
1

'I'HF. LIMJJ ANALYSIS OF COUNTABLY INFINI'rE ELEC'rRTCAL NETbJOHKS

by

A.H.Zemanian

Department of Aoplied Mathematics and Statistics

Report No. 2S8

College of Engineering,

State University of New York at Stony Brook

I'h18 work vJ8.Ssuoported by the Nattonal Science Foundatton

under Grant No. PO 33568-x001.

April, 1975



2
~"
:;.,'

"-

f'

-J
:::)
~ 1. Introductlong Unlikp their finite counterparts,

~~~

~
InfinIte elcctrlc~l n~tworks with a given Aet of'branch emf's

CRn in general hove an Infln1.ty of dlt'f'prent.APts of branch

cnrrents RHtisfying Ohm's law ond Klrchhol'l '1'1node Hnd loop

11'HJ S . 'rhis Is so even when all the branch emf's 8re zero.

'Thl s uhenomenA iA reflpcted In the fact that the customary

mesh And cutset analyses fail when they are applIed to infin ite

networks. In two prlor papers [5], L6J, a method for computing

a network's response under no more thaI' the aforementioned

laws we~ developed that was successful for a variety of infinite

network!'l. 'The objnctive of t he present work is to investigate its

H PI ' 11 cAb 1.Ii t Y to A 11 c () u n tAb 1 Y 1 n l' I II I tee Ie c tJ'l c A 1 n (~1.w 0 I'k s .

WA shall r'ofer to this mothod as "limb AnalystfI".

Limb analyst~ hA~ two basic parts, a graph-thnoretlc

ana.1ys 1.8 whe J'e in n certaln spann Ing fares t 1.nthe ne twork

and a p~rtition of the network into ~lnite subnetworks are

cnnstructed, and an analytic analysis wherein Ohm's law and

Kirchhoff's node and loop laws are applied. We shall prove

in this work that there exists a solution to the graph-theoretic

part for every connected countably infinite network. More

specifically, we Shall show that every such network possesses

the kind of spanning forest And associated partition demanded

b~ limb analysIs. Also, we shall establish R sufficient

condl tlon on the branch-i mpedance VD 1u"~ \-ih t ch insures that

the analytic pRrt of limb a.nalystscan also be carried out.
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2. Some vcr ini ti ons and 'l'prmln()loF~Y.~--~ ,~,--~--, ~--~---~~. ' " - ,.-- An electrical

network iR a graph with nn AfI:'ignmcnt of' elcctr'lcal parametere,

~uch as emf sources an<i impednnces, to the branche[~. Fnr

conciseness of terminology, we will not maintain a distinction

hetwecn an electrical network and its graph and will apply

graph-theoretic terminology directly to the network.

Every branch in the network is reouired to have two distinct

node s : just one is not allowed. However, many (even an infinity

of) br8nches are allowed to have the ~ame p~lr of nodes. A

cpuntablx Inflni te network or simply a countable network i ~

one having a countably infinIte set of bT'fmches and cittv;r a

f'lntte rn' counLably Infinite set of' nodc!J. 'l'h ro ugh 01.1t th I R

wor k, t h f> e 1 P.Ct r i c ~11 n (}t wr; r k N will a 1 Wb.Ys be a S :iurn e d to be

connected a~d countably infinite. A node ls said to be finite

( tD1' In.i ~~J if its degree is finite (respectively,countably

infinite). A network is called locally finite if all its node~

are finite. A node of a subnetwork of N will be called N-finite

or ~-infinite if it is res!Jectlvely finitf' or. lnflnlte as a

nod e 0 f N; it CHn bappen of c()urse that an N-tnfinite node

arpears as a finite node in the subnetwork.

l\. node-induced subnetwork H of N Is a given subset of

the node set of N together wi th every branch that has both

of its nodes in that subset of nodes. We say that H is indu~

bv its nodes. On the other hand, a branch-induced~etwork

K of N is simply the network consisting of the branches in a

piven sU~et of the branch set of N together with all their

nodes. Now, we say that K is induced Qy it~ ~ches.
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We will at tLmes treat a slnvle branch b as & subnetwork of

N: It 1~1then undeI'fttondthnt we ar'e r'f:ally d~f)linp; with the

f'ubnetwork Induced by b, t!19t Is,h In conjunctl0n wIth ttf!

two node~g . 'fhe uni on H U K of' t ,o ne twn1'ks HAnd K is the

netwnrkwh os f: node se t (branch SAt,)is the unlon of the node

set~ (rA~rectively, branch sets) of the two given networks.

'rhe inter'section H(\K of two subnA1works IIand K of N is the

subnetwork of those nodes and branches that are in both H

and K. 'whenHnK is not void (i.e., haR at least one node),

we say that Hand K intersect or meeto H - K denotes th~

:lL1bTIf~tworkof N cons istLng or all nodes 1n H thR t al'C not in

K In conJunctl'HI with Hll brnnches In I'!thnt. aJ'f'I not Inclclnrd.

I. (, R II Y r I01 j (' ~ InK.

1\ purtitLon {M ~ of 11 subnetwork M of'P

of' brAnch Induced subrw tworks M of'M such
P

of M appears in one and only on M and M =P
is said to be adjacent to a subnetworkK if b i~ not in the

branch set of K and at leq8t one node of b is in the node set

of K. On the other hRnd, a node nO and a subnetwork Mare

called adiacent if nO is not in the node set of M and there

exists a branch joining nO to a node of Mo

te ioin two subnetworks of N if those :mbnetworks do not meet

A branch i[{ sa id

and b has a node in each of th~ subnetwnrkso

A illLth is an alt.ernating sAquence on nodes and brRnches

such that no node appears more than once and every branch in

th~ sequence is incident at the nodes immediately preceding

and succeeding it in the sequence. Such a sequence is allowed

N 13 B cnllr.ctl on

that every branch

UM . A branch b
p
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to have a beginning or an end, ~ut the initial and final

terms in the ~equence must be nodes. A path is called endles3

tf tile corresponding sequence has reither a beginning nor an

/,tH1, one-ended If that sequence h~H eIther a bep:innin~~or'an

rnll hut not bnth, And finite If it h8fJ both a bep;lrmlng and

An end. A network is said to be connected if each pair of

nodes Ls contained in some finite pAth" Konig's lemma [J.~;p. 40]

states that, in a connected, infinite, locally finite ~raph,

every node has at least one one-ended path beginning at that

node" A loop is defined as is a finite path except that the

beginning and ending nodes are the same. It follows from Konig's

lemma that any network that is connected and countably infinite

has at least one Ln1'Lnl te nodE: or one one-('nded path. 'rwo

pnthR nT'/' ~lfItd !.n bf-' node-<Jt.stlnct, If' lhny :11191'8 no t!od(!~ It!

c')mmon.

A forest 'r Ls a network contajning no lonps; 'l'is called

a ~ if it is also connected. t~en T is a subnetwork of N,

it is said to be spanning in N if it contains every node in N.

30 The Chainlike Structure. R.Halin [1] has in~roduced
~~ ~-~-

the concept ' of an "m-times chainlike" infinite graph. It is

useful in the investigation of the maximum number of node-dIstinct

one ~enderl pa the in the given graph. .b'OI' our purpo:Jes ,JCwi 11

need a vArl~tlon of his idea; to this end, we introduce the

follnwtn~ definition.

A nf) twork G wi 11 be cs 11 ~d cha inlike if it Is locall y

finite and can be partitioned in accordance wtth

-.--
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(1 ) G = U G
p=l p'

(? )
p

(U Gi) n Gp+1i=l
-- vr +l' p -= 1, 2, 3, ... ,

whAl'e tl1n following crHldl.tions Are ~qti~d'tpd.

1. Each G Is a finite network.
p

Each subnetwork Vp+l consists of mp+l isolated nodes
2.

where mp+l < '"'.

3. The sequence (mp\;=2
necessarily strictly so).

ll. Vp+l C (Ul=l Gl) - (Ui:i Gt) for every p;
p-l

Is, Vp+l shareR no nodes Irl common "'Itth Ut=l Gi.

is monotonic increasing (but not

that

c~. In each Gp+l thfq'e are mp+-l node-riistlnct fInIte f,aths

from the nodefl I.n Vp +1 to mp+ 1 of the mp +2 node s in Vp+2.

If the m remain con~tant at a finite value m for all p
p

sufficiently large, we will call G m-times chainlike. On the

other hand, if m ~ CD as p --+-"", we will call G divergentl 'Yp

chainlike.

A modifica.tion of the proof of 'I'heorem 1 in [11c0upled

wi th the paragraph following 'l'heorem J' in that paper establ ishes

the following [2J.

Proposition 1.1. Every locally finite network is chainlike.

It has m, but not m+l, node-distinct one-ended paths when and

only when it is m-tlmes chainllke. It has an infinity of

node-distinct one-ended paths ,hen I'\Dd only when it is divergentl:,'

chainlike.
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4Q A Partition of N and a Certain Spanning Fors8t in N.
~~~~-~'--~~ ~-'-- --~---" '--'.--

