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Abstract 

Systems described by differential equations involving 

j delta function correlated (i.e. white noise) random para- 

! meters are discussed. To be physically meaningf ul, sol- 

utions of such equations should be interpreted as the limits 

of solutions of the corresponding equations with realistic, 

i.e,, finite correlation time random processes. The im- 
--..- 

plications of this is exilored here. 

We consider first linear systems. Using the Poisson 

case as the basic process, a "superposition" principle is - 
derived, allowing one to treat any delta function correlated 

process. Closed sets of ordinary linear differential eq- 

uations are found for the moments. The treatments is then 

generalized to 'the non-linear case, 

Finally, we derived conditions under which a delta 

r' function correlated process is a valid approximation to 

one with finite correlation time in a specific stochastic 

equation; and we show how the appropriate approximation may 

be found. 
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1, Introduction 

Recently, increasing attention has been given to systems 

containing parameters which vary in a random way with time, [Ref.l] 
I 

This attention has been motivated, in part, by attempts to analyse, 

e.g., randomly fluctuating media and control systems, [Ref. 2,3 1. 

Consider a system with n degrees of freedom, x x ,,.., x , 
1' 2 n 

governed by the set of equations: , 

. ; 

where the c (t) are known (i,e., deterministic) functions and 
l j  - 

the r (t) are random functions of time. The x (t) will then 
i3 i 

I constitute an n-dimensional random process dependent in a cornj?li- 

cated way on the functions r (t), However, this dependence 
i j 

I cannot be exhibited in an explicit closed form for other than 

I the first order equation, 

This is the central diffi<culty in treating a system of 

equations such as (1) and suggests that a general theory en- 

cornsassing the most varied statistical behavior of the r (t ) 
ij 

1 is not likely to be achieved, It is thus natural to consider 

i special cases, 

The case, generally considered in the literature, is the 

I one in which the integrals r (t' )dtr constitute a Gaussian 
i j 

I process with independent increments, This implies, in engineering 

parlance, that,each r (t) is a white noise, 1.e. a random 
i j 

process with delta function correlation (r. .(t) r. .(tf ))= 6 (t-t '). 
- 1 3  1J 



1 Of course, the assumgtion.of a process with delta function 

correlation (abbreviated d.f .c. ) is' ari idealization and leads 

at once to the problem of giving a precise meaning to a set 

I of equations such as (I), This is because only the integrals 
I 

of rij(t) are functions in the ordinary sense, while the r 
i j 

are so called "singular functions, and for such singular 

I functions the usual existence theorems for differential eq- 

1 uations do not apply. 

I The requirements of physical sense and agplicability 

I would seem to dictate the following procedure for giving mean- 

ing to (1) with r delta function correlated, Consider a 
i j 

family of processes R (t) depending upon a parameter, 
. ij 

Tc, 

I whose correlation functions (R (t ) R.  . (t+bt j )  are non-vanishing 
i j, LJ  

J 
, 

fop A t  in a small but finite interval whose length is of the 

I order Tc. For such processes the functions Rij will be suf- 

I ficiently well behaved that the solutions of (1) will exist 

I in the usual sense; denote them by Xi(t). Now let Tc tend 

to zero, so that the R converge to a delta function cor- 
i j 

related process, and define the xi(t) as the limit of the 

corresponding Xi(t ). 

i It must be noted that in the theory of "stochastic dif- 

i ferential equations" described in the purely mathematical 

I literature, [~ef. 41-meaning has been given to eq, (11, for 

1 the Gaussian noise case, in an entirely different way. That 

I theory is, of course, 'in no sense, "wrong" but rat he^ is not. 

4 

directly ag2licable to physical situations. . Indeed, its 

a2parent origin was not i,n an attempt to derive the statistical 



properties of the solutions of' an equation such as (11, but, 

1 
i 
I 

on the contrary, rather to represent in the sirnglest form as a I 

stochastic integral, a class of processes whose probability 

1 density satisfied certain diffusion equations. It is un- I 

I 
fortunate however that the use of the term "stochastic differ- 

I 

ential equationstt has led to confusion in the physical lit- 

erature, and that a clarification has been made only surprisingly 
i recently (cf. our Ref. 1 and the later elucidation by A.H. Gray 

l and T.K. Caughey, Ref. 5 ) .  

1 In defining the solutions of eq(1) as the limit of the 

solutions of the corresponding equation with coeffients with 

finite correlation times, a number of questions immediately 

I 
arise. For a given family of processes Rij what is the 

I correct limiting rij and how may the statistics of the sol- 

utions Xi(t) be found? One of the pleasant properties of 
, 

1 linear equations is that the moments satisfy a system of closed 

i ordinary differential equations. An even more pressirg quest ion 

from the engineering point of view where one generally deals 
+ 

I with a process with a specific if short correlation time (rather 
t 

than a parametrized family) is the following: when is it possible 

to approximate such a process by a delta function correlated one 

I in attempting to solve equations such as (I)? Moreover, how may 

I this approximation be improve$, presumably by some expansion in 

1 the correlation time, for xhich the delta function approximation 

represents the first order term. 

