21J

where

- - j+l
~'k ' = p. . 1c'k .

1
- F. .c'

k
' + TR.

1 J lV,J+ 1 ,J+ lVJ 1 J J
[2 . 22]

and

Rikj = - Eikj + EiV,j+lcik,j+l - EivjCikj.
[2.23J

It is now possible to find a bound for the error term R'k '.
1 J

Since

A "

C. . = c. . + h c.' ('fl.),j h ~ 11. ~ (j+l) h, and if vie let
lk,J+l lkJ lk J J

I c. (x ) I < Sand I c '. (x) I ~ P for all i, k and x,lk lk [2.24 J

then in view of the above facts and equation 12.23J we get

R.. . = - E'
k
' + (E. . 1 - E. .)c' k ' + h E. . lc"k(~')lkJ 1.J lV,J+ 1.VJ 1.J 1.V,J+ 1. J

[2.25J
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and using [2.15J, [2.16J, [2.20J and [2.24J we have

h~ h3 h3 t.
I R I ~ - B + --~ A Q + h . - (j +1 + .2) A P

ikj 12 12 u 12 h

or

h3

\Rikj I ~ 12 [B + A(S + 4p)J, [2.26 J

since max (j+l)h = 1 and max t. = 3.
1.

The actual value of Ro ° cannot be determined; only the bound [2.26J is
1.kJ

available, therefore, as mentioned earlier, t.p°k o given by [2.17J cannot be used but
LJ

in its place we can use W'k " which is given by [2.22J
'1. J

We recall that

TRj+l = (J + J )h/2 and since J I S are functions of c 0' s for all inter-
j ik,j+l ikj ikj . pkJ

acting tubes p and solutesk, it is evident that CP'k ' is also a function of c . 's.
'1. J pkJ

Fur'thermore , if m =--= 0 for some set of values of c's then , aside from the
. ~~ p~

discretization errors R. ., equations [2.2J and [2.3l are satisfied and we have
1.~ -

obtained an approximate solution to our problem. Let us impose some fixed ordering

on the triple 'ikj' and let Q and c denote the vector functions with elements

rn and c res p ectivel y .
Tikj ikj

Then the solution c, which is a vector of concentration

of the nonlinear system of equations

cp(c) = 0 , [2.27J

also satisfies the discrete forms of [2.1J, [2.2J and [2.3J, if the discretization

errors are neglected. Equation [2.27J is solved by Newton's method (1,2,3,4),

which can be described briefly as fol10ws.

0:
If c is a given approximation to a root c of w(c) = 0 then the next

approximati~n cQ+l is given by

8.



0'+1 0'
C "" C

-1

(
-' ( 0'

) )

--

(

Ci
)

.

'P ,c cpe, 0' "" 0,1,2, ...,

where cp'(cO')is the Jacobian of eP-(c) at cO'. It is well known that if the initial

apprJximatiJn CO is sufficiently close to c then the sequence of iterates tcO'}

,,
converges quadratically to c. Gc;od choice of the initial approximation and methJds

0
for extending the dJmain of convergence (hry,{close c should be to c) and related

topics are discussed in (7). The use of the s:,)-ea11ed continuation method for this

purpose will be described in a later paper.

We n~w return to the consideration of the discretization errors. We pose the

following problem.
*

If an exact solution c'k(x) of [2.1J, [2.2J and [2.3J is given,
1..

* *
c is the vector of concentrations c'k ' and c is a solution of [2.27J, then determine

1 J
*

a bound for the error vector c - c . We will show that under certain conditions a

*
reasonable estimate for the norm of c - c can be obtained.

We knm" that J, (x) and J. (x) are functions of c (x), therefore J~I (x) and
1v lk pk 1v

J~ (x) will also be functbns of c (x), c' (x) and Cll (x) and it follows that
lk pk pk pk

R. . is also a function of c (x), c I (x) and ell (x), vlhere x is evaluated at
lkJ pk pk pk

* * * I
jh and the various ]. values. Let Y denote a vector of c (x), c k(x) and

J pk P ,
*
C
kll(X) evaluated at the relevant jh and ~. values.

p J

functionswith their componentsrelated as in [2.20J then we have

If 'P, cpand R denjte the vector

* * -1(-
0 =: cp(c ) =: ~(c ) + R(Y ),

or

* *
cp(c ) = - R (y )

and therefore in view of [2.26J we have

3

1\

*
II II

-)(- II h .'

cp(c ), '" R(Y )i\$;12 LB -1-A(S + lw)] =0(h3). [2.28J

9.