Let Nbe a given countable connected network. Let G be the

nAtwork obtained from N by deleting all the infinite node~

of N: that Is, G is the set of all finite nodes ln N in

conjunction with all br~nches of N that are not incident to

Infin1 te node s. By Proposition 3Ql, G is chainlike. In the

following we use the notation of the preceding section for

the chainllke structure of G. We cen partition the nodes of

G into two sets, the ~lrst consisting of those nodes that do

not lie on one-ended paths and the second consisting of those

that do. Let K and M be respectively the subnetworks of G

induced by the nodes in the first and second sets. We allow

either K or M to be void.By Konig's lemma, all the components

of K are finite, whereas those of M are infinite.

F'urthermore, M, if it ex Ists, must also be chalnlike wi th

the SRme sets V as those 01'G. Indeed, by Condition 5 of the
p

definition of a chalnlike network, every node in any V lies
p

So, by (2),on a one-ended path and helJce must belong 1:.0M.

each component of K must lie within a single G and possessp

no vertices in common with Vp' Vp+l' or the node-distinct

finite paths described in Condtion 5. (Moreover, by Condition 1,

each G can contain no more than a finite number of the compon~nts
p

of K.) Thus, the removal of K from G will yield once again

the same chainlike structure for the remaining network M.

Now, consider the union of all the finite paths mentioned in

Condition 5 of the preceding section. 'Ibis union consists

DBRAR'(
STATEUNIVERSITYOF NEW yori;

AT STONY BROOK, L. I. N
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of m (or an infinity 01') ve.rtp.x-dtstinct one-ended paths In

M if M tH m-times (or, respectively, diver~ently) chainlike.

By a spine we will mean either one of these one-ended paths

or one of the infinite nodes of N.

We shAll now construct in N a spanning forest and a

parti tion of N which satisfy condttions similar to those

given in the hypothesis of 'rheorem 5.1 of [5]. 'rhis cor-resr onds

to the graph-theoretic part of limb analysis mentioned in the

Introduction. fhe following procedure for constructing the

the ~panning forest and the partition of N involves a number

of steps in which certain nodes, branches, or components are

desip;nated. It can happen that some of these entities do nJt

exist in N. When this occurs, it is understood that the

cClrre s pond 1ng step t s s impl y skipped.

Let M be that ~ubnetwork of G obtained by removl.nfSfrom
p p.