The present paper differs from previous work in its emphasis 

on the delta function correlated, white noise, case as an 



approximation whose validity must be explored; and related to 

this, by its use of the Poisson rather than the Gaussian as the 

basic process.% It is natural to do this, since in the theory 

of processes with indegendent increments, it is shown that the 

most general such process (including the ~aussian) can be 

approximated to any degree of accuracy by a sum of Poisson 

processes or by the limit of such a sum; such a "superposition" 

principle holds when these processes appear as coefficients in 

differential equations and enables us to treat the case of a .  
, 

general d.f.c, process, The use of Gaussian processes alone in 
1 

approximating processes with finite correlation times is an 

unnecessary and severe restriction. Finally, apart from the far 

greater generality ultimztely obtainable, the use of the Poisson 

process is simpler to %isualize since such a process consists 

I only of a series of sharp discrete impulses occuring at randcm 

I times. 

i In Section 2, we consider the case of linear differential 

I equations, deriving the equations satisfied by the probability 

I density of the xi(t) and their moments. It is shown that the 

I moment equations can be expressed entirely in terms of the 

1 
I 

moment generating function of the d.f.c. process, 
.I 
i In Section 3, we generalize our results to the non-linear 

* A somewhat similar approach, not'however using the 

hisson process as a basis, has been given by R,L. Stratonovich 

(Ref. 6 1. 



ax, n - = f. -(x ,..., xn,t) r (t) 
dt jq, 1J 1 S 

In Section 4, we derive conditions under which a delta function 
correlated process is a permissible approximation to one with 

finite correlation time in a given differential equation; and 

also discuss how the appropriate approximation may be found. 

As an example, the relation between the Gaussian white noise 

and the Uhlenbeck-Omstein process is discussed: this relation 

is of imgortance in the theory of Brownian motion, 

2, The Linear Case 

The possible ambiguity in defining solutions of differ- 

ential equations with delta function correlated coefficients is 

illustrated at once by the simplest possible example. Consider 

the equation 

dx = r(t)x ( 3  

where r(t)dt is a Poisson process so that r(t) represents a 

Posisson (shot) noise. Such a noise may be idezlized as a 

series of infinitely short identical impulses occuring at ran- 

dom times. The impulses are each characterized by a "strength 

S ,  the integral of r(t) over any single impulse; and the dist- 

ribution of times at which impulses occur is described by a 

"rate1' X -.such that hdt is the probability of an impulse 



occuring in'a short time dt (Ref, 7). Symbolically, a Poisson 

noise random function may be written as a sum of delta fui~cticns 

with t. denoting the instsnt the ith impulse (measured from 
1 

some initial time) occurs, 

Let us integrate both sides of eq. (3) over a time in- 

i terval (tb s t t,, say) in which only a single impulse at 

i t = t* occurs, and denote by xb and x, the values S. of X before 

I and after this impulse. Thus using eq. (4)  

But x(t3'), the value of x during an impulse has no 

precise meaning. In fact, according to eq. (31, a during an 
dt 

I impulse is arbitrarily large and x(t) is va~ying rapidly be- 
\ 

I! tween xb and x,. Different theories for eq. (1) will result 

I depending on the value assigned to xCt*);  

I Suppose, however, that the impulses last a finite tima 

So that eq. (3 ) can be integrated in the usual way. Thus 

Then, as x ( t )  tends to a Poisson noise eq. (4) one has the 
following sim2le result which is basic to all that follows: 

The change caused & an impulse is given - - - 

I where x and x are the values of x before and after the impulse, 
8 -  b-- - - _I -- 

We note that this relation between xa and 5 is different than 



the  one obtained i f  the value x i s  used f o r  x(t;%) for then 
b 

X = xb(lsS 1. The reader may ver i fy  t h a t  i f  t h i s  l a t t e r  ex- a  

press ion i s  used i n  the  arguments leading t o  the Gaussian noise 

case ( t o  be given below) one obtains t h e  r e s u l t s  found of ten  i n  

t h e  mathematical l i t e r a t u r e ,  We emphasize again t h a t  t h a t  

approach i s  not  cor rec t  f o r  physical and engineering ca.ses where 

one deals  with processes with f i n i t e  co r r e l a t i on  times, apppox- 

irnating them by d e l t a  f'anction cor re la ted  processes,  Indeed, 

the  use of x(tg)=x can lead t o  physical ly  absurd r e s u l t s  i f  
b 

one notes tha t  f o r  su f f i c i en t ly  negative S ,  x  and xb may have 
a 

opposite s igns  which i s  im2ossible i f  say, x represents an 

i n t r i n s i c a l l y  pos i t ive  quantity. 

