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Abstract

Systems described by differential equations involving.
delta function correlated (i.e. white noise) random para-
meters are discussed, To be physically meaningful, sol-
utions of such equations should be interpreted as the limits
of solutions of the corresponding equations with realistic,
i.e., finite correlation time random processes, The im-
plicatibns of this is ex@loréadhere.

We consider first linear systems, Using the Poisson
case as the basic process, a "superposition" principle is
derived, allowing one to tré;t ény delta fu@ction correlated
process, Closed sets of ordinary linear differential eq-
uations are found for the moments. The treatments is then
generalized to the non-linear case.,

Finally, we derived conditions under which a delta
function correlated process is é valid approximation to
one with finite correlation time in a specific'stochastic

equation; and we show how the appropriate approximation may

be found.



SYSTEMS CONTAINING RANDOM PARAMETERS .
WITH SMALL CORRELATION TIMES

Martin A. Leibowitz

Department of Applied Analysis
State University of New York at Stony Brook:

l, Introduction

Recently, increasing attention has been given to systéms'
containing parameters which'vary in & random way with time, [Hef.l].
This attention has been motivated, in part, by attempts to analyse,
€+.8., randomly fluctuéting media-énd control systems, [Ref. 2,3].

Consider a system with n degrees of freedom, xl, b 4 3...,xn,

2
governed by the set of equations:

dxi(t) o

—3— = ;ﬂ Lcij(t) + rij(t)] xj(t) (i=1,2,...,n) (1)

where the ci (t) are known (i.e., deterministic)'functibns énd
the rij(t) are‘random functions of time. The xi(t) will then
constitute an ﬁ-dimensional random process dependent in a compli=-
cated way on the functions rij(t). However, this dependence
cannot be exhibited in an explicit closed form for other than
the first order equation. |

This is the central difficulty iﬁ treating a system of
equations such as (1) and suggests that a general theory en=-
compassing the most varied statistical behavior of the rij(t)
is not likely to be achieved. It is thus natural to consider
special cases,

The case, generally considered in the literature, is the
one in which the integrals i rij(t')dt’ constitute a Gaussian
process with independent increments. This implies, in eﬁgineering
parlance,'that,eaéh rij(t) is a white noise, i.e. a random

process with delta function correlation(rij(t) r, (")) 6(t=t’).
o 1)



Of course, the assumption .of a process with delta function
correlation (abbrevigted d.f.c.) is an idealization and leads
at once to the problem of giving a precise meaning to a set
of equations such as (1). This is because only the integrals

i

of rij(t) are functions in the ordinary sense, while the Ty
are so called "singular functions, and for such singular
functions the usuai existence theorems for differential eq-
uations do not apply.

The reQuireqents of physical sense and applicability

would seem to dictate the following procedure for giving mean-

ij
family of processes Ri

ing to (1) with »r delta function correlated. Consider a

(t) depending upon a parameter, Tos and

J

whose correlation functions <Rij

(t) Rij(t+Atj) are non-vanishing
for At in a small but finite intervai whose length is of the
order Tc‘ For such processes the functions Rij will be suf-
ficiently well behaved that the solutions of (l) will exist

in the usual sense; denéte them by Xi(t). Now 1etATc tend

to zero, so that the R converge to a delta function cor=

i
related process, and degine the xi(ﬁ) as the 1limit of the
corresponding X; (t).

It must be noted that in the theory of "stochastic dif-
ferential’equations“ described in the purely mathematical
literature, [Ref. L] meaning has been given to eq. (1), for
the Gaussian noise case, iﬁ an entirely different way. That
theory is, of course,‘in no sense, "wrong" but rather is not’
directly applicable ﬁo physical situations. - Indeed, its

apparent origin was not in an attempt to derive the statistical



properties of the solutions of an equation such as (1), but,

on the contrary, rather to represent in the simplest form as a
stochastic integral, a class of pfocgsses whose probability
density gsatisfied certain diffusion equations. It is un=-
fortunate however that theluse of the term "stochastic differ-
ential equationé" has led to confusion in the physical lit-
erature, and that a clarification has been made only surprisingly
recent}y (cf. our Ref. 1 and the later elucidation by A.H. Gray
and T.K; Caughey, Ref. 5).

In defining the solutions of eq(l) as the limit of the
solutions of the corresponding equation with coeffients with
finite correlation times, a number of questions immediéfely
~arise, For a given.famiiy of processes Rij what is the
correct limiting rij and how may the statistics of the sol=~
utions Xi(t) be found?. One of the pleasant properties of

linear equations is that the moments satisfy a system of closed
ordinary differential eQuatiohs. An even more pressiﬁgquestion
from the engineering point<of view yhere one generally deals
with a process with a specific if short correlation time (rather
than a parametrized family) is the following: when is it possible
to approximate such a pfocess by a delta function correlated one
in attempting to solve equations such as (1)? Moreover, how may
this approximation be improved, presumably by some expansion in
the correlation time, for which the delta function approximation
represents the first order term.