G all components of K that are cnntalncd In (}. We also let
p p

qk' where k = ], 2, ... , denote the infinite nodes of N, and

we assign the indices of the qk as follows. First of all,

we arrange the infinite nodeS~hat are not adjacent to any of

-- _.. - --

the Mp into a sequence X. Then, we let ql' Q2' ... , qa be

the infinite nodes that are adjacent to MI 8nd let qa+l be

the first node in X; we also set Ql = [ql' ... , qa+11. Next,

we let Qa+2' qa+3' ... , qb be the infinite nodes that are

adjacent to M2 but not adjacent to Ml' and let qb+l be the

~e.?C'ndnode in X; also, Q2 = [qa+2' ... , qb+llo 'l'hen,we. . -.. .~- - a.. .~

let Qb+2' qb+3' 000 , Qc be -the ~ infinite n<YdtHfthat are adjacent
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to M3 but not adjacent to MIU M2' and let qc+l be the third

node of X"; also, Q3 = [~b~2' ... , qC+11. We continue this

numbering procedure until all infinite nodes are labelled:

simultaneously, the set of all infinite nodes is partitioned

into the family {Q 1 0s Note that, since each M i~3locallyp

finite And has a finite number of nndes, it has only a finite

number of adjacent infini te nodes 0 Consequently, thi~ numbering

procedure is feasible.

Observe that each component of K must be adjacent to at

least one qk but not to any nodes in M becRuse N is connected

and these components arise through the deletion of the qk from

No We label the components of K as Kk 1

in the followlnp; way.
,.

Kk,l' Kk, 2' Kk, 3' ... will elf-note those components of K that

are adjacent to <1k and are not adjacent t.o those '1i Cor which

1 < k. When t > k, Kk,j may be adjacent to ~i. ror any fixed

k, there may be a finite or infinite number of Kk,j.

Finally, for each pair of infinite nodes <1i and Qj' we

label the branches join::!ng those two nodes by bi . l' bi . 2', J , ,J,

bi,j,3' O.Q .

Now, let Kl be the union of all Kk,l for which qkE Ql.

Kl is a fInite network since each Kk,l is a finite network Rnd

Ql is a finite set. Let PI be the union of ell bi,j,l for

which <1iE Ql and Qj E Ql. Clearly, PI is a finite network.

Let Rl be the union of PI' all branches joining Ml to Ql' and

all branches joining Kl to any of the qk (not necessarily in

Ql). Since Ml and Kl are finite networks, Rl is too. Finally,

we let Nl be the finite subnetwork of N induced by all the
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branchAR In MI' Kl' and RIo We InductIvely continue thIn

rrocp~s of ~onstructlng finite subnptworks N of N a~ follows.r

Let p be an integer greater than one. Let Kp be the union

of all K
J - +1 for wh ich qk £ C{ , where s = 1, 2, ... , p.{,p s s

A~ was true for Kl' Kp is also a fInite subnetwork. Next,

let P be the finite network induced by all bi j 1 for
p , ,p-s+

which qi and qj both lie in U;=l Qr and at least one of them

liA in .:t, where s = 1, 2, ... ,po 'rhen, let R be the
5 p

union of Pp' all branches joining Mp to any of the qk' and

all branches joining Kp to any of the qk' It follows from

the finiteness of P , M , and K that R Is a finite network
p p p P

t(\o. 1<'tnally, set N equal to the union of 1"1 , K , and R .
p p ~ r

lnus, N t s a fl nl to subne twork of N.
P

From the way we have constructed the N it can be seenp

that every branch of N lies in one and only one of the N .

p
. aD

That Is, {NJ p=l is a partition of N into finite subnetworks.

Moreover, N nN +J = V +lUW +1' where V +1 is the f'inite set
p p - p p P

(possibly void) of ~-finite nodes specified in (2) for the

chainlike structure of G and Wp+l iA a finite set (possibly

void) of N-lnfi nlte node So I"urthermore, N n N is just ap m

finite set (possibly void) of N-infinlte nodes if Ip - m' > 1.

We recall that a spine in N is defined to be any infinite
the union of

node or anyone of the one-ended pre! ths arising from" the f inl te

path~ mentioned in Condition S above. Our next step is to

construct in each N a ~panning forest F such that each component
p p

of F meets one and only one spine and contains all the nodes
p

and branches of that spine that lie in N .
p
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fo thLs end, Ipt Al be the union of All node~ And branches

in N that 11.0 in Rpln(':~. Choose any brAnch b l in N that
p p

1.8adJAeent to AI" If bl hRS OI1nnode that is not I.nAI' RP.t

A2 = Al U bl ; otherwise, set A? -= A1 .. (;hoose anothel' branch

b2 in Np that Is adjacent to A2 and set A3 = A2U b2 if b2 ha~

one node that is not in A2; otherwise, set A3 = A2" Continue

th Is procedure until a 11 branches in N that are not in spinesp

have been considered. lbis yields a spanning forest F in N
p p

with the desired properties.
...

We now se t F = U I F.p= P
Lemma }~..1~ .F'Is a spanning forest in N such that each

component of F meets one and only one spine .in N and contains

nIl tJ1P nodes and bT't1nchef! of' that splnp..

Proofu
If p F-m, a component of .F'p and l.l component of'

F' CAn moet only if they mn€~t the same spine, and, if theym

do meet., their Intersection lles in that spine!and is either

an N-tnfinite node or, if m = p+l, possibly a node in Vm.

Otherwise, either (2) or the disconnectedness of some component

of K from the rest of N - ql - q2 - q3 - "0. would be violated.

It follows that F contains no loops and is therefore a forest.

Moreover, F 1~ spanning because it Is spanning in each Np.

'£he rest of tile conclusion follows directly from the way oach

F was constructedin N ~

P P

We shall call each component of F'a 11.m.Q.. JIbe set of

all limbs will be called a full Q[ limb. Sinc F is

spanning, every node of N belongs to B unique limb.

Le. If nO is a node in N, then there exists a
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unique finite path P contaIned in the limb L that contains

no such thl'ltnO is one terminal nnde of P, the other terminal

node nl of P belon~s to the spine of L, and P lies entirely

outsld~ th~ spine of L except for nlg (If nO lI~n in a spine,

th~n nO = nl And P is thr:,Jp.p;eneratepAth c()nsl~ti.ng of' nO alone.)

Proofg Choose any node n2 in the spineSof L. ( When

S is an N-lnfinite node, we choose S itselfg) Since L is a

tree, there exists a unique finite path from nO to n2 lying

in L. In trqcing that path from nO to n2' we will find a

first node nl that lies in S, and the traced path from nO to

nl is the path P we ~eek. Again, P must be unique since L

Is 9 troe.

