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1., Introduction

The mathematical models of the renal concentrafing mechanism contribute towards
an increased understanding of renal function. These models involve the solution of
a system of differential equations for the renal counterflow systems. Analytic
solutions of these differential equations, except for very simple models, cannot
be obtained. Therefore numerical methods have to be used. One of the principal
considerations, in the selection of a numerical method, is to strike a.proper balance
between the total computational effort and the minimization of discretization
(truncation) errors, so that the resulting numerical solution is a reasonably close
approximation to tﬁe correct solution of the differential equations. There are two
ways in which the discretization error can be decreased. First, by decreasing the

size of the discretization step - usually called the space chop or step size.

Naturally,this leads to an increase in the total amount of storage and computation
and often also an increase in the computer round-cff errors. The second alternative
is to select a numerical method which, for a given space chop, has a small discretiza-
tion error. This also leads to an increase in the computational effort, particularly
in the number of function evaluatioﬁs.

In a recent paper in this journal (1) we described how the physiological
connectivity and flow directions in the various tubules constituting a nephron can
be exploited to develop sparse matrix methods which lead to a decrease in the com-
"putational effort and storage requirements for a simple numerical method that uses
small space chops. 1In the present paper we focus our attention on several other
methods, which, for a given space chop, lead to less discretization error than the
method described in (1). We give estimates for the error bounds for each of thesé

methods. Results of some computational experience with the wvarious methods are



also given. It turns out that some of these methods have very little effect on
the overall connectivity and therefore sparse matrix methcds described in (1) can
also be used with these methods to obtain highly accurate solutions without the
expenditure of an inordinately large amount of storage and computing time.

One of the principal reasons for developing fast, accurate and compact
numerical methods for solving the differential equations arising in the mathematiecal
models of the kidney is that any realistic model of the kidney involves the solution
of a large system of coupled differential equations,and to estimate the parameters
of the model, these equations have to be solved repeatedly, Thus any improvement
in storage, run time and accuracy is megnified by a large amount.

This paper is organized as follows.

In the next section, first we briefly describe a six tube vasa recta model
of the medullas and then show how the Trapezoidal Rule can be used to numerically
solve the differential equations for the model. We have also diseussed how the error
bounds for the discretization errors can be obtained. For additional details re-
garding this and other kidney models the reader is referred to (1, 2, 3 and L).

A preliminary version of the analysis given in the next section was announced
earlier (5). 1In Section 3, we have described five other methods and given es=-
timetes for the discretization error bounds for each of them. The last section
contains some of the results of our extensive computational experiments with the
va?ious methods.

2. The Mathematical Model and the Trapezoidal Rule

Iet us consider a six tube vasa recta model of the medullary counterflow system
(Figs. 1 and 2). This is the same model that we have described in (1), except that

tubes 3, 4 and 6 in this paper were labelled respectively, as 6, 3 and L in (1).

2.



Fluid (from the proximal tubule) enters tube 1 (the descending Henle's limb-
(the ascending Henle's 1imb-AHL), tube 3 (the distal

then flows through tube 2
nephron-DN) and tube 4 (the collecting duct-CD), in sequence, to emerge from tube L
Blood enters tube 5 (the descending vasa recta-DVR) and emaerges
1ges solutes

We assume that tube 3 exchan

as final urine.
from tube 6 (the ascending vasa recta-AVR).
al interstitium (CI) and the concentrations of the various

it
reilc

and water with the cor
All the other tubes exchange solutes and water

solutes in the CI remain unaltered.

with tube 6 as shown in Fig. 2.
The differential equations for the model are (1,2,3)
£ () =-7 (x) (2.1]
dx "4y iyt P R
and
L (x)=-3._(x) [2.2]
ax “ik S -

where the subscripts i, v and k refer respectively to tube i, volume and the

F is the axial flow, J the transmural flux (transverse flow per unit

kth solute.
length), and %, which varies from O to 1, is the distance measured down the medulla
For tube 3, x is measured in the direction of

from the cortico-medullary junction.
the flow, viz., from the top of tube 2 to the top of tube L. Fik(x) and T, (x)
1 '

[2.3]

are related by the equation
Pl = By ey, (x) =0,
solute 8t level x in tube i.

