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l. Introduction, Unlike thelr finite counterparts,
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infinlte electrical networks with a glven set of branch emf's
can in general have an Infinity of different =sets of branch
currents satisfylng Ohm's law and Klrchnof'i's node and loop
lsws, This is so even when all the branch emf's are zero.
T'nis phenomena is reflected in the fact that the customary
mesh and cutset analyses fall when they are applied to infinite
networks. In two prior papers [5], [6], a method for computing
a network's response under no more thar the aforementioned
laws wes developed that was successful for a variety of infinite
networka, The objective of t he present work is to investigate its
applicabllity to all countably Infinite elnctricallnntwnrks.
We shall refer to thls method as "1limb analysta",

Limb analysis han two baslc parts, a graph-theoretic
analysls wherelnla certain spanning forest iIn the network
and a8 partition of the network into finite éubnetworks are
constructed, and an analytic analysis wherein Ohm's law and
Kirchhoff's node and loop lsws are applied. We shall prove
in this work that there exists a solution to the graph-thecretic
part for every connected countably infinite network. More
specifically, we shall show that every such network possesses
the kind of spanning forest and associated parfition demanded
by 1imb analysis, Also, we shall establish a sufficlent
condlition on the branch-impedance valurs whiech Insures that

the analytic part of 1limb analysis can also be carried out.



. Some beflnitions and Termlnology. An elecirlcal
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network Is a graph with an as:ignment. of electrical parameters,
such as emf sources and Impedances, to the branches. Fkor
conciseness of terminology, we will not maintain a distinctlon
hetween an electrical network and its graph and will apnly
graph-theoretic terminology directly to the network.,

Every branch in the nctwork 1s recuired to have two distinct
nodes: just one is not allowed. However, many (even an infinity
of ) branches are allowed to have the same pair of nodes. A

courntably infinite network or simply a countable network 1is

one having a countably Infinite set of branches and elther a
finite »r countably Infinlte set of nodes. Throughout this
work, the electrical network N wlll always be assumed to be
connected and countably infinite. A node is sald to be finite
(Infinlte) if 1its degree is finite (respectively,countably

infintte)., A network is called locally finite if all its nndes

are finite. A node of a subnetwork of N will be called N-finite

or N-infinite if 1t 1s resvectively finite or Intinite as a

node of N; 1t can happen of conurse that an N-Iinfinlte node
anpears as a finite node In the subnetwork.

A node-induced subnetwork H of N 1s a given subset of

the node set of N together with every branch that has both
nf 1ta nodes in that subset of nodes. We say that H is induced

by its nodes. On the other hand, a branch-irnduced subnetwork

K of N is simply the network consisting of the branches in a
civen subset of the branch set of N together with all their

nodes. Now, we say that K i1s Induced by its branches.




We will at tlmes treat a sinpgle branch b as a subnetwork of
N; tt ls then understood that we are really dealing with the
aubnetwork Induced by b, that ls, b In conjunction with its
two nodes. The unlon HU K of' two networks H and K 1s the
netwonrk whose node set (branch set.) is the union of the node
cseta (respectively, branch sets) of the two given networks.

The intersection HNK of two =subneiworks iI and K of N is the

aubnetwork of those nodes and branches that are in both H
and K. When HNK is not void (i.e., has at least one node ),

we say that H and K intersect or meet. H - K denotes the

avbnetwork oft N consisting of all nodes in H that are not in

K In conjunction with all branches In H that are not Incldent
Lo any nodes In K,
A partitlon {Mpg of a subnetwork M of N Is a collection

of branch Induced subnctworks Mp of M such that every branch
of M appears In one and only on Mp and M = [)Mp. A branch b
1s said to be adjacent to a subnetwork K if b is not in the
branch set of K and at least one node of b is in the node set
of K. On the other hand, a node N and a subnetwork M are
called adjacent 1if ng is not in the node set of M and there
exists a branch joining n, to a node of M, A branch is saild
te join two subnetworks of N i1f those subnetworks do not meet
and b has a node 1In each of the =zubnetwnrks,

A path 1s an alternating sequence on nodes and branches
such that no nnde appears more than once and every branch in
the sequence 1s Incident at the nodes immediately preceding

and succeeding it in the sequence. Buch a sequence 1is allowed
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tc have a beginning or an end, hut the initial and final

terms In the sequence must be nodes. A path is called endless
i1 the correspnndlng sequence has relther a beginning nor an

cnd, one-ended 1f that sequence has either a beginning or an

end but not both, and finite if i1t has both a beginning and

an end.'.A network 1s sald to be connected if each palr of

nodes Is contalned In some finite path, Konig's lemma [l;; p. LO]
states that, In a connected, infinite, locally finite zraph,
every node has at least one one-ended path beginning at that
node. A loop is defined as is a finite path except that the
~beginning and ending nodes are the same. It follows from Konig's
lemma that any network that 1s connected and countably iﬁfinite
has at least one Llnf'lnite node or one one-ended path. Two

patha are sald Lo be node-distingt It they nhare no nodea 1n

common,
A forest T 13 a network containing no loops; 1 1s called
a tree if 1t is also connected. Wren T is a subnetwork of N,

it 1s said to be spanning in N if it contains every node in N,

3, The Chainlike Structure. R.Halin [11 has introduced

e

the concept-of an "m-times chainlike" infinite grazph. It is
ugseful In the investigation of the maximum number of node-distinct
cne-ended paths In the given graph. IMor ocur ourposes ue will
need a varlation of hls idea; to this end; we introduce the
following definition,