Lnrnrt'll1 It" 1. 'fhe ptlth P nf Lemma 1~...2lIes entirely wi thIn

a ~~inp: 1 p N .

> p When P is not degenerate, t ts nodes other than

nl arF: not common to tlrJCI or mor~ of the Np.

Pronf. lhis follows from the facts that L is the union

at its intersections with each N and two such intersections
. p

meet only at a sinp:le node in the spine of L if they meet at all.

LemTr4tl J.ul~o ( i) If the s pine of LIs a one -e.f1ded pa th,

then L is an infinite tree containing neither N-infinite nodes

f10W endless paths. Moreover, given any node nO of L, there

exIsts a unique one-ended path starting at nO and contained
""

entirely in Us=p(Ln NJ' where Np is the subnetwork containing

no.

(ii) If the spine of L is an N-infinite node, then L

may be either a finite or infinite tree, but in either case

it contains exactly one N-infinite node, the spine itself,



13

and does not contain any one-eLded or endless pgth.

Proo(. ( i) Since L is a component of the forest F and

contalnA a one-ended path, it is an infinite tree. By Lemma

I~.l, L contains exactly one rlptne. SInce the N-lnfinite nodee

arc all spines, L cannot contain an N-1nfinite node. Furthermore,
'10

L = U 1 (L n N )" EE.Ch L n N is a f 1nit e tre e . A 1 ~ 0 , for
p= p p

I p - 011 > 1, Ln N does not meAt LflN, whereas L nN meetsp m p

L fINp+l at A.ndonly a.t the unique spine node residlnr In both

Np and Np+l. It follows that L cannot contain an endless path.

It also follows from this structure for L that there is

QD

pxa c tl y one one -ended f1ath in U s=p (L n Np) starting from a

given node 110at'LONp. 'That path lies entirely in L's spIne

If 110 belongs to the spine. Otherwise, that path is the unton

of tho nO to nl path P of Lemma 4.2 aDd the onf:-pndeLipath

In the spine starting at nl.

(11 ) K()!,.,as~ume that L's spine is the N-infinte node

qk. As in (1), L is a tree and cannot contain anJ other

N-Inflnlte node. LnN 1s a finite tl'eefor each p.
p 1< or p ~ m,

L n Np and L n Nm me(-;Jtat and only at C"lk. 'l'hat is, qk js a

cut-node for L, ~nd its r8moval from L lesves only flnite

components. Consequently, L cannot contain any on~-e~ded

or endless path. ,t<'inally,in the process of constructing

all the F , either a finite or infinite number of braoches
p

may hAve been added to ql to produce L"K

Lemrrla h" S . If b is any branch of a limb L, then L - b

has exactly two components. One of them conta~n3 all of L's

spine except pos~ibly a finite portion of that spine. The
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other component is a finIte tree all of whose nodes are N-finite.

tD2.Q.[. Since L is a tree, the r~moval of b must yield

exac tlY two components. If b Is not a p~rt of L's spine, all

of that spin~ will appeAr in on£> of those components. The

only other possibIlity Is that thF' spine is !:lonc-encied path

And bls in that path. the r~moval of b will then split the

spine l.nto a f:'.nItepath and H one-ended path, with the latter

appearing in one of the aforementioned components. rinally,

if'the last conclusion were not true, either L would contain

hvo N-tnfinite nodes, or (by Konig's lemma) L would contAin

an N-infinite node and a one-ended path, or L would contain

I3nendless path, all of which are impossible Rccordinp, to

Lpmma " 0)1.

A brA-nch of' N that is not in thp. forest F w:!11 be cnllerl

H Lie. 'l'hus, a branch i 3 or is not F.Iti (>.dependIn,7. on the

choicc of F. L(>.td h(>.Any tie. Two possihIlities arise:

( i ) noth nodes of d lie in the same limb L: ~ince

L is a tree, L Ud containsexactly one loop, namely, the

unIon of b and the unique path in L connecting the nodes of

d. We shall refer to that loop as the d-orb or ti~ orb.

( I:'. ) ~he two nodes of d lie in different limbs, say,

Ll and L2: In this case we define the g,-orb or tIe orb

IlS the unique (finIte or infinite) pAth d U PI U P2U HI U H2'

'-lh{'rePI and P2 al'e the t\.vofinite pAths in, respectively,

Ll and L" as specifiedi.n Lemma L~o2. Also, if the spine of'-

1.1 is an N-inflnite node, HI is that node; if the spine of

Ll is a one-ended path, HI if'the one-ended path lying in
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the spine and sterttng at the node Hhere PI terminates. H2

lies ln the spine of L;>and 1s def1n(~d similArly. 'rhus,

we sef~ thAt this d-orb lies in LIUdUL2.

Lemma u.6. Let N be the subnptwork that contains a
p

p:ivon tic d. 'l'hf3n,the d-orb is contained entirely within

U ~ N. Moreover , the d-orb is contained entirel y within
~=p s . ,

N alone under either one of the following conditions.p

(1)

(11 )

rloth nodp~ of d lie in th~ same limb.

ihe two node~ of d lie in different limbs, both of

which have spines that ere N-infinite nodes.

J?rQof. Sincf'! iN \ is a pArtItion of Ny d must lIe in
p

F'oT'any 1imb L, L n N is a tree. Hence, underp

lie InN" On the other hand,p

a strwlc N .
t:, P

condi tion (I), thE.:d-orb will

If d's. nodes lie in different limbs, tile d-orb is equal to

d U PI U P2U HI U H2. By Lemma 4.3, PI and P2 also Ite in Np.