If c is a s~luti~n of ~(c) = 0 obtained by Newton's method, such that

Ilcp(c)!!~ E, where E is small, [2.29 J

and if we assume that ~(c) is a Gateaux-differentiable on an open convex set and

*
c and 2 b~th lie in this set, then (8, pp. 68-69).

- A - * -1(-A A *
~(c) - ~(c ) = B(c , c) (c - c ) , [2.30 J

*
where B(e

A

)

th th -I
(

r
)c is a matrix whose l' row is equal to the l' row of ~ z ,

zr = e* + t (2 - c*) and 0 ~ t ~ 1 (In general, t will be different for each 1').
l' l' l'

*
We assume that B(c , c) is invertible; for exampl~, this is true when ~'(z) is

-)E- *
row diagonally dominant for z '" c + t(2 - e ) and all 0 <;;t h 1. This diagona 1

dominance is ey~ibited by many models due to the faGt that the 00n8~ntration c., .
]_KJ

has the most effect on the ~. . ~ the mass balanee equations f~r the (ikj) eom-
lkJ

partmcnt. In view of the above facts and equation [2.30Ji we get

-j(- -1(--1 *

C - c = [B (2, e)] [cp(2) - Cf(e )J.

-1

If \1[B(2,c*)J \\~ M, then from [2.28J, [2.29J and the above equation we have

* h3
112 - c II ~M(E+ 12 [B +A(S + 4p)J).

If ep(c) = 0 is solved such that E« h3, then from the above equation ,'Ieget

finally the estimate

112 - c*\I = 0(h3). [2.31J

An alternative way to get [2.31J is to assume that terms involving

lie - c*IIP, for p ~ 2 are much smaller than lIe - c*1\and therefore can be neglected.

If ~(c) has a Freehet derivative at e*,then (8,p.184)

10.



* * * *
cp(2) = (p(c ) + i{)'(c )(8 - c ) + 1'(2 - c ),

where T(2 - c*) includesterms whCJse norms invalve Ilc - c*IIP, p >- 2. In many

cases, ~(c) is a quadratic in c, and there are no third and higher order terms.

*
Neglecting T(c - c ), we have

* ,'t.- *
~(a) - ~(c ) ~ ~ (c )(2 - c ).

* -'
Assuming that (cp'(c )) .L exists, r,ve have

* * -1 *
C - c ~ [q;'(c)] [cp(8) - q5(c )J.

~- -1
Once again, if 11[~'(c)] II ~ M, vle get the same estimate as in [2.31J.

2. Other Methods

We will describe four other methods in this sectionfor numericallyinte-

gr a t i ng J. (x) and J. (x ) .

lV lk
But prior to thAt we will briefly point out that

in all the methods, including the Trapezoidal Rule, it is possible to assume

both F. . I sand c. . I S as variables and append to~. . another set of equations
lYJ lkJ lkJ

j+l h3 "
( )cp =F -F +TR --J 11

ivj iv,j+l ivj j 12 iv j

and then solve the augmented system. Foll~wing an analysis which is analogous to

that given in the previous section, we get

h3

IIRikj11 ~ 12 max(A, B) = 0(h3).

Though the above modification increases the size of the system the resulting

equations are much sparser than before and the total work is in fact somewhat

less than before.

A description of the four methods n~d follows:

(a) The Mid-Point Rule.

11.



jh (j+l~1

In order to numerically evaluate S J. .(y)dy, S. J. (y)dyand
0 lV Jh lV

(j +1 )h
S J'

k (y)dy, instead of the Trapezoidal Rule, we can use the Mid-Point Rule
jh 1

(t1P). In this case we have, for example (6, p. 286),

(j+l)h 1,3
S J. (y)dy = [J. (j+~)h)Jh -\- -;-L JI/Cf\.), j h ~ 11. ~ (j+l) h.

jh 1v 1Y 2 ~ J J

\{e assume that the values of c. (x), J. (x), J. (x) etc. can be computed at thelk lk lV

intermediate points (j+~)h. 'The analysis is similar to that for the 'I~ and in-

stead of [2.26J, we have

h3

IIRikj!l ~ 2L} [B + A(S + 4p)J.

Obviously, this is a somewhat better bound but still lie - ell 0(h3) \'Thich is the

estimate we had for the TR.

(b) The Cubic Overhar.g Method

Essentially this involves first fitting a cubic through the points

(j-l)h, jh, (j+l)h and (j+2)h and then using this to integrate from jh to (j+l)h.