_th
£

where ¢, (x)is the concentrstion of the
.Jiv(x) and Ji (x) are functions of ¢ (x), where p includes tube i and all the
In this

na
tes a2ll the solutes.

other tubes transversly interacting with it, q denotes
The entering flows and concentrations

model, we consider two solutes (salt and urea).



in tubes 1 and 5 and the concentrations in the CI are given. 1In all the tubes,
the flows and concentrations match at the points where a tube flows into the next
one. OQur problem is to determine the solute concentrations and volume flows in
all the tubes for 0 = x = 1,

To this end, for a space chop of size h, from [2.1] we have

: B i . x+h . o
RS FCO R I AN ()L 2 2.47
and
rx
P (x)=F, (o) - [ 3 (v)ay. [2.5]

o)

The discretization of the % range [0, 1] into n equal parte yields the value l/n

for the space chop h. Ilet x = jh, where j = 0, 1,...,n, and Fivj = Fiv(jh)’
then [2.4] can be written as
(3+1)n
P gl = J. (v)ay
iv,j+1 iv th iv ?
and the use of Trapezoidal Rule (TR) leads to the equation (6, p. 287)
F -F,_ -mithy B g ™. [2.6]
gt Rl iv] 5 12 iv ‘'
where
3+l . :
TR, = (I, .., +J._ . )bh/2and §h =T =(3+l)n. f2.7]
il iv,j+1 iv] J

Similarly, using the composite Trapezoidal Rule (6, p. 293) in [2.5] and

I

- & - - o7 [
assuming that J7 (x) is continuous in [0, 1] we have
iv

-, - TR

3 e
. =F, + 250 (M), o<W, sJn. [2.8]
i 3. ivo o] o+ iv  J J



where TRY = (J, +2J, __ + .o +2J. . _ +J. )n/2.
o ivo vl AV =1 iv]

The formulas [2.6] end [2.8] hold-for i =1, 3, I and 5. For tubes 2 and 6

the integration is done from 1 to O and the corresponding formulas are

™ _ T m'\"j . f m r =
Yivi T Tiv,ier T ”;{jﬂ_ 13 ‘1% ('j) L2.9]
and
F.  =F +TRd - B (n-3) 3" (M), jh<T <1. [2.10]
ivy ivn n 12 L 3 2

In order to use [2.8] we have to drop the last term which cannot be easily

determined. Let

F, =% . -TR [2.11]
ivj ivo o .
and
B -
_ i L P & B 2,18
Bivy S 18 9 93y () + B [2.12]
hex =0 %0 4,8 =5 i =8, by, E =0
i Elva 5vo > T4vn i-1,vn’ s 272 T2 2vo o
Ehvo = E3vn’ then from [2.8] we have
F, .=F, _+E. . [2.33]
ivj ivj ivji.
A bound on the error Eiv‘ can be obtained as follows. Let
o
[J;v(x)l <A, for 811 i and O < x £ 1, [2.14]

and t, = number of tubeg upstream to tube i; ti =i ~-1lfori<bandt, =1 -4
2t i

for i = 4, then from [2.12] we have the required result

&
e, .l =

( -
ivj

5 gz
3+ 5 A ' [2.15]

515
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In view of [2.10], for tubes 2 and 6, j must be replaced by n-j in the right hand

side of [2.15]. Note that E, . - E, ., is equal to the error term in [2.6]
iv, 341 iv]

and therefore using [2.147] we have
| b

, B <= 4. a1
T TS [2.16]

So far we have seen how F, . can be obtained from F, and J, |,
ivj ivo ivm

s m=an, n-1, ..., j. Unfortunately,

o= gy J=1ly wway 24 L Or from Fivn and Ji
J. (%) i8 a funetion of & k(x) for all solutes k and tubes interacting with tube i
iv P

(including itself) and cpk(x)'s ere not known. To overcome this problem, we assume

the values of ¢ (jh) =c¢ . for all p, k end j and then compute F, .'s as functions of
pk pkj iv]
c ,.'s. In order to improve the assumed ¢ . values, we will now use f2.2] and
pkj PKJ

[2.3] to define functions Q,k_‘s which are functions of ¢ Vel
18]

PkJ

From [2.2] and [2.3] we have
I e, ()] == 5. ()
ax iv ik ik
Integrating the above equation and calling @ikj as the difference between the

left and right hand sides of the resulting equation, we have

(3+1l)n
=F - - - ,C. » + r J. dio
¢3kj iv,j+loik,j+1 ivj ikJ djh 1k(y) >
If the correct F. .'s and c_k_‘s were known and substituted in the above equation,
iv] ikj
then @ikj = 0. Let us use the Trapezoidal rule in the above equation to get
j+1
= - F + TR - 2.1
Pikg = Fiv,jalik,541 T TaviCakg Y Ry T Baxge (2.17]
where
E - b M), 3u=% = (J+1) b, [2.18]
ikJ 12 ik* 3 by