The present paper differs from previous work in its emphasis'

on the delta function correlated, white noise, case as an
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approximation whose validity must be explored; and related to
this, by its use of the Poisson rather than the Gaussian as the
basic process,.,®* It is natural to do this, since in the theory
of processes with indeperndéent increments; it is shown that the
most general such précess (including the Gaussian) can be
approximated to any degree of accuracy by a sum of Poisson
processes or by the limit of such a sum; such a "superposition"
principle holds when these,proéesses appear as coefficients in
differential equations and enables us to treat the case of a -
general d.f.c. process. The use of Gaussian processeé alone in
approximating processes with finite correlation times is an
unnecessary and severe restriction, _Finally, apart from the far
greater generality ultimatel& obtainable, the use of the Poisson
process 1s simpler to ¥isualize since such a process consists
only of a series of sharp discrete impulses occuring at randem
times,

In Section 2, we consider fhe case of linear differential
equations, deriving the equations satisfied by the probability
density of the xi‘t) and their moments. It is shown that the
moment equations can be expressed éntirely in terms of the
moment generating function of the d.f.c. process,

In Section 3, we generalize our results to the non-linear

¥* A somewhat similar approach, not however using the
Poisson process as a basis, has been given by R.L. Stratonovich

(Réf. 6).



'system

dx. n
E:-ti = T fij(xl”"’xn’t) rj(t) (2)
Jj=

In Section I}, we derive conditions under which a delta function
correlated process is a permissible approximation to one with
fiﬁite correlation time in a given differential equation; and
also discuss how the appropriate approximation may be found.

As an example, the relation between the Gaussian white noise
and the Uhlenbeck-Ornstein process is discussed: this relation

is of importance in the theory of Brownian motion.

" 2¢ The Linear Case

The possible ambiguity in defining solutions of differ-
ential equations with delta function correlated coefficients is
illustrated at once by the simplest possible example., Consider

the equation

I = rlt)x (3)

where jz(t)dt is a Poisson process so that r(t) represents a
Posisson (shot) noise. Such a noise may be idealized as s«
series of infinitely short identical impulses occuring at ran-
dom times. The impulses are each characterized by a "strength
S, the integral of r(t) over any single impulse; and the dist-
ribution of times at which impulses occur is described by a

"rate" A..such that Adt is the probability of an impulse




occuring in a short time dt (Ref, 7). Symbolically, a Poisson

noise random function may be written as a sum of delta functions

r(t) =85 8(t-ty) +5 6(t-tp + ... + S'é(t-tng (L)
with ti denoting the instant the i®® impulse (measured from
some initial time) occurs.
Let us integrate both sides of egq. (3) over a time in-
terval (tbs:t Sta, say) in which oniy a single impulse at
t = t* océurs, and denote by x and x, the values 3 of x before

and after this impulse. Thus using eq. (L)

X, - x, = Sx(t*) (5)

But x(t*), the value of x during an impulse hasvno

" precise meaning, In fact, according to eq. (3), %% during an
impulse is arbitrarily large and x(t) is varying rapidly be=-

tween X, and X Different theqries for eq. (1) will result

depending on the value assigned to x(t*).

Suppose, however, that the impulses last a finite time

so that eq. (3) can be integrated in the usual way. Thus

t .
a
X, = X exp L f r(t) dt]
t .
b
Then, as x(t) tends to a Poisson noise eq. (l}) one has the

following simple resuit which is basic to all that follows:

The change caused by an impulse is given by

X, = X eS (6)

where X, and X, are the values of x before and after the impulse.

We note that this relation between x_ and xb is different than

a
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‘the cne obtained if the value % is used for x(t¥) for then

X, = Xb(1+S). The reader may verify that if this latter ex-
pression is used in the arguments leading to the Gaussian noise
case {to be given below) one obtains the resulﬁs found often in
the mathematical literature. We emphasize again that that
apprcach is not correct for physical and engineering cases where
one deals with processes with finite correlation times, approx-
imating them by delta function correlated pfocesses. Indeed,

the use of x(t*)=x can lead to physically absurd results if

b
one notes that for sufficiently negative S, X, and X, may have
opposite signs which is impossible if say, x represents'an
intrinsically positive quantity. |

Let us extend (6) to the more general equation

E;r(t) AXx ‘ (7)

where A is a matrix [aij] 1,751,2,404,n) x(t) is now the
vector with components xi(t) (i=1,25+4esn) and as before, we
write X for E(tb), X, for ﬁ(ta). Then integrating (7) from
t, to t_ one finds for the change in x over an impulse

=S4 8
x =eTx (8)