A network G will be called chainlike 1f it is loecsally

finite and cen be partitioned in accordance wlth
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where the followlng condltlions are satisfled.
l. Each Gp Is a finlte network.

consists of m isolated nodes

2. FEach subnetwork V
p+l

pt+l
where mp+1 < ®,

3. The sequence {mpl;=2 is monotonic increasing (but not
necessarily strictly so).

he Vp+l o (LJ§=1 Gi) - (LJ?;% Gt) for every p: that

p=1
Is, Vp+l shares no nodes In common with tji=1 Gy
£, In eaeh G there are m node-dlatinct finite rnaths
piti D+l
from the nodea In Vp+1 to mp+l ol the mp+2 nodes 1in Vp+2.

I[f the mp remain constant at a finite value m for &all p

sufficliently large, we will cs8ll G m-times chainlike. On the

other hand, if mp—*—w as p—>=, we will c&gll G divergently
chainlike.

A modification of the proof of Theorem 1 in [11] coupled
with the paragraph following Theorem 3' in that paper establ ishes
the following [21],

Proposition 3,1. Every locally finite network 1s chainlike.

It has m, but not m+l, node-distinct one-ended paths when and
only when it is m-times chainlike, It has an infinity of
node-distinct one-ended paths when and only when 1t 1s divergently

chainlike.



L. A Partition of N and a Certaln Spanning Forest in N,

e e~

Let N be a given countable connected network. Let G be the
network obtained from N by deleting a2ll the infinite nodes

of N: that 1s, G 1s the set of all finite nodes in N in
conjunction with all branches of N that are not incident to
infini te nodes. By Proposition 3.1, G is chainlike. In the
following we use the notation of the preceding section for
the chalnlike structure of G. We cen partition the nodes of
G into two sets, the flirst consisting of those nodes that do
not lle on one-ended paths and the second consisting of those
that do. Let K and M be respectively the subrnietworks of G
induced by the nodes in the first and second sets. We allow
el ther K or M to be vold.By Konig's lemma, all the components
of K are finlte, whereas those of M are infinite.

Furthermore, M, if 1t exist3a, must also be chalnlike with
the same sets Vp as those nf G. Indeed, by Condition 5§ of the
definition of a chainlike network, every node in any Vp lies
on a one-ended path and heince must belong to M. So, by (2),
each component of K must lle within a single Gp and possess
no vertices in common with Vp’ Vp+l’ or the node=distinct
finite paths described in Condtion 5. (Moreover, by Condition 1,
each Gp can contain no more than a finite number of the components
of K.) Thus, the removal of K from G will yield once again
the same chainlike structure for the remaining network M.

Now, consider the union of all the finite paths mentioned in

Condition 5 of the preceding section. This union consists
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of m (or an Infinity of) vertex=dlstinct one-ended paths In
M If M 1s m-times (or, respectively, divergently) chainlike.
By a spine we will mean either one of these one-ended paths
or one of the Infinite nodes of N, |

We shall now construct in N a spanning forest and a
partition of N which satisfy cnndltlons similar to those
glven in the hypothesis of Thecorem 5.1 of [5]. This corresponds
to the graph-theoretic part of 1limb analysis mentioned in the
Introduction, The following procedure for constructing the
the spanning forest and the partition of N involves a number
-of steps in which certain nodes, branches, or components are
designated. It can happen that some of these entities do not
exlst in N, When this occurs, it 1s understood that the
corresponding step 1s simply skipped.

Let Mp be that subnetwork of Gp obtalned by removing from
Gp all components of K that are contained In Gp. We also let
a, where k =1, 2, ... , denote the infinite nodes of N, and
we assign the indlces of the q, as follows, First of all,
we arrange the Infinite nodeskhat are not adjacent to any of
the Mp into a sequence X, Then, we let Q15 Qo5 eee 5 Gy be
the infinite nodes that are adjacent to Ml and let g 41 be
the first node in X; we also set Ql = {ql, ces qa+l}' Next,
we let Ag4p7 qa+3, see y Gy be the Infinite nodes that are

ad jacent to M, but not adjacent to Ml' and let A +1 be the

2
~second nodew}n X; also, Q, = {qa+2, vee 5 Qpyq} e Then, we

o em B .

let a, o9 Qpyys oo s qc.be the infinite nodés that are acdjacent



to M3 but not adjacent to MlU Mg, and let Ae41 be the third
node of X} also, Q3 = {qu?, . ois qc+1}' We continue thls
numbering procedure until all inflnite nodes are labelled:
simultaneously, the set of all Infinite nodes 1s partitioned
into the fami;y {Qs}c Note that, since each Mp is locally
finite and has a finite number of nndes, it has only a finite
number of adjacent infinite nodes. Consequently, this numbering
procedure is feasible.