The error Eikj cannot be evaluated, however a bound for it can be found as

follows. Iet

!J;k(x)l < B, for all i, k and x, [2.19]

then from [2.18] we have
h* R
tEikjl i B [2.20]

We will now define a function T,

hich is closel; lated to ¢ d
1k which is closely relate o} Qikj and can

be easily computed. From [2.13] and [2.17] we have

— - Jj+1
=F - F c + TR - E + E -
T TR 5 sk Ve miaCap na T B
=9, .+ o1
Fapg * Bypas [2.21]
where
5 =T ¢ -F . . +mRITE [2.22]
1k T av,3+1Cik,341  CAvioikj i
and
= - E + E - c % 2.2
B skg ¥ B, 541%k, 591 T Bavs®ing (2.23]

It is now possible to find a bound for the error term Rikj' Since

= +he! ﬁ 'h:§A 2 i(5+1) R, a if we let
cik,j+1 cikj cik( J), J TE (3+1) and if we le
lcik(x)l < S and Icf_k(x)l < P for all i, k and x, [2.24]

X

then in view of the above facts and equation [2.237 we get

R,..=-E._ .+ (E ~E. Jo... +heE ' (1.) [2.25]
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. r e PR
and using [2.15], [2.16], [2.20] and [2.24] we have

" 5 t

h* h* oty i

ot P -—AS P h..-..-_- '+ i

IRikj‘ 2 2t 12 thegs G+l +37) AP
or
| <2
S Al : ~

lRikj — [B + A(s + 4P)], [2.26]

since max (j+1)h = 1 end max t, = 3.
7t
The actual value of Ri?j cannot be determined; only the bound  -[2.26] is

available, therefore, as mentioned earlier, $'k' given by [2.17] cannot be used but
15]

[N

n its place we can use O, which is given by [2.22] We recsll that
1

"ikJ
J+_ d I o [
s + dJ )h/2 and since J, s are functions of ¢ s for all inter-

TRj A 3 ikj 1y pkj

acting -tubes p and solutes k, it is evident that T, is also a function of ¢ _  's,

-

ik PEJ

Furthermore, if Elk_ = 0 for some set of values of c k_‘s then, aside from the
ky brJ

discretization errors R'k" equations [2.2] and [2.3] are satisfied and we have
ik i

obtained an approximate solution to our problem. Iet us impose some fixed ordering

12

on the triple 'ikj' and let w and ¢ denocte the vector functions with elements

'ﬁ_k, and c,k_ respectively. Then the solution c, which is a vector of concentration
ik] 1K

of the nonlinear system of equations
Gle) =0, [2.277
also satisfies the discrete forms of [2.1], [2.2] and [2.3], if the discretization

errors are neglected. Equation [2.27] is solved by Newton's method (1,2,3,4),

which can be described briefly as follows.

Q - - - - ~ ———
If ¢ is a given approximation to a root & of G(c) = O then the next

; : ol .
approximation c¢ is given by



-1
o+l o S M o )
&= (G0 Gla )y @0 1; Be we i

—_, O ) _ o . o e
where ©'(c¢ ) is the Jacobian of B(c) at ¢ . Tt is well known that if the initisl

=

; : O e ~ ; o
approximation ¢ is sufficiently close to ¢ then the sequence of iterates [c }

~

converges quadratically to c¢. Good choice of the initial approximation and methods
. g 3 o o 1 i

for extending the domain of convergence (how close should be to ¢) and related

topics are discussed in (7). The use of thesd-ealled continuation method for this

purpose will be described in a later paper.

We now return to the consideration of the discretization errors. We pose the

¥
following problem. If an exact solution C-y(x) of T2.1], [2.2] ana [2.3] is given,
1 £ =

* * = .
¢ 1is the vector of concentrations L and ¢ is a solution of [2.27], then determine
1k] .
A * -
a bound for the error vector ¢ - ¢ . We will show that under certain conditions a

*
reasonable estimate for the norm of ¢ - ¢ can be obtained.