Let us extend ( 6 )  t o  the more general  equation 

where A i s  a  matrix [ a  3 i,j=1,2,:..,n) ~ f ( t )  i s  now the  
i j 

vector  wi th  cornlonents x i ( t )  ( i = l , ~ , a e . , n )  and as before, we 

wr i te  x f o r  x ( t  ), x f o r  x ( t a ) .  Then in tegra t ing  ( 7 )  from 
-b - b -a - 

tb to ta - one f inds  f o r  the  change i n  x  over an impulse 

An equation f o r  the  p robabi l i ty  densi ty  p (x , t  - ) may now 

be found. Suppose the system has coordinates lying i n  the  

volume [ - -  x,x+dx] - a t  the  time t ,  [ proSabi l i ty  p(&,t ) d x  - ] . Then, 
at the time t - d t  e i t h e r  ( a )  the coordinates were i n  t he  vol- 

ume [: - -  x,x+dx - 1 and no imgulse occurred during the  time d t ,  ( the  

probabilf t y  o f  t h i s  being ( 1 - ~ d t  )p(x,  - t )dx) - D r  ( b )  the  



I system had coordinates in a voiune [ x x 'rdx 1 a ~ d  an impulse 
b" b 

1 did occur, probability of event (b) being X p(&,t-dt) d~+,dt. 

&t by equation (8) x+, = e-SA x, C I X ~  = 19-94 dx, where 1 ems& 1 - - 
I -SA, Theref ore, is the determinant of the matrix e - 

p(x , t )  = (1- ~ t )  p(x,t-dt) - + ~ d t  p ( e S A x  t-dt) l e - S k l  ; ,* 
and on passing to the limit, one finds that 

The probability densiQ p ( x , t  ) satisfies the equation - - - 

For the slightly more general system 

i where C = - ('ij ) is a deterministic matrix, (9) becomes 

1 From its derivation, it is clear that equation (11) is valid 

1 even if X,S,& or C are functions of the time. 
I - 
I w 

I On the basis of eq. (11) one can readily show that the - 
moments of x satisfy linear drfferential equations. part- - -  --- - 

I icular expectations c'x. > and 'covariance < x x > we have 

1 
-,.-, 1 - i j -- 

I &xi> -- = 
I dt cij <xj> + x ( ~ ~ ~ - 1 )  < X  j > . (12 1 

I 

1 - 8 -  



where B = (eSA) 
i j i j* 
To derive such equations, one need only multiply eq. (11) 

by the appropriate moment and integrate over x. The only point 

to note is that in evaluating such integrals as 

one makes the substitution = e "SA x. - 
A Superposition Principle for Poisson Noise Lrocesses. - 

Eq* (11) may be extended to the case where the random part of ' , 

( 7 ) consists of a sum of an arbitrary number of independent 

Poisson noises. Such an extension is important for two reasons: 

first, it enables us to handle eqcations such as ( 1 1, and 

secondly, to treat the case where r( t  ) is an arbitrary delta 

function correlated process. This is because any such process 

can be approximated to any degree of accuracy by a sum of 

Poisson noise processes with suitable strengths m d  rates, or 

by a limit of such sums. [Ref. 8 ] 

Consider, for example, the equation. 

with rl(t) and r (t) being independent Poisson noises of 
2 



strengths S and S and rates and A2 respectively. Noting, 
1 2 1 

that because of this independence the probabili$y,of' 
f 

an impulse'in both r (t) and r (t) during a short time dt is 
1 2 

X1X2 (dt12 and hence may be neglected in the limit dt + 0, one 

finds that 

In general, if the r.h.s. contains an.arbitrary numbsr 

of Poisson noises, one has the following "Superposition 

Principle": 
ap(~,t) 

To obtain the equation for a t  , - - - one need only sum the -- 
contributions that would be made by each Poisson noise in the - -- - -- 
absence of the others. -- - - 

A similar statement holds for the moments, From this, - -- 
one can immediately obtain the equation satisfied by p(&,t) if 

xi(t) is given by an equation such as (1) with r (t) being a ti 
Poisson noise. One simply lets the matrix A corresponding to 

the r, ,(t) term in (1) be a matrix containing all zeros except 
A J 

for a 1 in its ith row and jth column. 

If r(t) in eq, (10) is an arbitrary delta function 

correlated process, then the equation for p(5t) can be 

found by considering the Poisson noises which compose r(t) 

and using the superposition principle. However, as far as the 

moments go, one can show that it is not necessary to find the 

decomposition of r(t) into Poisson noises explicitly; indeed, 



the moment equations for x(t) can be expressed en- - -- --  -- - 
tirelx in terms of the nioment generating function of the in- - - - --- --- 

To show this let 

f (u) = (exp 

and write k(u)=log f (u). . Suppose . that r(t) was compbsed of 

Poisson noises with strengths S and rates 1 then 
5 3 

Now, on the r.h.s. of eq. (12) the coefficient of <%> 
S :A 

if written as a matrix would be C + E l j  (e -E) whsre E is the ' 