For example,

(j+l)h

r J. (y )dy= 2
h
4[- J. . 1+ 13 J. . + 13 J. . 1 - J. . ,J

~jh lV lV,J- lVJ lV,J+ lY,J+L

+ ~ h 5 J~v (11. ), (j -l)h ~ 11. S (j +2)h.
720 lV J J

[3 . 1]

At the beginning (or end) of each tube in place of the above equation we use

h h
S J. (y)dy = 24 [9 J. + 19 J. 1 - 5 J. ~ + J. 3 J

a 1 v 1 VO 1 V 1 Vi::: 1 V

+ 19 hs/v(ll ), a ~ 11~ 3 h.
720 lY 0 0

12.



"' "I

If ,,,e let

. .
~v I I lV IIJ. (x) ::;; A, J. (x) ::;;B, for all i, k and xlV ~k

then as in the case of TR we get

, ' 19h5 ,-
11R II ~ -- [B + A (8 + 4p)1 ::.: O(h')).
"ikj' 720

(c) Corrected Trapezoidal Rule

We have the formula (6, p.288-289)

(j+l)h

S J. (y)dy:=:
jh lV

.
1 h 2

h 5 .J+ .
[ ' ' J lV( )TR . + -

J2 J. . - J. . 1
+

720 J. \ 11. ,
J - lVJ lV,J+ -:LV J [3 .2]

where j h ::;; ]. ::;; (j+l)h.
J

the derivatives of c.- .'
lkJ

In order to compute the terms of the type J: . we need
lVJ

We can compute these by using either the natural or

cubic splines to find c' from c. In the case of cubic splines it is kno\'iYl (9, p. 1~2)

that c' has an errorof 0(h3) and under suitable boundedness assumptions on the

c and x derivatives of J' and J' it can be shovlYl that the error in
i v j ikj

h2(J'
12' ivj

J: . ) is 0(h6) when cubic splines are used to compute c' from c.lV,J+l

Hence the d'Jminant error term in the Corrected Trapezoidal Rule still remains
iv

h 5 J. (] ) and
- lVj
720

I h5

IIRikjll::;; 720 [B +A(S + 4p)] ~0(h5)

where A ano B are the same as in the Cubic Overhang meth'Jd. U~ing natural splines

to compute c' leaGB t'J a much l'Jwer -::Jrder b-::Jund f-::JrIIR'l .11 and since the c'Jmputational
lll:J

w-::Jrk is appr-::Jximatelythe same f-::Jrb-::Jththe natural and the cubic splines, we have

disc-::Jntinued the use of natural splines.

(d) Fifth Degree Overhang

In this case integration formulas w~re used which can be 'Jbtained by using

polynomials of degree five. Let f(Y~1 denote the function to be integrated, e.g.,

13.



f(Y) = J. (y), then we have
1V

(j + 1 )11

Sjh f (y )
[

2 3
-.- h f + Y~ 6. f + y. 1 ~ f + Y. t:. f

k J,k+l k J,K+2 k J,k+3 -k

~4 r:> 5 j+lY. k 4 - ~
k + Y. k 5

~ f
k J + E.

J, + . J,-+ . J

p th .
where t. den:)tes the p f:)rward d1fference,

+

2i+l
k < J. ~ k + 4 i = j - k, Y. k+ l = ~- , J , --

6 ,2

Y = .-?- -1
j ,k+2 12

v -- ~ ( .3 3.2 1
1. k .

3
-

6
1 - - 1 + - )J, + 2 4 '

Y _.J:..4 3
j , k+4 - 4; (1 - 4i + 4i 2 :- 19

)30 '

and

1 .5 15.4 55.3 .2 9
Y = - (1 - - 1 + --, - 151 + - J

\. k "" c;: I ') 3 .L h .J, T.J j. C - .

j+l
The b:)und for E. can be estimated by using the standard methods.

J
For example,

IE. . I ~ O.01L}269h7\ J~i en. ) \1kJ lk J

and therefore

IIR. .!!:§ 0.014269 h7[B + A(S + 4F)J = 0(h7),
lkJ

where B and A are the b:)unds ::m the sixth derivatives of J (x ) and J (x ) .
ik iv'

Thus we have seen that, except for the Corrected Trapezoidal Rule, the error

bound is of the order hP+2 where p is the qegree :)f the polynomial that is used

t:) derive the integration formula.

We will nm.,r show that the Corrected TTapez:)idal Rule leads t:) the Cubic

Overhang method if the derivatives are approxj.mated by central differences. For

example if

14.