2]

We know that J. (x) and J_k(x) are functions of ¢ . (x), therefore J” (x) and
iv i iv

pk
J;k(x) will also be functions of cpk(x), c'pk(x) and c;k(x) and it follows that

R.. . is also a function of ¢ . (x), cgk(x) and ¢” (x), where x is evaluated at

ikj pk Pk
- * * X !
jh and the various TE values. Let Yy denote a vector of CPP(X), ch(x) and

»* n— e
cp;(x) evaluated at the relevant jh and ﬂj values. If ¢, P and R dendte the vector

functions with their components related as in [2.20] then we have

e 73 *
0 =9lc ) ==l )+R(Y),

or

Bc ) = - R(Y )

and therefore in view of [2.26] we have

IS = || (Y)Y = % (B +a(s + 4p)] =0(n?). [2.28]



If ¢ is a solution of ©(c) = O obtained by Newton's method, such that

1
J

O

I5(é)ll< €, where € is small, fa .2

and if we assume that ¢(c) is a Gateaux-differentiable on an open convex set and

*
¢ and & both lie in this set, then (8, pp. 68-69).

*

$(&) - 3(c ) =Blc, §)(E-c ),

= |

~
o

(%)
(@]

* ny th , . th T
where B(c , ¢) is & matrix whose r  row is equal to the r row of @ (z ),
iy * % * ;
z =c¢c +t (6 ~-c )and O0< tr <1 (In general, t will be different for each r).
T : Y

¥ o :
We assume that B(c , ¢) is invertible; for example, this

is true when § (z) is

Jta

*
row disgonally dominant for z =c¢ + t(C - ¢ ) and all O = % = 1. This diagonal

dominance is exhibited by many models due to the fact that the econcentration Ciki

hag the most effect on the ¢ikj - the mass balanece equations for the (ikj) com-

partmént. In view of the above facis and equation LL 301- we get

~1 5
= [8(8; &)1 [B@) - Ble )1

o
1

-1
A *® 1
1f ||[B(&,c )] || = M, then from [2.287], [2.29] and the above equation we have

~ *1 ha
lé - ¢|| = M(€ + e [B +A(S + LP)]).
If B(c) = 0 is solved such that € << h®, then from the above equation we get
finally the estimate
-~ *l 2
e - ¢ || = o@®). B
An alternative way to get [2.31] is to_assume that terms involving
A *[p e *1
Hc = e h , for p 2 2 are much smaller than |jc - ¢ h and therefore can be neglected.

If G(c) has a Frechet derivative at c ,then (8,p.184:)

10.



N . * . »* - * & »%
(&) =%c )+ (e )@ -c)+T(¢ -c),

* i
where T(c - ¢ ) includes terms whose norms involve H6 - cC HP ™= 2

In many
cases, $(c) is a gquadratic in ¢, and there are no third and higher order terms.

¥*
Neglecting T(é - ¢ ), we have

e % - ¥ ¥
B(8) - Ble) ~ (e

Assuming that (§'(c ))  exists, we have

%, =1 S
¢ -c ~[@(c)] BE) -3 ).

-

e co =t WA . e ——
Once again, if ||[@'(c )] || £ M, we get the same estimate as in [2.31]

2. Other Msthods

We will describe four other methods in this section for numerically inte-
grating Jiv(x) and Jik(x)' But prior to that we will briefly point out that
in all the methods, including the Trapezoidal Rule, it is possible to assume

both Fivjls and c 's as variables and append to ¢, another set of equations

kj kJ

(WA

=F - F + TR
q&vj iv,j+1 iv] ey 12 A%

= = g (ﬂj)

and then solve the asugmented system. Following an analysis which is analogous to

that given in the previous section, we get

IR.. Il == max(a, B) = o(n®).
Though the above modification inersases the size of the system the resulting
equations are much sparser than before and ﬁhe total work is in fact somewhat
less than before.
A description of the four methods now follows:

(a) The Mid-Point Rule.



jh
In order to numerically evaluate j
(341 )h
J

(3+1)h
3 dy’ { 3 ar
. 5 (V)4 e J,,(v)dy and
5h o
(MP).

(y)dy, instead of the Trapezoidal Rule, we can use the Mid-Point Rule

In this case we have, for example (6,

p. 286),
et | ) R
jﬁh 9,0y = 3, (G2 + 59 (ﬂj), I =1, = (5+1) h.
We assume that the values of ci;(x), Jik(x)’ J. (x) ete
intermediate points (j+i)h.

stead of [2.26],

we

can be computed at the
The analysis is similar to that for the TR and in-
have

IRyl = 5

T (B +A(8 + 4P)].
Obviously, this is a somewhst better

bound but
estimate we had for the TR.