4 
J 

identity matrix. But this is just C + k . ( - ~ ) ,  Hence one has 

d < x >  - 
dt = [ c  + k(-A)] x - (17) 

Similarly the r.h,s. of (13) may be written in matrix 

form if one introduces the direct product A:x~A of the matrix 

A, and the direct product - x X x  - of the vector x C~ef.101. Then 

the coefficient of < xXz> in . (14) is - 

L C ~ E  + E X C  + A j  (exp S AXA 1 -E%E) 
j j 

(noting that exp [ A X A J  = exp (~))(exp ( A )  1, or 

And in a similar way one obtains expressions for the higher 

moments . 
Gaussian Noise. Suppose that in equation (15) r and r 

1 2 
are shot. noises of the same rate X and with strengths of equal 



1 magnitude but opposite sign. Letting 1 + , and S+ 0 in 
1 * such a way that AS' + - 0 , the process r (t) + r (t) will 
2 1 2 

2 2 
tend to a Gaussian noise g(t) with power 0 : <g(t) g(tr)> = 06(t-t1 

Using this fact, the equation for the probability density of the 

solutions. of the stochastic equations 

I may be found directly from (16). Indeed, making the identifications 

I - A = A = A, S1 = S = S1, )Il - X2 = X gives 
I -1 -2 - 2 

I 

I ++ The easiest wag to show this is to prove that t'he charac- 
t 

teristic function of $ [ r l ( t t )  + r 2 ( t l ) l  d t r  tends t o  tha t  of 
t 2 1 2  f g ( t1 )  d t t  f o r  any t, as  S + 0, 1 +a, S -' - o - But th i s  follo~m on 

Jo 2 

noting t h a t  <exp i b f  [ r l ( t t )  + r 2 ( t ' ) l  d t l >  = exp t ~ t ( e  i6S - 1)+ lt(eibS - l ) ] ,  

and <exp i 8 rt gr(tt ) dtt> = exPC - 62 $ ti]. Physically, Gaussian noise 
Jo 

1 

1 
ar i ses  ir, t h i s  way so th is  procedure seems entirely natural- 



I 2 Expanding to terms of order S , 

-I 

I 
where r = Trace A = - 1 aii, and p = p(x,t). 

i -S A 
I Performing a similar expansion with p (e -SAx , t )  I B  - - I  

1 2  substituting in (20) allowing i s 2  - s one finds that 
2 

k 9 1  

A. 

1 
The "Superposition" principle used for Poisson noise 

extends at once to the Gaussian noise case. If, e.g., gl(t) 

I 



1 and g (t) are independent Gaussian noises with zero means 
2 

and powers ol 
2 2 

and a2 respectively, then to obtain the 

equation for the probability density of 5 where 

one need only write each g (t) (i=1,2) as the limit of a sum 
1 

of shot noises with rates Xi and of strengths S and - S such 
2 2 i I 

0 that hi Si + - Using the su?erposition procedure for the 
2 

Poisson noisa, the differential equation for p(x,t ) will follow 

in precisely the same way as (22) from (20). 

I The case where the g.(t) are mutually correlated can be 

I 
1 

readily reduced to the above. Suppose the system for 5 is 

I n 

I where 

I <gi(t) g (t')> = 
3 'i j 

6(t-t'), (p i j  = C Y . ~  for i = j) 
1 

I Let g(t) denote the vector [gi(t),i=1,2, ..., n.] and the 

matrix ( P ) Then there exists an orthogonal matrix H aod 
i j - 

-1 
a diagonal matrix D such that K P H = D, This follows from 

j the symmetry of p .  But then the random processes hi(t) definea 
t 

i by h(t) = - H ~ ( t )  (h(t) - is the vector [he (t), .i=1,2,.*8,n 1 ) will 
-1 

be mutually uncorrelated. Hence, (24) may be written as 
I 



n 

where A* = L h A and the  h . ( t ) ,  beingmutually un- i i j  j . 
j =1 1 

c o r r e l a t e d  and Gaussian a r e  rnl~tua. l ly independent. 

3* Non-Linear  Systems 

C o n s i d e r  now t h e  n o n - l i n e a r  system of equations 

where the f 
ij' 

a p a r t  from b e i n g  a t  l e a s t  twice di f ferent iable ,  

may be a r b i t r a r y  f u n c t i o n s  o f  t he  var iables  x To determine 
i ' 

t h e  e q u a t i o n  s a t i s f i e d  by p ( x , t ) ,  - we proceed as i n  the l i n e a r  

case .  T h u s ,  suppose  f i r s t  (26)  has t h e  simpler form 

where r(t ) i s  a s h o t  no i se  of s t r eng th  S and impulse ra te  1 . 
C o n s i d e r  a s i n g l e  impulse  and denote by x+, and 5, the 

v a l u e s  of - x just before  and a f t e r  t h i s  impulse. It i s  crucial 

t o  the t h e o r y  that  t h e  change i n  5 over an impulse depend on 

r ( t  ) only th rough '  t h e  i n t e g r a l  Ji(t) dt. Otherwise, in  

P a s s i n g  t o  t h e  limit of a s h o t  noise  fr3m a  non-singular ran- - 

don p r o c e s s ,  the l i m i t  of t h e  so lu t ions  of (27) i n  the l a t t e r  