An equation for the probability density p(g,t) may now
be found. Suppose the system has coordinates lying in the
volume [x,x+dx] at the time t, [ probability p(x,t) dx] . Then,
at the time t - dt either (a) the coordinates were in the vol-
ume [ E,gﬁdﬁj} and no impulse occurred during the time dt, (the

probability of this being (1-Adt)p(x,t)dx) or (b) the




1

system had coordinates in a volume [ x +dxb] and an impulse

+ X
b” b

did occur, probability of event (b) being kp(ﬁb,t-dt) ax

bdt.

e“SA‘ dx, where e'sél

But by equation (8) % = e=SA x, dx, =
is the determinant of the matrix e=SAs Therefore, _
p(x,t) = (1- Mt) p(x,t=dt) + Adt p(é'sé x, t=dt) |e"S&| ;
and on passing to the limit, one finds that

The probability density p(x,t) satisfies the equation

ap(x,t) - ’ -S
—— = apleSE 1) [eTH| - ap(xt)  (9)
For the slightly more general system
dx
g = (Crrt)A)x (10)
where C = (cij) is a deterministic matrix, (9) becomes
(x,t) 3
plx,t Ax.p(x t)) ‘
wa) | § e, 54 g0 (e8] - rpimt)
ST 12;1 °1 3 5%, .+ Ap(e X,t) |e™>2 rp(x,t) (L1

From its derivation, it is clear that equation (11) is valid
even if A ,S,A or C are functions of the time.
On the basis of eq. (11) one can readily show that the

moments of x satisfy linear differential equations. In part-

icular, expectations <Cxi>- and covariance <:xixj:>‘gg have

Kx.>
=

— .. + - <x . > ’
dt cl,]<xj> )\.(Bij 1) ’(j | (12)




d<xix.? n n
. = I ¢ <x.x.>+ L ¢ <X,.X, >
dt (3 .
. k=1 ik 7k k=1 jk 17k
n :
+2 I B, B, <x x> -1 <x.x.>, (13)
K, 251 ik 32 k7L i7]
where B, = (eS4) ,
ij ij

To derive such equations, one need only multiply eq. (11)
by the appropriate moment and integrate over'x. The only point

to note is that in evaluating such integrals as

Jx; ple™54 x,8) ax | ()
one makes the substitution ¥y = oS4 Xe

A Superposition Principle for Poisson Noilse Processes.

Eq. (11) may be extended to the case where the random part of
(7 ) consists 5f a sum of an arbitrary number of independent
Poisson noises, Such an extension is important for two reasons:
first, it enables us to handle equations such as ( l); and
secondly, to treat the case_where-r(t) is an arbitrary delta
function correlated process. This is because any such process
can be approximated to ény degree of accuracy by a sum of
Poisson noise processes with suitable strengths and rates, or
by a limit of such sums, [Ref. 8],

Consider, fdr example, the equation,

= (C + r (%) A r2(t) _15._2) X (15)

ghe

with rl(t) and rz(t) being independent Poisson noises of’



strengths Sl and S_ and rates Al and X2 respectively. Noting,

that becaus? of this independence the probability  of

an impulse in both rl(t) and rz(t)'during a short time dt is

2
A}, (dt)” and hence may be neglected in the limit dt = 0, one

finds that

dp(x,t) 3lx;p(x,t)] =514 : =514
= - —_—— + X e X,t e
-S_A =S A .
2=2 2=2
+  Aople x,t) e - (A *+1,) p(x,t) (16)

In general, if the r.,h.s. contains an.arbitrary number
of Poisson noises, one has the following "Superposition
Principle":

. . ap(_Jg,t) L A
To obtain the equation for —5g " one need only sum the

contributions that would be made by each Poisson noise in the

absence of the others,

A similar statement holds for the moments. From this,

one can immediately obtain the equation satisfied by p(x,t) if
Xi(t) is given by an equation such as (1) with ﬁj(t) being a

Poisson noise. One simply lets the matrix A corresponding to
Vthe rij(t) term in (1) be a matrix containing all zeros except

th row and jth column,

for a 1 in its i
If r(t) in eq. (10) is an arbitrary delta function

correlated process, then the equation for p(xf) can be

found by considering the Poisson noises which compose r(t)

and using the superposition principle. However, as far as the

moments go, one can show that it is not necessary to find the

decomposition of r(t) into Poisson noises explicitly; indeed,



the moment equations for x{(t) can be expressed en-
tirely in terms of the moment generating function of the in-

tegral of r(t)
To show this let

f(u) = (exp [ L r(t)dt] h
and write k(u)-—lov f(u). Suppose that r(t) was composed of