(v)

- &|l = 0(n®) which is the
The Cubic Overhang Method

Essentially this involves first

fitting a cubic through the points
(3-1)h, jh, (3+1)h and (j+2)h and then using this to integrate from jh to (3+1)h.
s s £
For example,

(3+1)n )
I dy = —I[- 1 1 =
Jgh s IR = gl Ty s it 181 Dy B DB Tp0 v “ Wy s
il i
. B
720

iv ; '

h* ji-1)h < = (J ¥ .
Tip()s (-1)m = M, < (3+2)n [3.1]
At the beginning (or end) of each tube in place of the above equation we use

h h :
[ o ey =grlog +197,

T Jiv3]
19 .. iv,
=2 BBV (1

Fao T Ty

qo)’ o = ﬂog 3 h.

12.



f we let

'3_" A
J(X)l = A, |Jff(x)| < B, for all i, k and x

iv ik

|o

then as in the case of TR we get

| = 10h°
ikd 720

IR (B +A(s + 4P)] = o(n®).

{e¢) Corrected Trapezoidal Rule

We have the formula (6, p.288-289)
(3+1)n . 2

- N JJ'l h r./ ’ i'\rr

dy = T -7, & b )

I;, (¥)ay = TR} J 1+ 75 Jiv*nj)a [3.2]

ih J 12 Vivy | Civ, i+l

where j h < TB < (j+1)h. 1In order to compute the terms of the type J{vj we need

the derivatives of Cikj' We can compute these by using either the natural or

cubic splines to find ¢’ from c. In the case of cubic splines it is known (9, p. 42)
thet ¢’ has an error of O(h®) and under suitable boundedness assumptions on the

. r - I . -
¢ and x derivatives of J. . and J/ it can be shown that the error in
i <

v kj
e i ) is 0(h®) when cubic splines are used to compute ¢’ from c.
12 9% iv,j+1 <
Hence the dominant error term in the Corrected Trapezoidal Rule still remains
g A¥
J. . (M.) and
— iv
720
[ P, 4P s
R = — |B +A(S8 + 4P)] ~ O(h

where A and B are the same as in the Cubic Overhang method. Using natural splines

to eompute ¢’ leads to 2 much lower order bound for i and sinee the computational

!
R wl]
lkah
work is approximately the same for both the natural and the cubic splines, we have
discontinued the use of natural splines.
(@) Fifth Degree Overhang

In this case integration formulas weére used which ean be obtained by using

polynomials »f degree five. ILet f(y) denote the function to be integrated, e.g.,

13.



f(y) = J. (y), then we have
iv

(3+L)h , 5 5
N f(y) = h[f +v, - AFf +¥vy,. A £ +%¥
Jh K + k jk+

,—i- .
+ AT+ Y AT f ]+ Ej 3

Yj,k+h k '§,k+5 k

>

P th e
where A" denotes the p  forwerd difference,

el o i = 3 - =
k J + by 3 J K, Yj,k-i-]_ > s

B g8 B w.

Y5 k42 12 * Y5,x3° 6 2 L/
, | - 8 o pes, B
Yoy = e (4 =M7 +him = o5 ),
and
¥ .5 15.% 553 2.9

e e + 7/ 17 = 451 #H5=).

Y3 ka5 s = 5T 3 517+ 30

J+1 . :
The bound for Ej can be estimated by using the standard methods. For example,

| < 0.014269 w7 |7 (n
Eikjl 9 07| gy, (M,)]
and therefore
HR_y'H = 0.014269 h”[B + A(S + 4P)] = o(n7),
ikJ

where B and A are the bounds on the sixth derivatives of Jik(x) and J,v(x).
al
Thus we have seen that, except for the Corrected Trapezoidal Rule, the error
: p+2 ; : g

bound is of the order h where p is the degree of the polynomial that is used
to derive the integration formula.