Observe that each component of K must be adjacent to at
least one qk but not to any nodes in M beceuse N is connected
and these components arise through the deletion of the ), from

N, We label the components of K as K In the followlng way,

k,)J

K K will denote those components of K that

R O i M i wiess

are ad jacent to RN and are not ad jacent to those ay f'or which

i1 < k. When I > k, K may be adjacent to Ay » For any fixed

k, ]
k, there may be a Tinite or infinite number of Kk j°
b
Finally, for each pair of infinite nodes q, and Gj’ we
label the branches joining those two nodes by b, . ., b, . ,,
1,5, "1,5,2

bi,J’j’ o e C L]

Now, let Kl be the union of all Kk,l

Kl is a finite network since each Kk 1 is a finite network and
¥

Q, is a finite set. Let P, be the unlon of all b, ., for
1 1 s (S P

which qie Ql and qje Ql. Clearly, P1 is a finite network.

Let Rl be the union of Pl’ all branches joining Ml to Ql, and

all branches joining K

for which qke Ql'

1 to any of the a, (not necessarily in

Ql). Since M, =nd K, are finite networks, R, is too. Finally,

1 4

we let N1 be the finite subnetwork of N induced by all the



10

branches In Ml’ Kl' and H1, We Inductively continue thla

+

procena of conatructing finlte subnetworks Np of N as fnllows.
Let p be an integer greater than one. Let Kp be the union
of all Kk,p-s+l for which a, € Qs, where &2 1, 25 wes 3 D
As was true for Kl’
let Pp-be the finite network induced by all b

Kp is also a finite subnetwork. Next,
1,j,p-s+1 for
which ay and qj both lie in lJ:zl Qr and at least one of them
lie in Qs’ where s = l, 2, ¢e. , Po Then, let Hp be the
union of Pp, all branches joining Mp to any of the 9, &nd
all branches Jjolning Kp to any of the Q. It follows from
the f'Inliteness of Pp, Mp, and Kp that Rp is a finite network
too, IFinally, set N_ equal to the union of M , K, and R .

p p D &
thus, Np is a finite subnetwork of N,

From the way we have constructed the Np it can be seen
that every branch of N lies in one and only one of the Np.
That 1s, {Np§;=l 1s a partition of N Into finite subnetworks.
is the finite set

Moreover, pr1Np+1 =V Uw where V

p+l p+l?* p+l
(possibly void) of N-finite nodes specified in (2) for the

chainlike structure of G and W is a finite set (pessibly

pt+l
void) of N-infinite nodes. Iurthermore, Npﬂ Nm is just a

finite set (possibly void) of N-infinite nodes if |p - m| > 1,

We recall that a spine in N 1s deflned to be any Infinite

the union of
node or any one of the one-ended paths arising from,the fini te

A
paths mentioned In Condition © above. Our next step is to
construct in each Np a spanning forest Fp such that each ccmponent

of FD meets one and only one spine and ccntains all the nodes

and branches of that spine that lie in Np.
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To thls end, let Al be the unlon of all nodes and branches

1

ls ad jacent to Al” Iz b1 has one node that 1s not In Al’ set

A, = AyUby; otherwlse, set A, = A, Choose another branch

in Np that 1le In spiney, Choose any branch b, in Np that

b2 in Np that 13 adjacent to A2 and set AJ = A2U b2 ir b2 has
one node that is not in A2; otherwlse, set A3 = A?g Continue

this procedure until all branches in Np that are not in spines
have been considered, Jthis ylelds a spanning forest Fp in N
with the desired properties,

We now set F = U F

p=1 "p°’
Lemma L,1, F is a spanning forest in N such that each

cnmﬁnnent of F meets one and only one spine In N and contains
all the nodes and branches of that aplne,

Proof. If p # m, a component of Fp and 4 component of
Fm can meet only if they meet the same spine, and, il they
do meet, thelr intersection lies in that spinébnd is either
an N-infinite node or, if m = p+l, possibly a node in Vm.
Otherwise, either (2) or the disconnectedness of some component
of K from the rest of N = a; = a, < 03 = eoes would be violated.
It follows that F contains no loops and is therefore a forest.
Moreover, F is spanning because it is spanning 1n each Np.
The rest of the conclusion follows directly from the way cach
Fp was constructed In Npu

We shall call each component of F a limb., The set of

all 1limbs will be called a full set of limbs. Since F is

spanning, every node of N belongs to a unique limb.

Lemma 2. If n, is a node in N, then there exists a

0
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unique finite path P contalned in the 1limb L that contains

n. such that n., 1s one terminal node of P, the other terminal

0 0

node n, of P belongs to the spine of L, and P lies entirely

1
outsaide the spine of L except for Ny (Lt g 1lea In a splne,
then Ny = 1y and P 13 the depgenerate path consiating of ng, alone. )

Proof, Choose any node n, in the spineSof L. (when
S 18 an N=Iinfinite node, we choose S itself,) Since L is a
tree, there exlsts a unique finite path from n,
we will find a

to n, lying

in L. In tracing that path from n, ton

0 2’
first node ny that lies in S, and the traced path from ny to
ny 1s the psth P we seek., Agalin, P must be unique since L

1s a tree.

Lemma lL.3. The path P of Lemma )j,2 1lles entirely wlthin
a alnple Np' When P s not degenerate, 1ts nodes other than

nl are not common to two or more of the Np.