When the spines of both limbs are N-infinite nodes, HI and

H2 are those nodes and therefore also lie in Np' w11ichimplies

that the d-orb lies in ~ Q rhe only other possibility is thatp

one or both of HI and H2 are une-ended paths, but in any case

HI and H2 will lie in U 00- Naccording to Lemma 4.l.di)..s-p s

'l'herefore, so too wi 11 the d-orbo

Lemma 4.e7o Let b be any branch in F. Ihen, there are

only a finite humber of tie orbs that contain b.
Proof. Let L be the limb that contqi~A b. Let H be

that fInite component of L - b whose nodes are all N-finlte

(LemmA L~.S ) . Let d be any tie. The following results follow
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directly from the definition of the d-orbo If d ie not adjacent

to H, then the d-orb does not contain b. If one node of d

is In H and the other node of d lR not In H, then the d-orb

contnins b. Finall y, if both nod e::1of d 1 ie in H, thf'n the

d-orb dops "lot cnntHrn b. 'l'hu~,the only tie orbs that conUlin

h are those whose tips have onp And only one node In H. SJnce

H l~ finite and all its nodes are N-finite, there cen be only

a finite number of such ties.

5. Current Flows Satisfying Kirchhoff'~ Node Law. Henceforth
-~~-~~-- ~~--~~-~

we aSi~ume that every branch in N has an orientation. '1'hus,

1f brqnch b ~nd node n are incident, then b is either incident

~1 from or incident towar'Q.n. The £.ill:!:..~in a branch i~

A complex number measured wi th T'fJSrect to t.he brflnch':q orl ('ntat! on

Al:,w, 1r d js ~ tie, we aSRlgn to the d-orb that ortentat10n

which p.p:refJ8 with the orient,qtion of d (i.e., while trllcin{l

th~ d-orb in the direction of the d-orb'p orientation, we pASS

through d in the direction of d's orientation).

Kirchhoff.'s~ law. For each N-finite node n, L.: ik = 0
j

where the summation is over all branches bk incident to n,
-j

the plus (minus) sign is usedlk is the current in bk ' and
j j

if the corresponding branch is incident away from (respectively,

toward) n. For each N-inflnlt~ node, no re~triction is imposed.

(Thus, Kirchhoff's node law is a condition concerninf, only

th~ N-flnite nodes.)

Lemma ..2.r1.. 'l'hespecificAtion of the currents in all the

ties and the tmt'osition of' Kirchhoff's node law uniC1uely

determines the current in each branch of F.
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Proof. After numbering PIll the branches of F in any

f'H~hlon, Wf! let bl' b2' h3' no df'!notf! tho~e brancheR.

.h.veryllmb, and therefore F AS well, mllst cont'Jin at least

one end node that L~ N-finlnte. This is because each limb,

helnr. A tree, has nt leAst two end nodes and at most one

N-lnflnlte node. We shall call,:} bronch of F an end branch

If and only if it is incident to an end node that Is N-fintte.

Among all the end branches of F, choose the one, say, bk1

havIng the least index kl and let nl be its N-finite end node.

'rhus, illl other brqnches in N that are incident to n1 are

finlte in number Bnd h9ve specified currents. Kirchhoff's

node law therefore uniquely determines the current in bk .1
Indue t 1ve ly, a s Burne tha t the currents have a lready been

df!tf'lrmlnpdI.nthe branches bk I ... , bk of' I". Among all
1 j

the end brnnche~ nf'{<'- bk -..0 - bk ' choose that end branch
1 j

bk hAvinp; thp lowest Index and let n2 be its N-fintte end
j+l

node. All other branches in N that are incident to n~ willc

be finite in number and their currents will be known. So,

Kirchhoff's node law determines the current in bk .

j+l
bk b'1ve a

j
part of a spine.

Note that at no step will F - bk - ... -1
component that does not contain at least

In the event that F contains a finite 11mb L and all but one,

say, bk of the branches of L have been treated, it follows1
that bk will have one N-finite nodI' n Bnd one N-infinlte

i r
node Cl .s The procedure then applies Kircchoff's node law

to n to determine the current in bk 0 No contradictioncan
r i

arise at Q because Kirchhoff's node law places no restrictionr

at the N-infintenodes.
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L~t hk be any branch 01' 1-' and let L b~ the 1I mb thfl L

contatnn bko 'l'h LA pT'oc~duT'e will eVf~ntually B:JRip,n a current

to bk. Indeed, by Lemma }~.S, one of the two components, nay,

H of' L - bk 1.:'! 11 finite tree all of whose nodes are N-flnite.

'1'hus, the procedure will eventually R~sign a currc:nt to every

branch of H and then to bk as wello Moreover, the current

in bk will depenc5 only on the ties adjacent to II and therefore

wll1 he independent of the 1,;[\.y the branci-les in F' were numbered.

That Is, the currE'!nt in bk is uniquely determined by the tie

currents. '.l'his complptes the proof.

Under the notation defined in Lemma 4.7 and its proof,

b lie~ in a givE'!n d-orb if and only if one but not both of

trf' nodefl ot' .d ItE'!s in Hg Now, assume thAt the current In

d tp i And the currents in 1111 other tiE'!s I1re ?ero. 'rhen,

aT'C'pf-'tltLon or thE'! pronf of Lemma S.l shows that Kirchhoff's

node law requires thRt all branches not in the d-orb have zero

current whereas all brStnches b in the d-orb have the current

1; i; here again, thE'! plus (minus) sign is used if b's orientation

agrees (disagrees) with the d-orb's orientation. We shall

say that the tie d induces the current i i (or zero) in a

branch if that branch is (is not) in d's orbo (Thus, d induces

i In itself.)

Now assum~ that fjrb~trary currents a.r~ Rssl@"ned to all

th e Ltest n N. By v Irtue of L0mmf1 J-+.7, rmly a f1ntte number

of ties Induce nonzero currents In any given branch. Therefore,

we may apply superposition to conclude that the currents induced
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in all brRnches of N hy all the tIps are finite and satisfy

Kirchhnf'f'Rnode Iflw. [n v!f'W ()f the Im!qupnef'lR AfJ.9(>T't1nn

of LemrnH 1;.1, we CAn concllldr wi t.h t.rw f'()llowlnp;.

~mntll S.2. Let thp.f'cb(' p,lven n Cllrr'l~nt rlo'",In G RllCb

I.hAt KIJ'chl1orf"~ node law if; sntUlfled. 'l'hpn, the current

in any branch is equal to the f1.nite sum of' tbe currents

induced in that branch by the tie~.