Poisson noises with strengths S, and rates )‘j then
J
-u S

k(u) A, (e -1)
J

J

Now, on the r.h.s. of eq. (12) the coefficient of <x>
S A

if written as a matrix would be C +Zi; (e J -E) where E is the

2 d
J
identity matrix., But this is just C + k(-A). Hence one has
d<x >
—— = + - 1
3t [C + k(-4)] x (17)
Similarly the r.h.s. of (13) may be written in matrix
form if one introduces the direct product A% A of the matrix
A, and the direct product xY x of the vector x [Ref.10]. Then
the coefficient of <x¥x> in (14) is
[CXE +EXC + = xj (exp sijA] -EXE)

J
(noting that exp [AYA] = exp (A)Xexp (A)), or

wj: cXE +EXC + k(-aXa) xXx  (18)
And in a similar way one obtains expressions for the higher
moments,

Gaussian Noise, Suppose that in equation (15) r. and r

1 2
are shot- noises of the same rate A and with strengths of equal




‘magnitude but opposite sign. Letting A+« , and S+ 0 in

2
R .%_.U s the process rl(t) + r2(t) will

such a way that 1S
2

tend to a Gaussian noise g(t) with power 0 : <g(t) g(t')> = 026(t~t'

Using this fact, the equation for the probability density of the

solutions of the stochastic equations

0,

o = [c+ag®)] x | (19)

may be found directly from (16). Indeed, making the identifications

A =4A = S. =<8 =8 ,A, =i, =\ glves
3p(x,t) a[xip(x,t)] -SA -S4
——————— T - ) JEr=s + aple T x t) e
ot Z i3 0% pl 2
1,3
SA A
+ Jple ~ x,t) e -2 p(x,t), (20)
* The easiest way to show this is to prove that the charac-

teristic function of Jr: [rl(t') + I‘z(t')] db! tends to that of

o[: g(t') dt' for any t, as S 0, X ?* =, x2S - %02. But this follows on

noting that <exp i éﬁ [rl(t') + rz(t')] dt'> = exp [nt(el0S - 1)+ )\t(eiés - 11,
and <exp i & J’;t g(t1) dt'> = expl - %‘. 52 o2 t]. Physically, Gaussian noise 4

arises in this way so this procedure seems entirely natural.

- 12 -




Expanding to terms of order 82,

' 2 2
SA SA A _ T2
ple = x,t) e — =p([1+S_A_+82§~] X,t) [1+SF+;__I‘]
op
=p + S[Tp + Z 5= (a.. x )]
Lj 7
2 62
p op
+-2]=S Z Y- G T gy %y T2 ) — 1y %t
L3, 1775 1,3 i
k,2,
2
12 (21)
where T = Trace A = Z a.., and p = p(x,t).
R SA -S4
Performing a similar expansion with p(e = x,t) |e =|

substituting in (20) allowing )\82 - %’—- 02 s one finds that

dp(x,t) “‘ dx. | d(a, x
. 1] ox. 2. : ox,
143 1 o i, =
d(a;y a5y X, X, D)
i,j,  O%1 0% - (22)

The "Superposition" principle used for Poisson noise

extends at once to the Gaussian noise case. If, e.g., gl(t)



and g2(t) are independent Gaussian noises with zero means

2 :
and powers o and 0, respectively, then to obtain the

1

equation for the probability density of X where

& &

= [C*e(t) A +g,(t) AT x - (23)
one need oniy write each gl(t) (i=1,2) as the limit of a sum
of shot noises wi%? rates ki and of Strengths'si and = Si such
that li Si2 - J%-. Using thé supérposition procedure for the
Poisson noises, the differential equation for p(x,t) will follow
in precisely the same way as (22) from (20).

The case where the gi(t) are mutually correlated can be
readily reduced to the above,' Suppose the system for x is

n

)
<= [c +i=.1 gi(t)éi] x - (24)

where

<g,; (t) gj(t' )> = py 86t (o = 0,2 for i = j)

Let g(t) denote the vector [gi(t),i=l,2,...,nj and p the

matrix ( Py ). Then there exists an orthogonal matrix H and
-1
& diagonal matrix D such that H p H =D, This follows from

the symmetry of p. But then the random processes hi(t) defined
by h(t) = H g(t) (h(t) is the vector [Ei(t),‘i=l,2,...,n 1) will

be mutually uncorrelated. Hence, (2l) may be written as

— = [Cc+ n§=l h, (t) éi*J X (25)

_l}-l.—



n

*® =

L and the hi(t), being mutually un-
J:

correlated and Gaussian are matuelly independent.