Case will n o t  depend only on theproper t ies  of the l imi t ing shot  

n o i s e .  However, one has the r e s u l t  t ha t  

The s o l u t i o n s  of 3. (27) depend on r ( t )  & t k r o u s h  2;?1! - - 
i n t e g r a l  r ( t  ) dt .  2 p a r t i c u i a ~ ~  za depends onlx on Xa & 5 * 

In f a c t ,  on d i v i d i n g  t h e  ith 2 0 * (27) 

the e q u a t i o n  f o r  x 1 , we h a v e  



From the expression for x in terms of x and S, the equation -b -a. 
for P(ZP~) follows by a generalization of the argument leading 

to (14). One finds that 

p(x,t ) satisfies the equation - 

I I 
where - x stands for %, is the determinant with elements 
a h i  f b  
ax, P 

and the notation p [ zb(x,S) ,t] indicates that in 
d 

the ith coordinate position p(x3t) - is' to be evaluated at (xi lb  

(regarded as a function of x - and S ) .  To verify eq. (331, it; 

need be only noted that if the system is in the volume element 

C&3x*-] at time t, either no impulse occurred in the previous 

time interval dt, or an impulse did occur, and tho system was 

in the element [zb, zb + dxb] , where zbb= ~ ( 5 , z )  and 

dx = 
-b dx. - The superposition principle used in the 

linear case when p(t) is a sum of shot noises is valid hers as 

well without any change, so that no further comment is 

necessary. 

Expansions powers of S 
In contrast to the linear case, the equations for the 

I 

moments do not form a closed system. For example, if (3)) is 

I 

multiplied by and integrated, one has on the left an expression 



involving not only t h e  f i rs t  o r d e r  moments but generally hizher 

as w e l l .  The expedient  of t e n  used i n  non-lineer eq- 

I uat ions  is however ,  apg l i cab le  h e r e :  namely an expansion i n  

powers of  a small parameter.  Let S then  be taken t o  be small. 

Regarding ( x ) ~  as a f u n c t i o n  of S ,  we seek an expansion of the 

I no t ing  that ( x ) ~  - reduces  t o  when S=O 

D i f f e r e n t i a t i n g  (34) w i t h  respect  t o  S gives 

and in general 

d i f f e r e n t i a t i n g  once more 

T O  f i n d  t h e  v a l u e s  of t he se  d e r i v a t i v e s  a t  S=O, we need only 
Peplace  in  t h e  r .h .s .  of ( 3 6 )  and (371 the argumentr by 

(xi )a 
using (34), it f o l l o w s  t h a t  the determinant 

1% ( w r i t i n g  5 f o r  (-)a) h a s  the  expansion correct ' 0  to"' 



~ l n a l l y  from ( 3 3 )  and ( 3 8 )  we f ind  the approximate 

equation f o r  p = p (x,t ) 

.Now regard p ( x , t  - ) as a function of S with the a e r i o s  

expans i o n  

Then on s u b s t i t u t i n g  i n t o  eq ,  ( 3 9 )  and equating c o e f f i c i e n t s  of 

S, one d e r i v e s  a s e t  of r e c u r s i o n  relations f o r  the pk(x,t 1, the 

first such e q u a t i o n  being 

= - a PO 
+ p f. 

a t  s [ i o l,i 
In t h e  absence of a de terminis t ic  part  Po ( x , t )  1s  just 

the i n i t i a l  v a l u e  of the  p r o b a b i l i t y  density, namely p ( x , g )  

it follows readily t h a t  t h e  p k ( x , t )  w i l l  be polynomials  in 

t of o r d e r  n w i t h  c o e f f i c i e n t s  depending on p 0 (x )  and i t s  f i r s t  

k derivativeso On the  o t h e r  hand if a deterministic part  d i d  

occur i n  eq. (27 ) , i .e. if a term c. 1 (x) say was added to t h e  

r.h.s. of eq. (27), then  ( 3 3 )  and ( 3 9 )  would be modif lad  o n l y  
.a(cip 

by the p r e s e n c e  of an a d d i t  iona l  term - Z - in 



right hand s i d e s .  p ( x , t )  then  would not be simgly p(x .0)  
.o 

but ra ther  p [x(x .t ),0] where x(x , t )  is the solut ion of - -0 - -0 
the d i f f  e r cn t i a l  e q u a t i o n s  

w i t h  i n i t  ial c o n d i t i o n s  x(t=0 )= x . - 
-0 

The G a u s s i a n  Case. By means of (39) we can write down - - 
the e q u a t i o n  f o r  p (x,t ) when r ( t  ) i s  a Gaussian nof se with mean 