6. Joints and Chords. In order to mave use of Kirchhoff's
.~ ~

ION) la1ll', which we will state later on, we construct a spann~.ng

tree in N by addtng certain ties to the limbs.

Ln pB J tIc u 1 Ar, Hd d tn 1'\ a ::1man y tIe s 1 n l~ 1 a S f) n 3 ~' 1 hI €

wll.l\(lul; f'()rmlt1~ any loop~ In th~ 1'f'f'lu1tlt1p', fJubnel.work.

Contlnuf' the procedure ('(\li~1 Idnd,nv In t:urn r"l)/ F'2' .i.<'3'...

as follows. Let j1' ... , jm be the ties that haVl~ been

added to F'l' .to';:,... , Fp-l' where p ~ 2. l'hen, add to Fp

as many ties in N as possible without formIng any loop~ inp

the union of those ties in Np with 1<\U ... U F'p-l U JlU ... U Jm.

After completing this procedure, l€,t J be the set of all the

added ties and let J' be the subnetwork of N induced ~y those tIes.

The members 01 J wIll be called joints, and J will bl" c"liled

a full set of joint.s.

Lemma 6.1. FU J' is a spanning tree in N.

PrQ()f. Since F spans I\! , so too does 1<'U J' . AI~o, FU J'

will not contAin any loops because no loops were allowed in

the proces8 of constructing J. Finall y, suppose that }<lU J'

is dLsconnectedg Let nl and n2 be two node8 appeBring in
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different components of F'UJ'~ 3incp N is connected, there

(~xjRtf! a path P tn N jolnJng nl And n2. In tracing P we wlll

f'tnd Rt lea:1t one ttc, 3:1:/,d jotning two cJifferent COmI)Onent~

of F' U .J I . J3ut, this is R contr'adtctlon; for, In the process

of' cnn~truct1.ng J, d would hRve been chosen 8S a joint, thereby

cOllnecting thORP comronentso

Those ties that arp.not joints will be called chords.

Set T = F U J '. Since T is a spanning tree, each chord ~ £enerAtes

in conjunction wi th T a unique loop, which we wi 11 call either

the ~ U T loop or the chord -tree loop. It is the unIon of ~

with the unique rnth In T connectine the nodes of ~. Assume

thRt a lies in N. If both nodes of a lie in the same limb
- p -

of F, then the!!. u:r loop 1 s tdent iCR 1 w tth the ~-orb and 1 ie fJ

en t t re 1 \! 1 n N .

,J P

limbs, say, Ll and L2' then

the !i-orb (since the latter

However, If the two nodes of ~ lie in different

the !1U T loop is di fferent from

is now A path) and lies in U;=l Ns.

Indeed, if there were no path in T (\(U ~=l Ns) joining the

nodes of ~, then ~ would have been chosen as a joint, in

contradiction to the assumption that ~ is a chord. 'rhus, such a

path does exist, and its union with ~ yields the ~v'r loop

lying in U~=l Ns.

the following.

This result coupled with Lemma 4.6 yields

Lemma 6.2. Let N be any connected countable network.
GO

Choose the partition IN } _1 of N and the spanning forest Fs a--

as stated in Section 4. Al~o, choose the full aet J of joints as

stated in this section. Set rr = F U J' . Let ~ be any chord

in N. Then, the a-orb lies in
p -

lies in U~=l Ns.

OD
U N and the aUT loops=p fI -



21

w~ not~ In pflt'lHlnp; thllt thlR lomma ~~tl:lteR that condition (t)

or the hypothel't::J of' l'hooI'f'm 1;.1 of [l~J, Lh" main theorem of'

that '-lork, Is sAtisfied by every connected countable network.

CD

7. 'l'he Space C of One -sided Sequences of Complex Numbers.
~~ ~--~~~~ ~--,---------

or>

C will denote the set of all infinite vectors of the form

rr
.3 = [xl' x2' x3' g..] , where the components xk are complex

numbers 0 ('The superscript ;r denote s matrix transpose.) No

restrtctton is placed on the growth of the xk as k -'"'.
.

MultlnJtcattnn by a complex number and addition are defined
00

componentwise, and this makes C A linear SORce.

Now, constder' fin tnf'lnjte matrix of' the form

where each Zjk Is a com~lex number. Z defines a mapping ~r+ Z!
00 ...

of C into C by means of the customary definition of the

matrix product Zx if and only lf every row of Z has no more

than a finite number of nonzero entries. In this case Z is

said to be row-finite, and the mapping ~~Z~ is linearg

A~uume in addition that Z has the partitioned form

Z
21r' Zlj

.. .11 c:

Z21 Z2 Z23
.. .

c'

Z =

Z31 Z32 Z33
g. .

. . . . . . . . . .
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(3) z :::

I

L__,-- I Z I
W 2'2 1 -1----

- I

0

W3

- -1
2 I

3
I - - -I - - ---- I

.

.

where each 2 is a .quare fin! te k X k matrix and all thep p p

entrie~ to the ri~ht of these Z are ~ero. If every 2 isp p

nonsingular, then the equation

Z~ :z: 1"

where y ts a p.;iven vector tn e"", has a unique solutlon x ECOO.
~ ~

it can be obtained by fjrst solvinp,

:61 [ xl' ... , xk 1T1
:: 'rrYl' ... , Yk ]1

for the flr1'lt kl components of x.

of x c~n be determjned by solving.v

Then, the next k2 components

T
Z2 [xk +1' ... , xk ]1 2

::: T
[Yk +1' .08 , Yk ]

1 2

T
W2 [x l' .. 0 , xk ] .1

Continuing in thia way, we can determine all the conponents

of X.... When ~ has the form of (3) wherein each Z is nonsingular,p

we shall say that 2 is invertible iQ blockso
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A. The Networ1< f:<1ua.tJ or~~~.!-"~ ,, ._-~_.-~~ .-- ~ So t'ar, we have only tnv oked

Kirchhoff's node law, Another law we shall exploit Is Kirchhoff'l

loop law; it concerns the branch voltage drops around the

loops In N. A!'! w.1th branch cu]'ren ts, a branch val ta~~e drop

1s a complex number measured with respect to the branch's

orientation, Also, an oriented loop in N is a loop to which

a direction of traversal is assigned. Henceforth, it is

understood that every loop in N has an orientationassigned

to it.