3o Non-Linear Systems

Consider now the non-linear system of equations

i 2 o
I j=‘ ij xl,...,xn) rj(t) (26)

where the fij’ apart from being at least twice differentiable,
may be arbitrary functions of the variables s To determine
the equation satisfied by p(x,t), we proceed as in the linear

case. Thus, suppose first (26) has the simpler form

Q‘ jo!
i
| ad

= r(t) fi(x ,...,Xn) ’ , (27)

1

where r(t) is a shot noise of strength S and impulse rate A .,
Consider 2 single impulse and denote by X and X the
values of x just before and after this impulse. It is cruclal
to the theory that the change in X over an impulse depend on
r(t) only through the integral Jr(t) dt. Otherwise, in
passing to the limit of a éhot noise from & non-singular ran-

. . -
dom process, the limit of the solutions of (27) in the la ter

i imi g shot
case will not depend only on theproperties of the limiting

trne

hrouzh
The solutions of egq. (27) depend on r(t) only LRFOUAZ ——

P NS and S,
integral J‘ r(t) dt. In particular, X, depends only on X, 2
1 th (i=2’3,-no) Of ©eqgsS. (2?) b_‘,’

In fact, on dividing the 1

the equation for Xy we have

—]5.;

e ————EEE




R CUNCR R RPN

I

il

2
(205" = = 25 [(xy),/(x))y] + (x,) 2 (32)

From the expression for Xy in terms. of x end S, the equation
for p(x,t) follows by a generalization of the argument leading

to (14). One finds that

p(x,t) satisfies the equation

dp(x,t) 0Xy

3t = Ap [ﬁb(ﬁsls):t] el B Ap(x,t) (33)

where X stands for x_, aEEb is the determinant with elements
= X
B(Ki )b - . Iy
~%x—— , @&nd the notation p[_:_:_b(gg,s),t] indicates that in
J .

the ith coordinate position p(x,t) is to be evaluated at (xi)b

(regarded as a function of x and S). To verify eq. (33), it
need be only noted that if the system is in the volume element
[x,x+dx] at time t, either no impulse occurred in the previous
time interval dt, or an impulse did occur, and the system was

in the element [x_, X  + dx, 1 , where x = Zib‘(f’ia.s_’.) and

b
°X . . 4 in the
de = 0 dx., The superposition principle used 1
- 3xX - :

linear case when r(t) is a sum of shot noises is valid here as
well without any change, so that no further comment is
necessary.

Expansions in powers of S

In contrast to the lihear case, the equations for the

. is
moments do not form a closed systenm. For example, if (33)

ession
multiplied by and integrated, one has on the left an expre

- 16 —
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involving not only the first order moments but generally hizher

orders as well, The expedient often used in non-linear eg-

wabions is however, applicable here: namely an expansion in

powers of a small parameter. Let S then be taken to be small,

Regardipg (_}_[_)b as a function of S, we seek an expansion of the
form

2
B(_?_C_)b S 41 3 (x)b 32

+-——-—-———
=b —'8a 23S 2

+ sesy (3“)
S=0 382 S=0

noting that (x), reduces to (x), when 5=0

Differentiating (3L) with respect to S gives

- a(xl)b 1

=5 — =1 (35)
£y [(xl)b’(xl)a’(xi)a}

and in general

d(x.: )
L0 ol [ s () (] (36)
differentiating once more
2
= - = s °f (37)
352 B 2 B(Xj ) oS % ol%j'p J
J

. . = nl
To find the values of these derivatives at S=0, we need only

’ ents (x;). by
replace in the r.h.s. of (36) and (37) the argunm i)y

i determinant
(Xi)ao Using (34), it follows that the

a i prms
> (writing x for (x) ) has the expansion correct to ter
30X S /g
0(s2)
2 ‘ )
= £5 ) Urgsytyttae fagl 09

se—| =18 F fui T2 ay




' 2
of.
wherefi.=_.._£,f. =af5_
»J X, 1,3k ox 3x
J ik

Finally from (33) and (38) we £ind the approximate

equation for p = p(x,t)
ap op
— = AS — f
3t C ax, 1 P Tyl
2 . 2
AS z [ dp . . 0 3p dp
—_— —_— .. L+ +
2 9%y T1,J 7 ox; £ 'fj,j 9% 0% fifj
i,J
+ p(f fo+ £ o £0) ]+ O(S3
P(f3,55 £3 % 4,5 Ty 9) ] ) (39)

Now regard p(x,t) as a function of S with the series
expansion
p(x,t) = po(g,t) + Spl(_J_C_,t) + eee
Then on substituting into eqe. (39) and equating coefficients of
S, one derives a set of recursion relations for the pk(x,t), the

first such equation being

op1 9Pq
ot i BXi .
In the absence of a deterministic part, po(x,t) is Jjust

fi * pofi,i

the initial value of the probability density, namely p(x,0)

. 5
and it follows readily that the pk(x,t) will be polynomials In

3 first
t of order n with coefficients depending on po(x) and its fir

; art did
k derivatives. On the other hand if a deterministic part di

= . L] . 9 0 9
( )

14 be modified only
r.h.s. of eq. (27), then (33) and (39) wou'a(Cip)

by the presence of an additional term - Z -

in thelr

i

-18- .