We will now show that the Corrected Trapezoidal Rule leads to the Cubic
Overhang method if the derivatives are approximated by centrzl differences. TFor

example if

1k,



I/ =3 o~ -3 . ) eh- (g - 2
ivj iv,j+1 ( iv,j+1 iv,gnl)' (div,j+2 Jivj)/Ch

then from [3.2}, neglecting the error term, we have

(j+1)h e
[ I (ay~ (@, ,+J._ . mfe+=—03 . -3 . _ -3 . _ &3 .
Ys$h iv ivd iV Jkl 2h Tiv,j+l S iV, 342 ivj

- 20y +13J, ., +133J = ]
2l iv,j-1 ivj iv,j+1 iv,j+27’

which is the same as [3.1]. Thus we see that the corrected Trapezoidal

Rule can also be thought of as a 'cubig' method and the error is hP+2 where p = 3.
It was pointed out in (1) and (3) that when the Trapezoidal Rule ig used the

resulting Jacobian §’(c) either has a bordered block triangulsr form or can be

readily permuted to this form by a renumbering of the tubes. Furthermore, all

the diagonal blocksassociated with the tubes, except tube 5, have block lower

triangular forms with second order diagonzl blocks due to the two solutes. The

use of Mid-Point Rule retains this structure. The Cubic QOverhang method

within each tube makes the diagonal matrices band lower triangular with a

bandwidth of two (for the definitions of the various desirable forms for sparse

matrices see (10)). On the other hand, the Fifth Degree Overhang mexeod mskes the

bandwidth four. The use of splines within the tubes completely fills the

diagonal blocks associated with the tubes. However, this.disadvantage is some-

that offset by the smoothness of the resulting concentration profiles, since

tbe use of splines forces the first and second derivatives of the concentrations

to match at the junctions of consecutive subintervals of the range x.

155



3. Computational Results

The methods described in the preceding sections, which lead to less
discretization errors than the usual Trapezoidal Rule, were programmed in
FORTRAN IV for the UNIVAC 1110 at the University Computing Center in Stony
Brook. The storage requirements and running times did not show a significant
difference among the various methods. In order to determine the relative ac-
curacy of the results obtained by using the various methods, the urea concen-

trations at all medullary levels in the collecting duct (tube 3) were com-

Q

pared. The collecting duct was chosen for this comparison because the final

concentrated urine emerges from it and the maximum possible error is likely

to occur in it. The relative accuracy of concentrstions in other tubes ew-

hibited results similar to the urea concentrations in the collecting duct.

Some of the results of our computational experiments are shown in Table 1.

Table 1. A comparison of urea concentrations in the collecting duct.
Notation: 1 = Trapezoidal Rule, 2 = Trapezoidal Rule with
20 chops, 3 = Cubic Overhang, 4 = Corrected Trapezoidal Rule,
5 = Fifth Degree Qverhang

llc@) - c3)/llc3)| .016
llc(3) - cs)I/lle )l .013
lle(3) - c)li/lie)il .006
lle(2) - cll /e )l .018

compared the concentrations by using the usual two norm. C(I) denotes the vector
of ures concentrations in the collecting duct obtained by method I, where

I =1, 3, 4 and 5 refer, respectively, to the Trapezoidal Rule, Cubic Overhang,
Corrected Trapezoldal Rule and the Fifth Degree Overhang. In each case the

medulla was divided into ten chops yielding h = 0-1. In order to compare the

16,



increase in accuracy between decreasing h and using methods with smaller
discretization errors, we computed the vector of urea concentrations by
using the Trapezoidal Rule with twenty chops and keeping only those concen-

trations that correspond to the ten chop medullary levels, This, of course,

(

required four times the storage.
It is evident from Table 1 that the Cubic Overhang is a significant

improvement over the Trapezoidal Rule, as is the Fifth Degree (Overhang over
P P s g g

the Cubic Overhang. The close agreement between the concentrations obtained

(o]

by using the Cubic Overhang C(3) and the Corrected Trapezoidal Rule C(k) is

)]
V]

quite remarkable because there i gignificant difference between the two
methods (we recall that the derivetives of the concentrations that are used
in the Corrected Trapezoidal Rule were computed by using cubic splines).
‘The iast line in Table 1 shows clearly that instead of taking h = 0.05 and
thus gquadrupling the storage, it is much better to use the Corrected Trape-
zoidal Rule or the Cubic Overhang method with h = 0.1.

In conclusion, we can safely state that the use of accurate inte-
gration formulas, whenever possible, generally leads to better results when
solving the stiff multiple boundary value problems of the type described in
this pzper.
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Figure Legends

Fig. 1. A six tube vasa recta model.

Fig. 2. Axial (®) and Transverse (=) flows in the six tube vasa recta model.