Pronf. +this follows from the facts that L is the union
of i1ts Intersections with each Np and two such iIntersections
meet only at a single riode in the splne of L 1If they meet at all.

Lemmg Lo.lio (1) If the spine of L 1s a one-erded path,
then L 1s an infinite tree containing neither N-infinite nodes

now endless paths. Moreover, given any node n. of L, there

0

exists a unique one-ended path starting at n, and contained

0
entirely in ();=p(Lf]N§L where'Np 1s the subnetwork containing
nee

(11) If the spine of L 1s an N-infinite node, then L
may be either a finite or infinlte tree, but in either case

it contains exactly one N-infinite node, the spine itself,
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and does not contain any one-eridled or endless path,

Proof. (i) Since L is a component of the forest F and
contains a one-ended path, 1t is an Infinite tree. By Lemma
i«sl, L contains exactly one aplne. Slince the N-infinite nodes
are all spines, L cannot contain an N-infinite node. Furthermore,
L = U;=1 (Lﬂmp)° Ee ch LﬂNp is a finite tree. Also, for
|lp = m| > 1, Lf\Np does not meet Lf]Nm, whereas LﬂNp meets

Ll1Np at and only at the unlque spine node residing In both

+1

Np and ND It follows that L cannot contain an endless path.

+1°
[t also follows from this structure for L that there is

exactly one one-ended path in U: (IJ\ND) starting from a

wlven nodec g of Lf\Np. That path lies entirely In L's spine

If n, belongs to the spine. Otherwlise, that path is the union

0

of the nO to nl

in the spine starting at Ny

path P of Lemma 4.2 and the one-ended path

(11) Now, assume that L's spine is the N-infinte node
qQy e As In (1), L is a tree and cannot contain any other
N-Infinite node. LJWNP is a finite tree for each p. tor p # m,
Lf]Np and LNN_mect at and only at q,. Lhat is, q, Is a
cut-node for L, and ite removal from L leaves only finite
componenta. Consequently, L cannot contain any one-ended
or endless path, #Finally, 1ﬁ the process of constructing
all the Fp, either a finite or infinite number of braaches
may have been added to . to produce L,

Lemma L,%. If b is any branch »~f a 1imb L, then L = b

has exactly two components. One of them contains all of L's

spine except poscibly a finite portion of that spine. The
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other component 1s a finlte tree all of whose nodes are N-finite.

Proof. Since L is a tree, the removal of b must yileld
exactly two components, If b 1s not a part of L's spine, all
of that spine will appear In one of those components., The
only other possibility 1s that the spine is a one-ended path
and b 18 In that path. the removal of b will then split the
spine Into a finite path and a one-ended path, with the latter
appearing in one of the aforementioned components. Finally,
if the last conclusion were not trﬁe, either L would contain
two N-infinite nodes, or (by Konig's lemma) L would contain
an N=infinite node and a one-ended path, or L would contain
an endless path, all of which are impossible according to
Lemma liol).

A branch of' N that 18 not in the forest F will be cnlled
a Lle. 'Thus, a branch 13 or 1s not a tile dependinz on the
chcice of F, Let d be any tie, Two possibllities arlse:

(1) Dboth nodes of d 1lie In the same limb L: ®Since
L is a tree, LUd contains exactly one loop, namely, the
unlon of b and the unique path in L connecting the nodes of

d. We shall refer to that loop as the d=orb or tie orb.

(1*) Lhe two nodes of d lie In different limbs, say,

Ll and L2: In thls case we define the d-orb or tie orb

as the unique (finite or infinite) path dUP

lU PgU HIU H?,

where P, and P2 are the two finite paths in, respectively,

Ll and L_ as specified in Lemma 2, Also, if the spine of

L, 1s aﬁ N-infinite node, H, is that node; 1if the spine of

3 - 1

Ll is a one-ended path, Hl 1= the one-ended path lying in
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the spline and sterting at the node where P, terminates, H

i 2

lies in the spine of L, and 1s defined similarly. Thus,

2
we see that this d-orb 1lies in L,U dU L.,

R ¥ ’

Lemma 4,6, Let Np be the subnetwork that contains a
glven tie d. Then, the d-orb is contained entirely within
L]:zp N . Moreover, the d-orb is contained entirely within
Np alone under either one of the following conditions,

(1) Both nodes of d lie in the same 1limb.

(11) “The two nodes of d lie in different limbs, both of
which have spines that are N-infinite nodes.

Eroof. Since {N} 1s a partition of N, d must lle in
a slngle Nn. For any 1imb L, Lf]Np is a tree., Hence, under

condition (1), the d-orb will 1lle In Np° On the other hand,

if d's. nodes lle in different limbs, the d-orb is equal to

du P1U P,V HlU H2' By Lemma L,3, P, and P, also lie in Np'
When the spines of both limbs are N-infinite nodes, Hl and
H? are those nodes and thereflfore also lie in Np, which Implies

that the d-orb lles in Npa ifhe only other possibility is that

one or both of H, and H2 are one-ended paths, bhut In any case

1
H, and H, will 1ie in | _. N_ according to Lemma L.L(1).

1 2 P S
therefore, so too will the d-orb.
Lemma o Let b be any branch in F. <Then, there are
only a finite number of tie orbs that contain b,
Proof. Let L be the limb that contairs b, Let H be

that finite component of L = b whose nodes are all N-finite

(Lemma L4.5). Let d be any tle. The following results follow
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directly from the definiticn of the d-orb. If d is not adjacent
to H, then the d=orb does not contain b, If one node of d

i1s In H and the other node of d Lls not In H, then the d-orb
contains b, Finally, i1f both nodes of d lie in H, then the
d-orb does not contaln b. ‘Thua, the only tie orbs that contaln
b are those whose tles have one and only one node in H., Since

H 1= finite and all 1ts nodes are N-finite, there can be only

a finite number of such ties.