2 z e r o  and power  o , Proceeding exac t ly  as before, i.e,, re- 

g a r d i n g  a G a u s s i a n  n o i s e  a s  t h e  sum of two Poisson processes 
2 of strengths S and US, and r a t e  1 such t h a t  1s2 o /2 aJ 1 - a , 

S ' 0, one o b t a i n s  

. . 2 2 
ap 0 jfj) + a (P fifj) 1 
a t  2 ax& (Lo) 

i,j 

L e t  us compare  eq. (40 ) with  the  fami l i a r  Pokker-Planck 

e q u a t i o n .  E ~ e f .  93 . Suppose x (t ) were ' a  Markoff process, 3 uch 
i 

that  -C Axi> = <xi( t+bt)  - xi(t) > md 

<% Ax 3 > < [ ~ & t + ~ t )  - x. 1 ( t ) ]Cxj( t+~t)  - x 5 (t)]> are both of 

o r d e r  for s m a l l  A t ,  whi le  h igher  order moments are of lover 

o r d e r ,  then p = p ( x , t )  - would s a t i s f y  the equation 

On d i v i s i o n  by A t  passage n t o  the limit ht=O t h i s  is the  

same as ( LO ) w h e n  < Axi> = : Cr2 l f i 5 J  .f J . A t ,  a d  
j =l 

2 
<%Ax > =  o f f A t .  

j i 3 



The interesting point is the non-zero value of <hi> 

even though the first moment'of g(t) and its intsgral vanishes. 

This is because over the interval At the values of xl,,. . . ,x n 

and hence f.(xl,...,x ) varies according to the values assumed 
1 n 

by g(tt) and hence the correlation < g(tf)fi> (and there- 

) is in general non-zero. Ultimately, if we con- 

sider the linear case, the non-vanishing of < Ax > is a 
i 

consequence of the fact that an impulse of strength S and one 

of strength -S do not average out, to second order, as may be 
S -S 

seen by expanding e + e . 



4. Approximation -- to the Finite Correiation Time Case -- 

I In 'previous sect ions, we have considered differential 

1 equations with d.f. c. coefficients, interpreting .such equations ' 

1 

I as the limit of the same differential equations but having 
t 

i coefficients that are random processes correlated over a finite 

I time. Our purpose here is to determine when the d.f,c. ideal- 
I 

1 ization is a valid approximation to a physically realistic case, 

l and how this approximation is to be made* 

Suppose that the differential equation is 

i i=1 
where the A, are constant matrices and the r (t ) are stationary 

1 : *. i 

i independent random processes whose sample functions are con- 

tinuous (except perhaps for a finite number of jump discontinuititie~ 

In general a closed solutfon of eq(42 ) is not ob- . 
t 

I tainable but an ikerative solution is possible, Writing 

i=l 

9 
Note that the presence of a linear determinj-stic part 

can be taken into account by letting one of the ri(t) be a 
i constant 



which gives x at time t+ T in terms. of x at some earlier time t, - - 
We now introduce two assumptions which allow the ex- 

pression (113 ) to be greatly simplified, and which in fact form 

the basis of the approximation by d.f.c. processes, They both 
I 

! involve the time increment T : narnelyI we suppose it possible 

-to choose 7 such that 

( A )  - The integrals 

are statistically independent of the history Bf J& random - - 
Ppocesses r before the time 4. i -- 

(B) The relative change in 5 the time 7 is small. - - -- - 
Generally, it is possible to meet assungtion (A) by 

taking T sufficiently large; and it is possible to meet 

assumptian (B) by taking T sufficiently small. The key 

point is that we are requiring a T such that both ( A )  and 

( B )  are satisfied. 

Assurnption ( A ) ,  which in practice can be met only to 

a certain degree of approximation, may be expressed 'in a more 

transparent form the notion of the correlation time T is 
C 

used. Consider the process r , for example, at two instants t 
i 



I and t+At. Then the correlation time is such that r.(t) and 
1 

I Pi (%+A t ) are very nearly independent for At > Tc. A use- 
I 
i ful measure of T is given by 

I 

! 
i 

i.e., the time integral of the correlation coefficient over 

i the variance. If T>>T the predominant contribution to the 
C 

integrals of r, will come from those t1 for which t1-t>>Tc. 
I 

Therefore (A) will hold when 

(A1 ) -- The time increment T is such that T>>T,* --- 

i 
* 

where Tc is the maximum of the correlation times of the pro- - -- -- 
i cesses r. (t). - 1 
I We introduce now the moments 

I and the quantities 

J The pi,k will then be certain functions of T which are in- 
) 

I dependent of the history of the processes ri(tl) before the 

i t h e  6, provided that 7>TC. 

