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ABSTHACT

The following time-domain characterization of any positive-real

matrix is established: Let w(t) be an n ° n matrix cistribution

and let W(s) be its Laplace transform. Necessary and sufficient

conditions for W(s) to ve a positive-real matrix are the following.

Lo wle) =a o) + w_(e)

Here, A is a real symmetric nonnegative-definite constant matrix

and w,o(t) is a real matrix distribution of zero order, whose support

1S contained in O0£t< g,

2. Let
w(e) = 3lwlt) + w' (-t)].
For every nx1 constant vector y the quantity;z#wh(t),z is a non-

negative-definite distribution.



1. We continue in this report the discussion of time-domain

characterization of positive-real matrices Ejs) that was presented

in a previous report [1]. The present development is considerably

briei'er and yet more general since the assumption of rationality

for W(s) is no longer imposed. Indeed, a complete time-domain

characterization of any arbitrary positive-real matrix, whether ra-

tional or not, is obtained and the conclusions of our previous re-

port [1] are incluced as a special case.

t Our development is based upon @ time-domain representation for
the unit impulse response matrix for a sinzle-valued linear time~

invariant continuous, causal, and passive n-port, which was pre-

sented in a previous paper [2]. An analysis for one-ports that

overlaps the present work (i.e., it achieves the necessity of con-

dition 1 of the forthcoming theorem for the case where n=l) has

been given by Konig and Meixner [3,4] .

We shall continue to use the notations that were employed in
[1]. Moreover, we especially call the reader's attention to Sec, II
and theorems that will be used in the subsequent discussion. This
summary will not be repeated'here. No other material in [1]other

l

[ of [1] wherein a summary is given of certain fundamental concepts
f

r than Sec. II is needed for an understanding of this report.

Another concept that we shall make use of here is that of the

order of a distribution. The order of a matrix distribution is that

least nonnegative integer r for which the (r + 2)t h - order

primitives of the elements in the matrix are all continuous functions.,
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9/& (t) is of zero order whereas A d“( ) (t) is of first order. .

(g™

The third term on the right-hand side of (3) is a symbolic expression
for that matrix distribution which assigns to each function ¢ in D

the number

e KOS M) k‘%‘?‘ﬁ (L +79) dt

— o

e

= u(6)¥2cosm t dln) o §(6) + ult)Fe (L-cosps)ak(n): ¢ e) (1)
(See ]:2; theorem 14] ). Since the elements of

u(t)d cos Nt 4 K(7)) (5)

~are all locally integrable functions of t, (5) is a zero-order matrix

distribution. Also, the elements of

u(t){‘_:(l- cosnt) d}g(]?)

are continuous functions everywhere and the second term in (4) defines
the second distributional derivative of (6). Therefore, (6) is

also a zero-order matrix distribution.

The fourth term on the right-hand side of (3) is a symbolic

expression that assigns to each function @ in D the number,

- 0

SO dk('r;)'{ff @i"{(t)@ﬁ’iﬂi dt +v”’:°c)§m(t) sinnt dt:;‘
= -ult) ﬁf: sin nt dL(y) - (%)(t) + ult) ef:: sinqt dL(7]) (#)(J)(t()o)
5
(Again, v"See [2; theorem 4] ). Now, the elements of

u(t)d": sinnt dIg‘,(T]) (8)

are all continuous functions for all t and it follows that both terms

on the right-hand side of (7) define zero-order matrix distributions.

This establishes all of condition 1. 3.,
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Constructing ﬂh(t) according to (2) and using the properties of

the matrices Q, A, K(*)?), and L('r[‘), we seec that
- Lg ™ L™ L™

B (t) = 347 e IM0 + gt k) + L]

Therefore,

Si¢ = l e 'jrt ‘ ’
Trun(tly = 2471+ o X[K " 32l
Since y=::[:1g(ﬁ) - jk(?})]x is a real nondecreasing bounded function of

7’( for all choices of -Z’ z*[%(;?) + j]%.}(?)ﬂxmust have the same pr{_opertieso
Condition 2 now follows from the Bochner-Schwartz theorem. (See

Sec., -II of [l] for a statement of this theorem.)