right hand sides. po(x,t) then would not be simply pi{x,0)

but rather p [:g_(_x_o,t),O] where _:5_(_3;_0,‘6) is the solution of

the differential equations

dxi

-é---t.... =ci(-}-{-) [i=1,230-c’n}

with initial conditions _}_{_(t-‘-(j): X

The Gaussian Case. By means of (39) we can write down

the equation for p(x,t) when r(t) is a Gaussian noise with mean

zero and power 02. Proceeding exactly as before, i.e., re=~

garding a Gaussian noise as the sum of two Polsson processes
2 2
of strengths S and =S, and rate A such that AS =g /2asi~e,
S ™ 0, one obtains
2
2 . *
3P o -y 3p £3 55)) +ZB (b ;%3
2 3%, ox;ex. | (L0)
i,] 1 1, J
Let us compare eq. ()-I»O) with the familiar Fokker-Planck
v . - h
e x (t) were a Markoff process, suc
equation. ]:Ref. 93. Suppos 3
“that <bx,> = <xi(‘b+At) - xi(t)> and
= - x. (t)I[x.(t+At) - x.(t)]> are both of
<bx ij> <[xi(t-+m_-’) x, (£)]L ,]( :

. f lower
order At for small At, while higher order moments are ol 1L

order, then p = p(x,t) would satisfy the equatlon

2
n
BT 1 d 4
a—— S 5 <Ax, Ax > {1
Z pt +0(A) = ) 5 ) g ) Sw, (Ptx?) ()
ot 3 ) ;
11 1,3=1

=0 this is the

' the limit &%
On division by At and passage to
12 f.At, and
same as (lL0) when <&X;>=50 Zfi,aa s
J=1

2
>= f f.Ato
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The interesting point is the non-zero value of<<m%?
even though the first moment of g(t) and its integral vanishes,
This is because over the interval At the values of KysesesX
andlhence fi(xl,...,xn) varies according to the values assumed
by g(t') and hence the correlation <:g(t')fii> (and there-
fore <4x,> ) is in general non-zero. Ultimately, if we con-
sider the linear case, thé non-vanishing of‘iA:xiJ> is a
consequence of the fact that an impulse of strength S and one
of strength -S do not average out, to second order, as maj be -

=S
seen by expanding e +e ,

.. [




L. Approximation to the Finite Correiation Time Case

In previous sections, we have considered differential
equationsvwith d.f.c. coefficients, interpreting such equations
as the limit of the same differential equations but'héving
coefficients that are random processes correlated over a finite
time. Our purpose here is to determine when the d.f.c. ideal-
ization is a valid approximation to a physically realisfic case,
and how this approximation is to be made.

Suppose that the differential equation is

x _ T
= = ) Aril)x (L2)
i=1

where the Ai are constant matrices and the ri(t) are stationary

M, .
o

independent random processes whose sample functions are con-
tinuous (except perhaps for a finite number of jump discontinuitities
In general a closed solution of eq(}2) is not ob=-

tainable but an iterative solution is possible. Writing

n
D(t) = Airi(t)

i=1

Note that the presence of a linear deterministic part
can be taken into account by letting one of the ri(t) be a

constant



t+T +T 5!

Cx(trT) = x(b) + D(t1) dt' + D(t') D{t'') dt'dt"’ (43)

Jt t

tor 4(0-1)

+ D(t') D(t'') ... g(t(n)) dt'&t"...dt(n)+... x(t)

s e 0 LIC Y

which gives x at time t+r in'terms.of‘g at some earlier time t.

We now introduce two assumptions which allow the ex- :
pression (U3 ) to be greatly simplified, and which in fact form
the basis of the approximation by d.f.c. processeﬁ. They both
involve the time increment T : namely, we Suppose it possible
‘to choose T such that |

(A) The integrals

t+T
/I‘i(t')dt'
t

are statistically independent of the history @f the random

processes r, before the time %,

(B) The relative change in x the time T is small.

——— — . —!

Generélly, it is possible to meet assumption (A) by
taking T sufficiently large; and it is possible to meet
assumption (B) by taking t sufficiently small. The key
point is that we are requiring a T such that both (A) and
(B) are satisfied,

Assumption (A), which in practice can be met only to
a certain degree of approximation, may be expressed in a more
traﬁsparent form if the notion of the correlation time Tc is

used., Consider the process r, 6, for example, at two instants t
i .

- 22 —




ey’ A ————

——

end t+At,., Then the correlation time is such that ri(t) and
r; (t+4 t) are very nearly independent for At>T . A use-

ful measure of T is given by

T .= Ji [ri(t)ri(t+At)— <ri(t)>2] dt
c

- (LL)
<p12(t)> - <ri(t)>2

l.e., the time integral of the correlation coefficient_over'
the variance, If T>>TC the predominant contribution to the
integrals of r. will come from those t' for which‘ﬁ—tiﬂ%.
Therefore (A) will hold when

(A') The time increment r is such that T>>%%

e *
where T, is the maximum of the correlation times of the pro-

cesses ri(t).