Kirchhoff's Loop Law. Around every oriented loop in N,

') +
"---- vk

j
loop, v

kj
sign 1s IH'!E'd

= 0, where the sum Is over all branches bk in the
j

Is the voltage drop In bk ' and the plus (minus)
j

If the orLAntation of bk agrees (disagrees) wI th
j

the ortentationof the loop.

We shall assume that each branch bj of our electrical

network N has the structure shown in Figure 1, where the

arrow designates bi's orientation and currents and voltages
~

~re measured with respect to that orientation. Here,ej' ij'

and Zjj are complex numbers representing respectively bj's

emf, current, and self-impedance; th~ flow of 1j through

Zjj produces the voltape drop zjjij' In addition, It Is

as~umed that, for k ~ j, a current ik in branch bk produces

a voltage drop Zjkik in hranch bj; here, Zjk is called the

mutual imnedance coupling the current in bk to a voltage drop

in bj. The total voltgge drop Vj in bj measured with respect

to bj's orientation is

- - -- ---
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(J~)
Vj

-= - e + ~
j L-k Zjkik

where the summation is over all branch indices including k = j.
Henceforth, whenever we say tha t N sa ti sfies Kirchhoff's nod e

and loop laws, it is tacitly understood that the branch currents

and voltages are related in accordance with (4).

Kirchhoff's node and loop laws, coupled with (4), are not

in general enough to force a uni<1ue current flow in N, as is

shown by example in [5]. ';rhis is reflected In the f'oct that

the customary mesh analysis of finite networks fails in general

for infinite networks; for one thing, gIven a flmdament~ 1

system of'mesh cur)"ents with )"espect to some spanning tree,

it can happen that an infinity of such currents flow through

a single branchr which can lead in turn to divergent series

in the analysis.

On the other h~nd, because of Lemma 6.2 we can apply limb

analysis as fo~lows: First of all, assume that, if bj is a

brancb in Np' then Zjk -;. a only if bk € Ns ""here s ~ p. This

mE'lans that voltage drops are induced in bj through mutual

coupling only by a finite number of branch currents,namely,

the currents on some or all of the branches in uP I N.s= s

Next, number all the joints co~secutively using the positive

integera. Let A = [jl' j2' ge. JT be the (finite or infinite)

vector of all joint currents where jk is the current in the

kth joint. We will assign the values of the j~ arbitrarily.
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Furthermore, consecutively number the chords 1, 2, 3, ...

starting first with the chords in Nl' then proceeding to the

chords in N2' then proceed tng to the chords in N3' and so

forth. Let £ - [cl' c2' ..uJT he the vector of chord currents

wh~r~ ck is the current in thE'kth chord u

If Kirchhoff's node law is ~atisCied, the current In each

limb can be wri tten as the fini te sum of the currents induced

in that limb branch by the chords and joints. (See Lerona 5.2.)

Moreover, if Kirchhoff's loop law is satisfied, we can write

a sequence of Kirchhoff's loop law equations, one for each

chord -tree loop, in the order of the chord indl ces ; in doing

flO, each chord-tree loop is assigned the orientation that

ap'ree~ with its chord's orientation. Upon transposing the

terms tnvoktnp:joint currf\n ts to the rip;h t'"'hand side, we obtain

the mAtrIx equation

(5 ) Zc = g,

where Z = [Zjkl is a matrix, whose entries qre linear combinations

of the self and mutual impedances in No Also, g is a vector

"Ihose entries are linear- combinations of the branch emf's

and the joint currents where the coefficients of the joint

currents are self and mutual impedances. We assume th~t the

emf's and impedances are given and we assign the values of

the joint currents arbitrarily. Our prior hypothe8i~ on

mu tual coupling in conjunc ti on wi th Lemma 6.2 shows tha t. Z

has the partitioned form of (3). If each Z therein Is nonslngulaJp J
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then Z is invertible in blocks. 'Ibis allowR us to solve for

c, after which we can compute all the branch currents by,..

using Lemma 5.2.

Before discussing conditions on the brsnch impedances

which in~ure thqt Z Is invertible in blocke, let us take note

of how this limb analysis avoids the aforementioned pitfalls

that render the customary mesh analysis inoperative for

infinite networks. First of all, lt identifies a set of branches

namely, the joints to which one is free to assign currents

arbl trarily, leading thereby to unique currents in the

rematninp; branches. MOr(10Ver, by Lemma 5.2 only a finite

number of chord and joint currents are induced in any branch.

(Contrast this to the application of mesh analysis to infinite

networks wherein an infinity of mesh currentR will in p;eneral

nass through a given tree branch.) 1~ts in turn allows us

to apply hjrchhoff's loop law around the chord-tree loops to

p:et network efluationsrepresented by (5) wherein Z is row-finite.

Actually, our numbering procedure, Lemma 602, and our

hypothesis on mutual coupling forces Z to have the partitioned

form of (3).

90 Chord Dominanceo The kth equation in the expansion of~-----------

(5) corresponds to Kirchhoff's loop law written for the akU 1

loop, where ak is the kth chord. But, the only chord that

induces a nonzero current in ak is ak itself, and the only

chord contained in the ak U T loop ia again Rk. 'lliesefact~

imply that the self impedance of la of ak appears only ask
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an added term in the kth maln-dLagonal entry Zkk of Z and

nowhere else. 'l'hst Is,

Zkk
= Z

Ak
+ kkZ

kk
where z is independent of z ; also, Z is independent ofa ms .k
z if either one or both of m and s are not equal to k.
Bk

'l'herefore, by

of Z.
varying zSk' we vary only Zkk and no other entry

In fact, if all the chord impedances Iz I are
Bk

then all the blocks Z in (3) willp

diagonal elements and thereby

chosen sufficiently large,

become dominated by their

nonslngulAr [3; p. 32]0

An explicit condLtinn of this nature can be obtained if

we examine how the various branch impedances appear in the

entries of the block Z in (3).p
We have

Z
kk

=
Zsk

+ L + Z
kk

j - j

and, for s I- k,

Zks
::: 2... j; k s

j Zj.