Consider a class of processes I. (t) containing the i 
correlation time T as a parameter, and imagine that this 

C 

I parameter apppoaches zero. Then letting both T~/T , andT40, 
the will tend to certain (possibly zero) constents and 

I 



1 

t h e s e  w i l l  de f ine  a l i m i t i n g  d.f.c.. process f o r  r . ( t ) .  Thus, 
k 

1 

if Wi,k -+ hisi where S i s  some p o s i t i v e  number, then  r e  ( t  ) 
i 1 

approaches a sho t  n o i s e  with s t r e n g t h  S and frequency li ; or  
i 

if pi, - oi2 for k = 2, and 0 f o r  k > 2, t h e  l i m i t  w i l l  be a 

I Gaussian wi th  power a 
2 

i 

I 
An a d d i t i o n a l  condi t ion w i l l  be needed here:  namely 

1 t h a t  t h e  k-fold c o r r e l a t i o n s  < r ( t  )r( t  1.. . > do not change 

1 s i g n  over  t h e  i n t e r v a l  [ t , t+ 7). Since r i s  small  t h i s  con- 
I 

\ 

I t i o n  is a weak one. It can be removed i f  we use i-nstead of 
I 
j t h e  Mi,k t h e  i n t e g r a l s  of the  absolu te  va lues  of t h e  k-fold 

1 C o r r e l a t i o n s .  We now prove t h a t ,  sub jec t  t o  t h e  above con- 

i d i t i o n ,  

To terms of the  f i r s t  o rde r  i n  T t h e  moments of 
-_I---- - - -  - 

1 
I 

~ ( t +  ) - ~ ( t )  are i d e n t i c a l  w i t h  those of t h e  expression - - - -- 

The theorem i s  c l e a r  i f  t h e  matr ices  A. mutually 
1 

commute f o r  then  (43 ) i s  equal t o  

t o  o rde r  T , t h e  moments of (h7 ) a r e  t h e  same as those of 

In  genera l ,  l e t  us cons ider  t h e  d i f fe rence  6 ( 7 )  be- 

tween t h e  r.h. s  . of (43 ) and (47 ). To prove t h a t  the moments 
. 2  of ,6 ( 7 )  a r e  of order  7 , we n o t e  t h a t  an  upper bound f o r  



t h e s e  rnoments may be obtained by the fo l lowing procedure: 

Replace x ( t  ) by x e where x - and e  is a 
max- max 

v e c t o r  having u n i t y  f o r  a l l  i t s  con>or,ents; and s i m i l a r l y  

r e p l a c e  t h e  matr ices  A. by n aiPmax E . F i n a l l y ,  i n  c a l m -  
1 

l a t i n g  moments of t h e  r e s u l t i n g  express ion  

x e 
i=l max - 

u s e  t h e  aSsolu te  values of the  q u a n t i t i e s  M a  . l2 ~ u t  from 
1 , k  

(46) i n  t h e  r e s u l t i n g  monents (and hence i n  those of ~ ( 7 )  

2 o n l y  terms of o rde r  7 o r  h igher  e n t e r .  ' 

Indeed one observes t h a t  terms of o r d e r  T can only a r i s e  on 

t a k i n g  liloments of expressions involv ing  bu t  a s ing le  one of 

t h e  r, ( t  ); but no such terms can appear I n  (49 ), f o r  on 'ex- 
1 

panding t h e  exponent ials  only products  of d i f f e r e n t  ri enter .  

Thus, f o r  s u f f i c i e n t l y  smal l  T (assuming always t h a t  

T>>T, ) t h e  s t a t i s t i c s  of - x ( t + r  ) - - x ( t )  as determined from 

(43 1, reduce t o  those of, (47 ). The form of (43) leads  t o  

two conclusions.  Nanely, t h a t  t h e  dependence of - x ( t +  7 ) - - x ( t  ) 

on t h e  random terms r i ( t )  i s  a d d i t i v e ,  i .e . ,  t he  change i n  

x ( t )  i s  J u s t  t h e  sum of the  changes t h a t  would be caused by 

each te rm i n  t h e  absence of the o t h e r s ;  and secondly, the  de- 

pendence on each re (t ) i s  only through t h e i r  i n t e g r a l s .  But 
1 



these integrals are com;aletely character ized by thep 
i ,k 

The introduction of the d.f .c. approximation can t n c n  

be effected by finding a def.c. process whose in tegra l  ovcr 

the ifiterval [ t , t + ~  ] h a s  the same s t a t i s t i c s  as tha t  of 

ri(tt 1. Since any such p r o c e s s  can be wri t ten  as a sum of 

Poisson noises, w e  need on ly  determine a s e t  of constants 

0 = 2  . and S s u c h  that 
i j 

and regard the  )iij and Si as being the  r a t e s  and strengths 

of shot  noises r ( t ) .  From sec t i on  2, we note that t o  
ij . 

determine - the moments - -  of x( t 1, the xij S need not be 
ij -- 

found exp1icitl;y. - The moments of & ( t )  3 @ expressed 

entirely - in terms of pik. 