5. Current Flows Satisfying Kirchhoff's Node Law. Henceforth

R

e T e e R s e e e,

we ascume that every branch In N has an orientation. Thus,
if branch b and node n are Incident, then b 1s either incident

away from or incident toward n. The current in a branch is

a complex number measured wlth respect to the branch's orientation
Also, If d 13 a tle, we assign to the d-orb that orientation

which eprees with the orientation of d (i.e,, while tracing

the d=orb in the directlion of the d-orb's orientation, we psss

through d in the direction of d's orientation),

Kirchhoff's node law. For each N=finite node n, 2 1% 1, =0
J

where the summation iIs over all branches bk incident to n,
]

1k is the current in bk , and the plus (minus) sign 1s used
1fjthe corresponding bragch is incident away from (respectively,
toward) n. For each N=Infinite node, no restriction is imposed.
(Tnhus, Kirechhoff''s node law is a conditlion concerning only
the N=finite nodes,)

Lemma 5,1. The specification of the currents in all the

ties and the im;yosition of Kirchhoff's node law uniquely

determines the current in each branch of F,
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Proof.. After numbering all the branches of F in any
fashion, we let bl, b2, h3, veo denote those branches,
bvery 1llmb, and therefore F as well, muct contain at least
one end node that iz N=fininte. This 1s because each limb,
belng a tree, has at least two end nodes and at most one
N-infinite node. We shall call a branch of F an end branch
if and only if it is incident to an end node that is N=finite,
Among all the end branches of F, chonse the one, say, bkl
having the least index kl and let ny be its N-finite end node.
Thus, all other branches in N that are incident to n, are

fintte in number and hauve specified currents, Kirchhoff's

node law therefore unlquely determines the current in bk ®
1
Inductlvely, assume that the currents have already been

determined In the branches b, , «.. , D o ', Among all

kl kj
the end branches of F = bk ~ se0 = bk , choose that end branch
1 J
bk having the lowest Index and let n, be its N-finite end
j+l

node. All other branches in N that are incident to n, will
; [

be finite in number and their currents will be known. So,

Kirchhoff's node law determines the current in b .

kj+1
Note that at no step will F - b = wwe = b have a

k k
component that does not contain at le;st part of a spine.
In the event that F contains a finite 1imb L and all but one,
say, b of the branches of L have been treated, it follows
that b will have one N-finite node n, and one N-infinite
node Qg The procedure then applies Kircchoff's node law
to n, to determine the current in bkie No contradiction ecan
arise at 9 because Kirchhoff's node law places no restriction

at the N-infinte nodes.



Let b, be any branch of I and let L be the 1limb that

k
containsa bko Ihts procedure will eventually aasipn a current
to b . Indeed, by Lemma l;.5, one of the two components, say,

k

Hoaf L= bk ta a finlte tree all of whose nodes are N=finite.
Thus, the procedure will eventually assign a current to every
tranch of H and then to bk as well, Moreonver, the current
in bk will depenc only on the ties adjacent to H and therefore
will be Independent of the way the branches in F were numbered.
That 1s, the current in bk is uniquely determined by the tie
currents, Lhis completes the proof,

Under the notation deflned in Lemma l;,7 and its proof,
b 11es In a glven d-orb if and only if one but not both of
the nodes of' d 1les In H., Now, assume that the current in
d 1= | and the currents In all other tles are zero. Then,
a repetition of the proof of Lemma 5,1 shows that Kirchhoff's
node law requires that all branches not in the d-orb have zero
current whereas all btranches b in the d-orb have the current
Y 1; here again, the plus (minus) aign is used if b's orientation
sgrees (disagrees) with the d-orb's orientation., We shall
say that the tie d induces the current £ i (or zero) in a
branch if that branch is (is not) in d's orb. (Thus, d induces
1 in ttself.)

Now assume that arbftrary currents ar~ assigned to all
the Lles In N. By virtue of Leomma lj.7, only a finite number
of tles induce nonzero currents in any given branch. Therefore,

we may aprly superposition to conclude that the currents induced
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in all branches of N by all the tles are finite and satisfy
Klrchhof'f''a node law. [n view of the unlqueness aszertion
of Lemma $,1, we can conclude with the lollowlng,

Lemma 5,2. Let therc be glven a current flow In G such
that Kirchhoff'as node law 15 satisfled., 'lhen, the current
In any branch 1s equal to the finite sum of the currents

induced in that branch by the ties,

6bs Joints and Chords. In order to malke use of Kirchhoff's

B

loen law, which we will state later on, we construct a spanning
tree Iin N by adding certain tles to the limbs.