Here, both summa tions are fin1 te. Also, 2:j ;t z~k contain:'!

the self impedances of all the branches other than ak in the

intersection of the akU T loop with the ak-orb as well as those

mutual impedances that couple currents in the branches of the

ak-orb to voltage drops in branches of the skU T loop. Finally,

~j ~ z~s, where k ~ s, contains the self impedances of all

branches in the intersection of the ak U T loop with the as-orb

as well as those mutual impedances that couple currents in
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the brAncbes of' the as -orb to vol tage dr'ops tn branches of

the ak U T loop"l'he plus (mtnus) sign 1n front 01' z~k or

Z~s is used if a positIve current in chord ak or respectively

chord as produces via this impedance a positive (negative)
kk ks

voltage drop in the the akU T loop when Zj or Zj is taken
to be one ohm"

Now, assume that the chord ak lies in Np and let 1, 1+1,

... , m be the indices of all the chords in N. Thus,p
1 ~ k ~ m. If

Hence, if (6) holds for every chord ak in N, then each Zp will

truly be dominated along its rows by its diagonal elements.

SimilArly, if

I za Ik
>

I f ~ z~kI

+
m

\

') - + skL- L - Z j I

'

e=l j
e;th

then, as above,

I Zkkl
>

m

L IZSkl.
s=l
s;ek

So, if (7) holds for every chord ak in N, then each Z will
. p

be dominated along its columns by its diagonal elements.

Finally, if either (6) holds for every chord in N or (7)

12 kk I

m
\L j; zks I

(6) I z I > j; z + )""

j
L -

ak j 8=1 j .1'
B,ck

th(m

)L + kk I

m m

IZkk \
> IZ t - > L\!zkS I IZksl.
-

- Zj
:::

81{ j s=l J j
a,ck stk



29

holds for every chord In N, we ShAll say that N is chord

(lql1l~nan1t.!iLlli respec~ iQ. 'r 9n<J J, WhArf: a~ always 'f is th~

chosen tr~e f'U J I and J 18 the chosen full. set of Joints.

'l't~eQr.:em. Let N be a connected countable network. 'L'hen,

there exists in N a spanning foreet F, 9 full set J of joints,
QD

and a Partition { N 3 1 of N into fInite subnetworksN such
s s= s

tha t, for T :::F U J' and for each chord g" in Np' the corre spanding

aUT loop 1 iee in U p 1 N and the corresponding a -orb li e s- s= s -
""

tn UN. Assume that all branches have parameters of thes=p s

form shown in Figure 1 and assume that mutual coupllng Is only

of.the type where a current in branch bk produces a voltage

dr'op tn brnnch bj with the add1tional rf~strictlontha.t the

vn 1 tafJ:e drop t s zero wheneverbkEN, bjE:N , and ~ > p.s p .

Also, assume that all emf's and self and mutual branch impedances

are p;iven. Arbitrarily assign values to all the joint currents.

Number the chords as stated in Section 8. Upon writing Kirchhoffl~

loop law around each chord-tree loop and invoking Kirchhoff's

node lRw to express each bra.nch current as the fini te sum of

the chord and joint currents induced in that branch (Lemma 5.2),

we obtain a system of equations which h8ve the matrix form (5)

where S is the unknown vector of chord currents and g is a

known vector depending on the branch emf's, the branch self

and mutual impedances, and the joint currents; Moreover, Z

hel'! the partitioned form of (3).
""

Z is invertibleon C

whenever each ~ in its partitioned form is nonsingular. Ap

sufficIent condition for this to be so is that N be chord
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dominant wi th respect to 'r and J. When Z is !.nvertible on
em

C , .~ will be uniquely determined, and, according to Lemma

S.2, ~o too will be all the brAnch currents. Moreover, when
CID

Z is invertibleon C , any set of branch currents that satisfy

Kirchhoff's node and loop laws will correspond in this way

to a particular choice of joint currents.

Proof. Everything has been established by our foregoing

arguments except for the last sentence. Under any given set

of branch currents, the joint currents will be specified.

Because Kirchhoff's node and loop laws are satisfied, (5)

holds. 'file invertlbility of Z implies that the chord currents,

a~ determined by (5), must coincide with the ~iven chord

currents. The 11mb-branch currents, as determined by Lemma

5.2, must also coincide with the given ones by virtue of the

uniqueness assertion of Lemma 5.1.

10. Some Closing Remarks.
~~~-~~-~~

We note in passing that the

analysis ()f[5; Section 61 can now be applied to determine

the dimension dim f{ of the linear space FI of all homogeneous

current flows in N. By a "homogeneous current flow" we

mean a vector of all the branch currents in N, where Kirchhoff's

node and loop laws are satisfiedas well as (4) with all ej = O.

When N satisfies the hypothesis of the Theorem, we have dim N

= IJI, where IJI is the cardinality of the full set of joints.

Since N is connected, IJI = x - 1 where x is the cardinality of

the set of spines in N.

It is also worth noting that our graph-theoretic results

allow us to make a cutset analysis that is dual to the loop
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analysis of this section; that is, chord orbs are replaced

by cutsets each of which contain exactly one limb branch, ~ord-tr~

looJ)S are repl~ced by 1ncidence cutsets, impedances are replaced

by admittances, and the network equations are now generated

by K1 rchh art''s node law, r'ather than by KlI'chhoff's loop law.

In fact, this cutset analysis extends to countable networks

the discussion in [5;"Section 8J, which was restricted to

locally finite networks. However, we have now established

that hypothesis (i) of fheorem 8.1 of [5] will always be

satisfied by a countable connected network when T and J are

chosen as Indicated above.
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