J.' . - J.' . 1 ~ (J. . 1 - J. . 1 ) /2h . - (J . . 2 - J. .) /2h
lVJ JV,J+ lV,J+ lV,J-' lV,J+ lVJ

then fr~m [3.2J, neglecting the err~r term, we have

(.j+l)h hr J. (y)dy ~ (J. . + J. . )h/2 + -4 [J. .
Vjh lV lVJ lV~J+l 2 lV,J+l

J. . 1lV,J- J. .? + J. . ]lV,J+- lVJ

_.
h
"4 [- J. .., + 13 J. . + 13 J. . 1 - J. ." J,
C lV,J-L lVJ lV,J+ lV,J+~

which is the same as [3.1J. Thus we aee that the corrected Trapezoidal

Rule can also be thought Qf: as a 'cub in:.t method and the error is hP+2 vlhere p = 3.

It ioTaS pointed out in (1) and (3) that when the TTapez:::>idal Rule is used the

resulting Jacobian (fj' (c) either has a bordered block triangular form or can be

readily permuted to this form by a renumbering of the tubes. Furthermore, all

the diagonal blocY.sassociated with the tubes, except tube 5, have block lower

triangular forms with second order diagonal blocks due to the two solutes. The

use of Mid-Point Rule retains this structure. The Cubic Overhang method

vrithim each tube makes the diagonal matrices band lOvler triangular with a

bandwidth of two (for the definitions of the various desirable forms for sparse

matrices see (10». On the 'Jtherhand, the Fj.fth Degree Overhang me:K~od makes the

bandwidth four. The use of splines within the tubes completely fills the

diagonal blocks associated with the tubes. However, this disadvantage is some-

what offset by the smoothness of the resulting concentration profiles, since

the use of splines forces the first and second derivatives of the concentrations

to match at the junctions of consecutive subintervals of the range x.

15.
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3. Computational Results

The methods described in the preceding sections, which lead to less

discretization errors than the usual Trapezoidal Rule, were programmed in

FORTRl\N IJl for the UNIV.AC 1110 at the University Computing Center in Stony

Brook. The storage requirements and running times did not sho\.[a significant

difference among the various methods. In order to determine the relative ac-

curacy of the results obtained by using the various methods, the urea concen-

trations at all medullary levels in the collecting duct (tube 3) were com-

pared. The collecting duct was chosen for this comparison because the final

concentrated urine emerges from it and the mayimum possible error is likely

to occur in it. The relative accuracy of concentrations in other tubes ey-

hibited results similar to the urea concentrations in the collecting duct.

Some of the results of our computational experiments are sh0wn in Table 1. We have

Table 1. A comparison of urea concentrations in the collecting duct.

Notation: 1 = Trapezoidal Rule, 2 = Trapezoidal Rule with

20 chops, 3 = Cubic Overhang, 4 = Corrected Trapezoidal Rule,

5 = Fifth Degree Overhang

compared the concentrations by using the usual two norm. C(I) denotes the vector

of urea concentrations in the c')llecting duct obtained by meth')d I, vThere

I = 1, 3, 4 and 5 refer, respectively, t')the 'frapezoidal Rule, Cubic Overhang,

Corrected Trapezoidal Rule and the Fifth Degree Overhang. In each case the

medulla was divided into ten chops yielding h = 0,1. In order to compare the

1.6.

Ilc(l) - c(3)llIllc(3)11 .016

Ilc(3) - c(5)ll/llc(5)\1 .013

IIc(3) - c(4)ll/llc(4)1! .006

Ilc(2) - c(4)ll/llc(4)11
I

.018



increase in accuracy between decreasing h and using methods with smaller

discretization errors, we computed the vector of urea concentrations by

using the Trapezoidal Rule with twenty chops and keeping only those concen-

trations that correspond to the ten chop medullary levels. This, of course,

required four times the storage.

It is evident from Table 1 that the Cubic Overhang is a significant

improvement over the Trapezoidal Rule, as is the Fifth Degree Overhang over

the Cubic Overhang. The close agreement between the concentrations obtained

by using the OJbic Overhang C(3) and the Corrected ~'apezoidal Rule c(4) is

quite remarkable because there is a significant difference between the two

methods (we recall that the derivatives of the concentrations that are used

in the Corrected Trapezoidal Rule were computed by using cubic splines).

The last line in Table 1 shows clearly that instead of taking h = 0.05 and

thus quadrupling the storage, it is much better to use the Corrected Trape-

zoidal Rule or the Cubic Overhang method with h = 0.1.

In conclusion, we can safely state that the use of accurate inte-

gration formulas, whenever possible, generally leads to better results when

solving the stiff multiple boundary value problems of the type described in

this paper.
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Fig. 1.

Fig. 2.

Figure Legends

A six tube vasa recta m~del.

Axial (~) and Transverse (-) flows in the six tube vasa recta model.