Iln partlicular, add to Fl as many tles In Nl as poseible

wilLhout, forming any loops In the reaulting subnelwork.

Continue the procedure conaldering in turn Fl’ Fp, Ea, PP

as follows. Let 31, .y jm be the tles that have been

added to Fl, Py www g B where p 2 2, lhen, add to Pp

p-1’
as many tles 1in Np as possible without forming any loops in

the union of those ties 1In Np with PIU cee U Pp_lu Jlu o Ujm.
After completing this procedure, let J be the set of all the

added ties and let J' be the subnetwork of N induced by those ties,.
The members of J wlll be called joints, and J will be called

a full set of joints.

Lemma 6,1. FUJ!'! is a spanning tree In N,

Proof. OSlnce F spans N, so too does FUJ'., Also, FU J!
will not contaln any loops because no loops were allowed in
the process of constructing J. Finally, suppose that FU J!

is disconnected. Let ny and n., be two nodes appearing in
[
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different components of FUJ'. Since N 1s connected, there

exlats a path P In N jolning n, and n In tracing P we will

1 2
tfind at least one tle, sny, d jolning two different componentas
of FUJ'. But, this ls a contradiction; for, In the process

of constructing J, d would bnve been chosen as a joint, thereby
connecting those components,

Those ties that are not jolints will be called chords.
Set T =FUJ'. Since T is a spanning tree, each chord a generates
in conjunction with T a unique loop, which we will call either

the a UT loop or the chord-tree loop. It is the unlon of a

with the unique path In T connecting the nodes of a. Assume
that a lies 1iIn Np“ If both nodes of a lie in the same 1limb

of F, then the aU T loop ls ldenticsl with the a-orb and lles
entirely In Np. However, If the two nodes of a lie in different
1limbs, say, L, and L2, then the gUT loop 1s different from

1

the a-orb (since the latter is now a path) and lies in ljgz N

. E
Indecd, if there were no path in TN (U §=1 Ns) joining the

nodes of a, then a would have been chosen as a joint, in
contradiction to the assumption that a is a chord. Thus, such a

path does exist, and its union with a yields the aUT loop

lying In t)§=1 N . This result coupled with Lemma 4.6 yields

the following.
Lemma 6,2. Let N be any connected countable network.
Choose the partition {Ns}:=1 of N and the spanning forest F
as stated in Section lj. Also, choose the full set J of joints as
stated in this section. Set T = FUJ'., Let a be any chord

[~

in Np. Then, the a-orb lies in [J:=p N, and the a UT loop

1es In UB_, N_.
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We note In passing that thls lemma satatea that cond!tlion (1)
of the hypotheals of Theorem 5.1 of [Y], the main theorem of

that work, 1s satisflied by every connected countable network.

7. The Space C~ of One-sided Sequences of Complex Numbers,

e e .

Cm will denote the set of all infinite vectors of the form

e

A i

x = [xl, X5s x3, o..]f, where the components x, are complex

k

numbers, (The superscript I denotes matrix transpose.) No

restriction 1s placed on the growth of the x, as k — =,

k
Multinlication by a comnlex number and addition are defined
componentwlse, and thls makes C” a llnear space.

Now, conslder an Inf'inite matrix of the form

11 12 13

257 %57 523 S
7 = '

Z, Z Z e e =

i 1 32 33

where each ij is a complex number. Z defines a mapping x+— Zx
of €~ into C" by means of the customary definition of the
matrix product Zx 1f and only if every row of Z has no more

than a finite number of nonzero entries., In this case Z is

said to be row-finite, and the mapping x++2x is linear.

Asuume in addition that Z has the partitioned form
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(3) TR I s fetvsie
|

(e
.

where each Zp is a square finite kpx kp matrix and all the
entries to the right of these Zp are zero., If every Zp is

nonsingular, then the equation

Zx =y,

~r x

where y 1s a glven vector In CG, has a unique solution x =

1t can be obtalined by first solving

, T . T
Al[xl' eeo e g xkl_{ - [.Yl’ .0 P Ykl]

components of x. Then, the next k., components

ffor the firat k 2

1
of x can be determined by solving

T i
Z, [x s ove 5 X, 1] = |¥ 3 eoe 5 T,
g e K, ky 1 ka]

iy
wz [x1’ ® e 0 s Xkl] Ll

Continuing in this way, we can determine all the conponents

of x, When Z has the form of (3) wherein each Zp is nonsingular,

~

we shall say that Z is invertible in blocks.
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8. The Network kquations, So far, we have only Invoked
Kirchhoff's node law, Another law we shall explolt is Kirchhoff!
loop law; 1t concerns the branch voltage drops around the

loops In N, As with branch currents, a branch voltage drop

1s a complex number measured with respect to the branch's

orientation. Also, an oriented loop in N is a loop to which

a direction of traversal is assigned. Henceforth, it is
understood that every loop in N has an orientation assigned
to 1%,

Kirchhoff's Loop Law. Around every oriented loop in N,

>t v, =0, where the sum is over all branches b, in the

J J
loop, vk 1s the voltage drop in bk , and the plus (minus)

sign ls used If the orientation of bk agrees (disagrees) with

- J
the orlentation of the loop.