We introduce now the moments

t k
= w (
M = < r (g et | > (L5)
+T
and the quantities
by =M /7 (L6)

The uiﬂ<will then be certain functions of T which are in-
dependent of the history of the pfocesses ri(t') before the
time t, provided that T>T

Consider a class of processes ri(t) containing the
correlation time Tc as a parameter, and imagine that this
parameter approaches zero. Then letting both TC/T s and 770,

the “i,k will tend to certain (possibly zero)vconstants and

a3




these will define a limiting d.f.c. process for r.(t). Thus,
: i

if b

k
x ~ *45; where S, is some positive number, then r, (t)
i i

approaches a shot noise with strength Sivand frequency Ki; or
if by = o;% fork =2 and 0 for k > 2, the limit will be a
Gaussian with power02

An additional condition will be needed here: namely
that the k-fold correlations <r(t!')r(t''),..> do not change
sign over the interval [t,t+ T], Since T is small this con-
Tion is a weak one. It can be removed if we use instead of
the Mi,k-the integrals of the absolute values of the k-fold
correlations. We now prove that, subject to the above con-
dition, |

To terms of the first order in 1 the moments of

—

x(t+7) - x(t) are identical with those of the expression

m t+T 7
T (A () as!) - E | x(t) (7
2 exp (& ﬁ; r;(t')dt?) ] E,.

The theorem is clear if the matrices Ai'mutually
commute for then ()3) is equal to

nb+T

[eXp;ZilAi Jt r; (t!)as! ] | ' (18)

and to order T , the moments of (L47) are the same as those of
(L8),

In general, let us consider the difference & (1) be=
tween the r.h.s. of (43 ) and (47 ). To prove thatithe moments

of 8(7T) are of order'tQ, we note that an upper bound for

-2) -



these moments may be obtained by the following procedure:

Replace x(t) by x e where x = Max o (t) and e ig a
max— max J -

vector having unity for all its components;land similarly

. B, Finally, in calcu~

i,max
lating moments of the resulting expression

replace the matrices Ai by n a

m tHT :
€Xp >_ na J; r. (t! dt'] -E
i=1 i,max 1( ) o)
mno , b+
- exp 3 [n . L r; (41 dt -E:I o
j=1 % i,max max —
use the absolute values of the quantities M, k.12 But from
ik

(46), in the resulting moments (and hence in those of A(T)
only terms of order T° or higher enter.
Indeed one observes that terms of order T can only arise on
taking moments of expressionsAinvolving but a single one of
the ri(t); but no such terms can appear in ()9 ), for on ex-
panding the exponentials only products of different ri enter,
Thus, fof sufficiently small 1 (assuming always thaﬁ
T>>T, ) the statistics of x(t+7) - x(t) as determined from
(L3 ), reduce to those of_(}7). The form of (L3) leads to
two conclusions, Namely, that the dependence of x(t+T ) = x(t)
on the random terms ri(t) is additive, i.e., the change in
x(t) is just the sum of the changes that would be caused by
each term in the absence of the others; and secondly, the de-

pendence on each r_ (t) is only through their integrals. But
i
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these integrals are completely characterized by they, K
The introduction of the d,f.c. approximation can tnen

be effected by finding a d.f.c, process whose integral over

the interval [t,t+7] has the same statistics as that of
ri(t‘ )e Since any such process can be written as a sum of
Poisson noises, we need only determine a set of constants

3520 (3=1,2,...) and Sij such that

" i
p'ikZJSlJ' (50)
J

and regard the X, 4 and Sij as being the rates and strengths

of shot noises r, (t) From section 2, we note that te

determine the moments of x(t), the A;5 and Sij need not be

found explicitlye. The moments of x(t) may be expressed

entirely in terms of u;y.

Thus, for small T , €dq. (L7 ) may be written as

. | v ‘ 13
x(t+7) - x(t) = 5 exp(Ai ?J:b :‘ij(t‘)dt’> _E]gg(t) (51)

i=

Bp(x,t) of the probability
Consider the change -—--gt T

i r in 7 this
density p(x,t) over the time 7 » To first orde

hose caused by each of the ind-

change will be the sum of ©

;,'Lvidual terms in (51)., But

»
M -

he de

] dine to the
[A Z /L I‘ (t’) dt'] X(t), Ce8ey 1s (accor&ln*-’
exp

i the stochas?
olution of the ¢
nition used in this paper), just the 8

}-Jt
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differential ¢ quaticn

ax
— = A Z {
at =L Ttz (s2)
J
Referring to sec, 2, the contribution of the A term to
3p(xst) | 1
3t T is
-S_.A -5 A
1 1j=1
E‘ij p[ (e X,t) e d - p(x,t)] (53)
Hence,
op(x, t) m ' =S, j_é_.. =S, .A
Z Z)‘lJ [p(e Hox,e) e HTH - plx,t)] G4

i=1

Eq. (54) gives an expression for the change in p(x,t) during
the interval between t and t+T . The argument leading to (53)
may be repeated over the interval t+t to t+21 and continuing
this way, one sees that eq. (5l) gives an expression for
op(x,t)
ot

that tends to zero with .