Sufficiency: Assume that wlt) satisfies conditions 1 and 2. Since

h(t‘)! is nonnegative-definite, it is also of slow growth [5: Vol. II,

P. 132]. Moreover, in forming wy, (t) from w(t), only those terms
in the elements of w(t) that are concentrated on the origin can
cancel out. These terms are known to be only the delta function -
and a finite number of derivatifies, which are also distributions of

slow growth. It follows that ﬂ(t) is a matrix distribution of Slow

growth. Therefore, the Laplace transform J(s) of w(t) exists and

is analytic for Re s> 0. In addition, since ﬁ(t) is real, E(s) is
real for real positive s.
The proof will be completed when we show that
v, (s)y20 (9)
A A/

for Re s> 0 and for every choice of y, where

[:N s) + Uk ﬂ (10)
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According to the distributional inverse Laplace transformation,
i - o e
we may relate w(t) to Wlc+jw) for ¢ 0 through the symbolic
(%] St

expression,

=ct ] oo it
¢ w{t) = - 4 W(c + jﬂd)e’j dw (11)

29 TP

Since Ji(s) is real for real positive s, the reflection principle

shows that W{c-jw) = WlcHja). Using this fact, we may write

-ct ;
ct. T | . nt
e yg(t) ety (<t) = "Tf_{‘m Wk {ot+3w) e VL
and
y*[emctw(t) + ct Tf HJ - (o + 5w) ej/ Taw "c)%fj
) S % 'l X Wh\ J ;)'r '

If we can show that the left-hand side of [12) is a nonnegative=

definite distribution, then (9} will follow from the Bochner-Schwartz

theorem and the fact that ’H(s} is analytic for Re s) 0.

Now,
- {
e t“( ATé"i)(at) = 2Acé(t)
and, consequently, we obtain from the decomposition {1} that
~ct ct T =ct
e ,W{‘t) + ey (o) = Eécé"(t)-!-e O(t)-!-e“*;gut\
Moreover, (1) also shows that
2w (t) = w lt) + wT(mt) (13)
Nh ‘ -\,@ A.O °

Since 'y;ro(t) is of zero order, ﬂ&j‘o(t}oﬁ(t) depends only on the values of
(,b(t) over 0%t Jevand not on the derivatives of gf)(t) [5: Vol. I,

P, 93} It follows that

e Fun(t) = "ty o).

By LAY

5o




Therefore,

- ) )
*[e Cty(t) + eCtWT(—t)_Iy - oyAyer(t) + "C ltl =;» E\,{_) +lyé,o( )]}C L

A
N~

Now, }C*/{}x > O and A(t) is a nonnegative-definite distribution.
Therefore, the first term on the right-hand side of (1lk) is non-

negative-definite for every y and for ¢ >0,
"4

Also, by condition 2 and F[w g )]y is nonnegative-
definite for every A}; It is a fact that e C(tl (c»0) is also non-
negative~definite. We now invoke a theorem of Schwartz ES;’ Vol. II,
P. 134, theorem XIX] to conclude that the second term on the right-
hand side of (14) is nonnegative-definite for every y and for ¢ 0.

QOEoDo

The principal conclusion of our previous report [l], which
characterizes the unit impulse response matrix of any lumped linear
fixed finite and passive n-port, now appears as a special case of

the above theorem.

Corollary: Let w(t) be an nxn matrix distribution and let W(s)

—

be its Laplace transform. Necessary and sufficient conditions for

*\;f)(s) to be positive-real and rational are the following.

Lo wit) = 46" (6) +Bslt) + w (6).
P ~J Iad lae

At —— -

real constant matrix, and Xgl(t) is a real matrix distribution whose

elements consist of finite linear combinations of terms of the form,

u(t)tve"xt, (15)

1s a nonnegative integer and ¥ is a complex constant.

—
! L]

where+y)
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2. For every nX 1 constant vector y, and for wy(t) given by (2)

the quantity y=1f1}fh(t)y is a nonnegative-definite distribution.

When dealing with one-ports our conclusions simplify into the

following.

Corollary: Let w(t) be a distribution and let the function W(s)

be its Laplace transform. W(s) is positive-real if and only if

Lo wle) =289 () + w(e),

where A i1s a nonnegative constant and wo(t) is a real distribution

of zero order with support in 04 t<e, and

2o the even part,

w, (t) = #[wlt) + wi-t)], (16)

of w(t) is a nonnegative-definite distribution.

Corollary: Let w(t) be & distribution and let the function W(s)

be its Laplace transform. W(s) is positive=-real and rational if

and only if

1. w(t) = A&‘“(t) + Bgly) + w’(t),

where A and B are real constants with A2 0 and w‘(t) is a real

distribution that consists of a finite linear combination of terms

of the form (15), and

2. the even part (16) of w(t) is a nonnegative-definite

distribution.