We shall assume that each branch bj of our electrical

network N has the structure shown in Figure 1, where the

arrow designates b,'s orlentation and currents and voltages

-

are measured with respect to that orientation. Here,ej, 1j’

i3 are complex numbers representing respectively bj's

emf, current, and sell-impedance; the flow of 1, through

J
zij produces the voltage drop ijij' In addition, it is

and 2z

assumed that, for k # j, & current i, in branch bk produces

k

a voltage drop ijik in branch bj; here, zjk 18 called the

mutual impedance coupling the current in b, to a voltage drop

k

in bj' The total voltage drop vj in bj measured with respect

to bj's orientation is
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where the summation is over all branch indices including k = j.
Henceforth, whenever we say that N satisfies Kirchhoff's node
and loop laws, It is tacitly understood that the branch currents
and voltapes are related in accordance with (4).

Kirchhoff's node and loop laws, coupled with (4), are not
in general enough to force a unique current flow in N, as 1is
shown by example In [S5]., This 1s reflected In the fact that
the customary mesh analysls of finite networks fails in general
for Infinlte networks; for one thing, given a fundamentel
system of mesh currents with respect to some spanning tree,
1t can happen that an infinity of such currents flow through
a single branch, which can lead in turn to divergent series
in the analysis.

On the other hand, because of Lemma 6,2 we can apply limb
analysis as follows: First of all, assume that, if b, iIs a

J

branch 1in Np, then z # 0 only 1if bke NS where s S p. This

jk
means that voltage drops are induced in bJ through mutual
coupling only by a finite number of branch currents, namely,
the currents on some or all of the branches in U§=1 Ns'

Next, number all the joints consecutively using the positive
integers. Let j = [jl’ Jos oo ]T be the (finite or infinite)

vector of all joint currents where jk is the current in the

kth joint. We will assign the values of the jk arbitrarily,
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Furthermore, consecutively number the chords 1, 2, 3, ...
starting first with the chords in Nl’ then proceeding to the

chords 1n N2, then proceeding to the chords in N and so

£
forth, Let ¢ = [cl, s ..»]T he the vector of chord currents
where c 1s the current In the kth chord,

If Kirchhoff''s node law 1s satlsf{led, the current In each
1limb can be written as the finite sum of the currents induced
in that limb branch by the chords and jolnts. (See Lenﬁna Sy
Moreover, 1f Kirchhoff's loop law is satisfied, we can write
a sequence of Kirchhoff's loop law equations, one for each
chord-tree loop, in the order of the chord indices; 1in doing
so, each chord-tree loop 1s assigned the orientation that
agrees with 1ts chord's orientation, Upon transposing the

terma Invoking joint currents to the right-hand side, we obtaln

the matrix equation

(5) Zc¢ = g,

i~

where 72 = [? ] is a matrix, whose entries are linear combinations

i
of the self and mutual impedances in N, Also, g is a vector
whose entries are linear combinations of the branch emf's
and the joint currents where the coefficients of the joint
currents are self and mutual impedances. We assume that the
emf 's and 1mpédances are given and we assign the values of
the jolnt currents arblitrarily. Our prior hypothesis on

mutual coupling in conjunction with Lemma 6.2 shows that. 2

has the partitioned form of (3), If each Zp therein 1s nonsingula;
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then 2 is invertible in blocks. This allows us to solve for
¢, after which we can compute all the branch currents by
uslng Lemma 5,2,

Before discussing conditions on the branch impedances
which insure that 2 1s invertible in blocks, let us take note
of how this limb analysis avolds the aforementioned pitfalls
that render the customary mesh analysis inoperative for
infinite networks. First of all, it identifies a set of branches
namely, the joints to which one 1s free to assign currents
arbitrarily, leading thereby to unique currents in the
remaining branches., Moreover, by Lemma 5.2 only a finite
number of chord and joint currents are induced in any branch.,
(Contrast this to the application of mesh ana}ysis to infinite
networks wherein an infinity of mesh currents will in genersl
nass through a given tree branch.) This in turn allows us
to apply hirchhoff's loop law around the chord-tree loops to
get network equations represented by (5) wherein Z is row-finite,
Actually, our numbering procedure, Lemma 6.2, and our
hypothesis on mutual coupling forces Z to have the partitioned

form of (3).

9, Chord Dominance. The kth equation in the expansion of

(5) corresponds to Kirchhoff's loop law written for the a, U T
P k

loop, where & i1s the kth chord. But, the only chord that

induces. a nonzero current in a, is a, 1tself, and the only

chord ccntained in the a, UT loop is again s These facts

k k*

imply that the self impedance of 4, of a, appears only as
k
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an added term In the kth maln-dlagonal entry 4 of 7 and

kk
nowhere else, That 1s,

r - kk
Akk = zB + z

where zkk 1s independent of z, 5 also, st i1s independent of
. .
Z, if either one or both of m and s are not equal to k.
k .

Therefore, by varying z, » we vary only Z , and no other entry
k

kk

of 2., In faet, if all the chord impedances !za | are
k
chosen sufflclently large, then all the blocks Zp in (3) will

become dominated by their dlagonal elements and thereby
nonsingular [3; p. 32].