which is valid for all time t apart from an error

Let M“‘ be a quantity typifying the order of magnitude of
i

M 1/k  ana a; the elements of the matrices Ao The

i,k

k ' |
introduction of M: is motivated by noting that

: © Mi k
2 P TVRY
47T _ k e \572
<exp Ay [ r(tf)at’ -E>=) 4 T
t k=
- 27 —-



. #k k ]
Replacing M, . /k by M, and A, by a,ki the expression
ik i . i i

. g M.
(55) will be of order _2 %  and this will be small if

l-a.M.
iMy

aiMi is, Moreover on considering 6(1) as above, one shows

that 8 (1) will be of the second order in the small quan-

'« The degree to which the inequalities aiM

.,
*
.

1
3t

hold measures the accursacy of the d.f.c. approximation.,

tities aiM <<1

i

Example 1, Rectangular Pulse, Coﬁsider the approx=

imation of a random process consisting of a sequence of
random rectangular pulses of height h and duration £ occurring

at a Poisson rate A by a shot noise process of strength

such that 1/A>>>>1 'y with high probability only one pulse

will occur during the time T , so that M, = AT Sk. Writing

k
1/k

% Y
u¥ = mix S (ﬁ;’) ~ S/log (1/2 7 ) the inequalities then

become
S \
Are s <<1, (56)

* It should be noted that 1n most cases of interest Ai
will contain only one or two non-zero elements so thata% not
. . k
nikaik is a closer estimate to the order of Ai °

It is clear that the results remain unchanged provided
that the statistics of r_ (t) vary by & small fraction of
themselves during the time T,

We omit the subscript i1 here and below.
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Example 2. Uhlenbeck-Ornstein Process., A more

significant, indeed classic, example is the replacement of

an Uhlenbeck-Ornstein process by a Gaussian white noise.
The Uhlenbeck-Ornstein pr-bcess cén be described as a correlated
Gaussian process of mean zero and variance 602 with t,he
correlation function being <r(t)r(tt)> = 002 eaﬂ]t“t I; vl/B,

may be regarded as the correlation time, The integral
1

b ' | r(t -Br
jt r(t')dt! has mean M, = — (1~e ) and second
3
moment 5 ,
20 2 '
-8 o -pr -28
VRSP {0y L R R ) N €10
2 B a2 . BQ

Taking 7 long compared with the correlation time

1 2002 ’ t+T )
M -0, M- 5 T, and since .ft r(t’)dt’ has a Gaussian distribution,

B"
_o(ex-1): (2002¢>k/2

(k even). We may take

= 0 (k odd), M
2 1 2 \% v
20, 2
M¢ = ( g 'T) and hence if a(zog T) << 1 the Gaussian white noice with
20° .
power o° = is a valid approximation to the Uhlenbeck-Ornstein process

in our stochastic differential equation.

*® The Gaussian white noise limit here is sometimes
referred to as the Einstein Brownian motion process,
Cof. Ref. 9 .

- 29 —



2

3.

10.

REFERENCES

M. A, Leibowitz, "Statistical Behavior of Linear Systems
Containing Randomly Varying Parameters", J. Math,
Physics L, 852 (1963). '

L. A. Chernov, "Wave Propogation in a Random Medium,"
McGraw~Hill, New York (1953).

Proc. Sym. in Applied Math. Vol. XVI, "Stochastic Pro-
cesses in Physics and Engineering," Am,., Math. Soc.
Providence (196l).

J. L. Doob, "Stochastic Processes," John Wiley, New
York (1953).

A. H., Gray and T. X. Caughey, "A Controversy in Problems
Involving Random Parametric Excitation," J. Math. and

Physics L5, 288 (1965).

R. L. Stratonovich, "Topics in the Theory of Random Noise,"
Vol. 1, Gordon and Breach, New York (1963),

W. B. Davenport and W, L. Root, "Random Signals and Noise,"
Addison-Wesley, Cambridge (1955),

B. V. Gnedenko and A, N. Kolmogorov, "Limit Dist?ibutions‘
for Sums of Independent Random Variables," Addison-
Wesley, Cambridge (1954).

S. Chandrasekhar, "Stochastic Processes in Physics and
and Astronomy," Rev. Mod. Physics, 15, 1 (1943).

C. C. MacDuffee, "Introduction to Abstract Algebra,"
McGraw-Hill, New York (1940).




ACKNOWLEDGEMENT

Thanks are due to the partial support of
the Atomic Energy Commission under contract

AT - (30-1) - 3869,