Thus, for small T , eq. (47 ) may be wri t ten  as 

Consider t h e  change ' ~ ( E B ~ )  of the  probability 
a t  

d ens i ty  p ( 5 , t )  over t he  time T . TO f i r s t  order i n  7 this 

change will b e  the swn of those  caused by each of the ind- 

i v i d u a l  terms i n  (51). But 

ex.€) 1 jt+ij(f '1 dtl] ~('l, e.g. , i s  ( a i i o r " ~ " ~  $0 tho 

3 
inition used in this paper)r j u s t  the  solutioll  of t h c  s t ~ c ! l n a t l c  



differential equation 

Referring to sec. 2, the contribution of the A term to 

-2. ap(x,t 1 

Henc s , 

I $4. (54) gives an expression for the change in ~(&,t) duping 

1 the interval between t and t + ~  . The argument leadint:  to (53) 
I 
I May be repeated over the interval t + ~  to t+27 and continuing 

i t h i s  wag, one sees that eq. (54) gives an expression for 

Wx,t  1 
which is valid for all time t apart from an error 

at 

i -  t h a t  tends  to zero with .7- 

* 
L e t  Mi be a quantity typifying the order of magnitude of / &Ii ,h / I l k  end ai the elements of the matrices Ai* The 
_I_ 

I k \  * 
introduction of Mi is motivated by noting that 



'x-k k k 
Replacing M / k by Mi and A. by a , t h e  expression 

i , k  ZC L i 
4% 

aiMi (55 )  w i l l  be of o rde r  >,- and this  w i l l  be small i f '  
1 - a . ~  " 

JS r't 1 i 
a i ~ ;  is. Moreover on considering 6 ( 7 )  as above, one shows , 

t h a t  6 ( 7 )  w i l l  be of t h e  second o r d e r  i n  t h e  small quan- 
* 9 

t i t i e s  a . M . .  The degree t o  which t h e  i n e q u a l i t i e s  aiMi <cl 
1 1  - ---- 

8:-9 
hold  -- measures t h e  accuracx of the  d,f .c.  approximation, - .  -- 

Example 1. - Rectangular Pulse, Consider the apprax- 

iraation of a random process cons i s t ing  of a  sequence of 

random r e c t a n g u l a r  pulses  of height; h  and dura t ion  1 occurring 

a t  a  Poisson r a t e  X by a shot no i se  process of s t r e n g t h  

S= Ah and t h e  same r a t e  X . Assuming t h a t  l/X>>A, the *,,&.. ., r r  

c o r r e l a t i o n  time may be taken t o  be simply B . . Choosing T 1 

such t h a t  l/X>slS.>A , with high p r o b a b i l i t y  only one pulse 
k 

w i l l  occur  dur ing  the  time T , so  t h a t  Mk = X T  S . Writing 

max X t 
l / k  

I" = S ( ) U S/log ( 1 / X  T ) t he  i n e q u a l i t i e s  then 

become 
aS 

I h ~ e  <<I, 

9 It should be noted t h a t  i n  most cases  of i ~ t e r e s t  A 
w i l l  conta in  only one o r  two non-zero elements s o  t h a t  ak not  r k i 
ka i s  a c l o s e r  estimate t o  the  o rde r  of Ai ni i 

It i s  c l e a r  t h a t  the r e s u l t s  remain unchanged providzd 
t h a t  t h e  s t a t i s t i c s  of r - ( t )  vary by a small. f r a c t i o n  of 
themselves during the  i time T . 

I -.*-.zJ, n r. rC 

We omit the  subscript  i here  and below. 



Example 2 ,  Uhlenbeck-Ornstein .-- Process, A more 

significant, indeed classic, example is the replacement of 
Y, n 

an Uhlenbeck-Ornstein pi-ocess by a Gaussian white noise, 

The Uhlenbeck-Omstein process can be described as a correlated 
2 

Gaussian process of mean zero and variance oo with the 

correlation function being <r(t)r(tt ) > = 0 e 
0 

may be regarded: as the correlation time. The integral 
I 

-87 1; r ( t t  )dtt has mean 4 = (1-e ] and second 
B 

moment 
2 

Taking T long compared with the correlation time 

1 20 t + 7  

I ' ', and since It r ( t  ')dt ' has a Gaussian distribution, s' 
2 k/2 

I 0 (k odd), M~ -. 2 k 1  ) (k even). may take 
2k k! 

2 1 
2o02 % 

= (?)+ and hence if a(- r) << 1 the G3.ussian white noice with 
B 

2002 
power 2 = - is  a val id  approximation t o  the Uhlenbeck-Omstein process B 

I 
I 

in our s tochas t i c  d i f f e ren t i a l  equation. 

9 The Gaussian white noise limit here is sometimes 
referred to as the Einstein Brownian motion process, 
c*f. Ref, 9. 
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