An expllicit condlition of this nature can be obtained if
we examine how the various branch impedances appear in the

entries of the block Zp in (3). We have

A = gz + 2 t2z
J

and, for s # k,

Here, both summations are finite, Also, Zﬁ t zX¥ contains

J

the self impedances of all the branches other than a. in the

k

intersection of the akU T loop with the a -orb as well as those

k

mutual Impedances that couple currents in the branches of the
ak-orb to voltage drops in branches of the akLJT loop. Finally,
Z;j * ng’ where k # s, contains the self impedances of all

branches in the intersection of the a UT loop'with the as—orb

k

as well as those mutual impedances that couple currents in
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the branches of the aq-orb to voltage drops In branches of

the akLJT loop. The plus (mlnus) sign in front of 2" op

J
z?s 1s used if a positlve current in chord a, or respectively

chord L produces via this impedance a poslitive (negative)

voltage drop in the the akU T loop when z?k or zks i1s taken

J

to be one ohm,

Now, assume that the chord a, lies in Np and. let 1. 1+l
ees y m be the indices of all the chords in Np' Thus,
1. & % Bm, af
= Kk L ks
(6) ;z81>|2,izl+;>i\§tz“,
k i =L 5
s#k
then
. : m
(Bl & Jagl e T E ] s EIESE] « 3 2
I 5 s=1 J s=1
s#k stk

Hence, if (6) holds for every chord a, in N, then each Zp will

truly be dominated along its rows by its diagonal elements,

Stmilarly, 1F

’

BN AT P

So, if (7) holds for every chord a, in N, then each,Zp will

k
be dominated along its columns by its diagonal elements,

Finally, if either (6) holds for every chord in N or (7)
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holds for every chord in N, we shall say that N is chord
dominant wlth respect to T and J, where as always T is the
chosen tree FUJ' and J 13 the chosen full. set of joints,
‘heorem. Let N be a connected countable network. Then,
there exists in N a spanning foreet F, s full set.J of joints,
and a partition {Ns}:=l of N into 'inite subnetworks NS such
that, for T = FUJ' and for each chord a in Np, the corresponding
aUT loop lies in LJ:=1 Ns and the corresponding a-orb lies
in [J:zp Ns' Assume that all branches have parameters of the
form shown In Figure 1 and assume that mutual coupling is only
of the type where a current in branch bk produces a voltage
drop In branch bj with the addltlonal restriction that the

voltage drop !s zero whenever bke NS, b, e Np, and = > p.

J
Also, assume that all emf's and self and mutual branch 1mpedance§
are given. Arbitrarily assign values to all the joint currents.
Number the chords as stated in Section 8. Upon writing Kirchhoff':
loop law around each chord-tree loop and invoking Kirchhoff's

node law to express each branch current as the finite sum of

the chord and joint currents induced in that branch (Lemma 5,2),
we obtaln a system of equations which have the matrix form (5)
where ¢ 1s the unknown vector of chord currents and g is a

known vector depending on the branch emf's, the branch self

and mutual impedances, and the joint currents; Moreover, Z

has the partitioned form of (3). Z is invertible on C

whenever each Zp in its partitioned form is nonsingular. A

sufficient condlition for this to be so 1s that N be chord
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dominant with respect toc T and J. When Z i1s invertible on

Cm, ¢ will be uniquely determlned, and, according to Lemma

Ce2, 80 too will be all the branch currents. Moreover, when

Z 1s Invertible on Cw, any set of branch currents that satisfy

Kirchhoff 's node and loop laws will correspond in this way

to a particular choice of joint currents. |
Proof. Everything has been established by our foregoing

arguments except for the last sentence. Under any given set

of branch currents, the jolnt currents will be specified.

Because Kirchhoff's node and loop laws are satisfied, (%)

holds. The Invertlbility of Z2 implies that the chord currents,

as determined by (5), must coincide with the given chord

currents., The limb-branch currents, as determined by Lemma

52, must also coinclide with the given ones by virtue of the

uniquecness assertion of Lemma 5,1,

10, Some Closing Remarks. We note in passing that the

e e A T .

analysis of [5; Section 6] can now be applied to determine

the dimension dim A of the linear space # of all homogeneous
current flows in N, By a "homogeneous current flow" we

mean a vector of all the branch currents in N, where Kirchhoff's
node and loop laws are satisfied as well as (4) with all e‘j = 0,
When N satisfies the hypothesis of the Theorem, we have dim A

= |J|, where |J| is the cardinality of the full set of joints.
Since N is connected, [J| = x - 1 where x is the cardinality of
the set of spines in N,

It is also worth noting that our graph-theoretic results

allow us to make a cutset analysis that is dual to the loop
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analysis of this section; that is, chord orbs are replaced

by cutsetls each of whlch contain exactly one 1limb branch, chord=-tr
loops are replaced by Incidence cutsets, impedances are replaced
by admlittances, and the network equations are now generated

by Kirchhof'f's node law, rather than by Kirchhoff's loop law,

In fact, this culset analysis extends to countable networks

the discussion in [5; Section 81, which was restficted to

locally finite networks. However, we have now established

that hypothesis (i) of Theorem 8.1 of [5] will always be

satisfied by a countable connected network when T and J are

chosen as Indicated above,
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