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THE BALANCED STATES OF A PROPORTIONING NETWORK

AJH.Zemanian

Abstracte Proportioning networks that need not be bipartite
arise as models of certain hypothetical marketing systems. This
work examines the balanced states of such networks. Necessary
and sufficient conditions for the existence of at least one
balanced state as well as for the existence of more than one
balanced state are given,

1. Bipartite proportioning networks model certain marketing
systems in underdeveloped economies [1l, They permit the
computation of time series in prices and quantities of a particular
commodity at the various markets by means of a system of nonlinear
difference equations that describe the flows of that commodity
along the branches of a bipartite network whose nodes represent
the markets. There does not seem to be any way of extending
the theory of [1l] to marketing networks that are not bipartite,
Nevertheless, we can postulate a different kind of marketing
system involving many commodities which 1s modeled by a not
necessarily bipartite proportioning network. This is described
in the next section.

A balanced state in either of these two kinds of marketing
systems is one wherein the various time series in prices and
quantities maintain constant values and in addition the flow
in one direction along any branch always equals the flow in the
other direction. The objective of this work is to investigate
the balanced states of proportioning networks that need not be

bipartite., In section 3 we extend Theorem 3 in [1] for the



existence of at least one balanced state to nonbipartite pro=
portioning networks. In Section l we establish necessary am
sufficient conditions under which there is more than one
balanced state,

2e A hypothetical marketing system modeled by a possibly
nonbipartite1prop0rtioning network. We now describe a multi-
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commodity marketing system that leads to a proportioning network

that need not be bipartite. Although the assumptions employed
herein are considerably less realistic than those used in [1],
they do lead to at least one extreme case wherein nonbipartite
proportioning networks arise,

Assume there exists a geographic region isolated from all
outside trade. The region is partitioned into a finite number
of localities, each of which produces a particular commodity
both for domestic consumption within the lccality and for trade
with the other localities, The commodity produced in each region
is different fram those produced in all the other regions.

Assume furthermore that there is a general shortage of all goods,
as a result of which the governing body of the entire region

has decreed rigid price contrcls by specifying the price of
every commoditye. For simplicity, we normalize the unit of
quantity for each commodity in such a way that those units all
have the same monetary value,

Markets meet periodicslly and on the same day in all
localities, An authority in each loczlity decides on each
market day how much of the goods produced in that locality is
to be made available for domestic consumption and how much is

to be traded for the goods of the other localities, IBach trader



always operates between exactly two marxets, trading in one

market on one market day, proceeding to his other market on

the next market day, returning to the first market on the

third market day, and so forth. When two markets are so

connected by a trader, we assume that there are at least two

traders traveling between those two markets in opposite directions.
Since demand always exceeds supply everywhere, each trader

sells all the goods he has brought with him to a particular

market on a particular day and then acquires as many goods &s

the authority in that locality is willing to sell to him.

He is willing to do so since, because of the price controls

he makes a fixed monetary profit on egach unit he transports.

On the other hand, each local authority desires all the goods

offered him by the traders and wishes to sell all of the supply

of the local product, other than that set aside for domestic

consumption, to the traders in order to maximize the amount

of money received. Finally, in order to treat each trader

equitably, the local authority allccates the local supply on

any given market day in such a fashion that that day's relative

prices of the traders' commodities measured with respect to

the local commodity are all the same, This means that he

allocates the local supply to the traders in proportion to the

amounts of the goods provided by the traders, These assumptions

allow the relative price of any good to vary from market day

to market day even though its monetary price remains fixed,

(We are also assuming that every agent always has enough money

to buy whatever goods are offered tc him at the fixed price,)



All this is represented by a proportion ing network with
excgeneously given node values as illustrated in Figure 1l.
Bach local market is represented by & node. Two nodes,
between which at least one trader operates (and therefore at
least two traders operate in opposite directions), are connected
by two arcs oppositely directed and are said to be adjacent;
otherwise, there are no arcs between them. Throughout this
paper, every network will be assumed to be finite. The
integer values of the variable t represent the market days.
To the arc s directed from node n; to node n, we assign the
value sik(t), which denotes the amount of the commodity beirg
shipped from node ny to node n, between market day t and market
day t + 1. On the other hand, we denote by si(t) the total
supply of the local product made available to all the traders
at the market n, on market day te. Therefore, s, (t) = sz S5 (t).
A term qu(t) in this summation is taken to be zero if n, and
nq are not adjacent., The proportioning principle under which
the local authorities allocate supplies leads to the following

equation,

] sik(t) e si(t)

Here, every quantity is a nonnegative number, Upon writing
(2e1) for each of the arcs as, in the proportioning network,
specifying the si(t) as positive numbers for all i and all

t =1, 2, 3, ees , and then assigning the initial values Ski(OJ
such that, for each i, ski(O) 1s positive for at least one k,
we can solve the resulting system of ecuations recursively to

determine each time series [Sik(t)}t=l'



Although the single-branch structure of the proportioning
networks of [1] looks quite different from the double-arc
structure of Figure 1. the latter reduces to the former in the
speclal case where the proportioning network is bipartite,
Indeed, let M and N denote the node setgin the two parts of a
bipartite proportioning network. Then, for every t, the Sik(t)’

where ny € M and n_ € N, depend only on the qu(t - 1), where

k

n, € N and n, € M, Similarly, the sik(t) for n, € N and n,_ € M

depend only on the s__(t = 1), where npez M and nqei N,

pgq
Consequently, the system of equations (2,1) describing the
behavior of the proportioning network can be decomposed into
two systems, éach of which does not depend on the other,
Moreover, each one has precisely the form of the equations

obtained in [1], where the signals s,, (t) flow from, say, M

ik
to N just after the odd values of t and from M to N just after
the even values of t. Therefore, we no longer need to represent
a transportation leg by two separate arcs and may use &

single branch, as was done in [1],

3e Necessary and sufficient ggnditions for at least one
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balanced state. A balanced state for any proportioning network

‘na of the form shown in Figure 1 is an infinite time series in
the set of all arc and node values such that

(1) the value for any arc or node does not vary with
time t (so that we may drop the argument notation in t),

{139 Siy = 83 % 0 for every 1 and k, and

(iii) for each i, s,. > O for at least one k.

ki
When (i) holds, it follows from the governing equation (2.1)

that the conjunction of (ii) and (iii) is equivalent to the



conditicns:

(3e1) s, = %gski > 0

for every i. As before, we take the term 81 in the summation
of (3.1) to be zero if node n, is not adjacent to node n, e

(3.1) will be called the node gondition at node n,. When it
holds at all the nodes, we shall say that na satisfies the
node conditions. #Since Sy, = 8,4 for every k and 1, we may
replace each pair of oppositely directed arcs by a single
(undirected) branch. <Yhe resulting network has no branches in
parallel and, as before, is finite. Throughout the rest of
this paper, we shall always assume that these two conditions
hold for every network, but we will not require in general that
the network be either connected or bipartite. Any collectim
of components of a network N will be called a disjoint subnegtwork
of Ne Let K be a disjoint subnetwork of N; N =K will denote
the network obtained by deleting all the nodes (and therefore
all the branches as well) of K fromN.

Equivalent to our prior definition is the definition of
a balanced state for N as a set of time-invariant

positive node values and time-invariant nonnegative
branch values such that the node condition (3.1l) is satisfied

for every i. Here, S denotes the value of node ny and

Sip T Syg denotes the value of the branch connecting n, to Ny e
We shall somewhat relax this latter definition of a balanced
state for /1 by merely requiring that all the S be nonnegative
rather than positive,.

A gap set G is & nonvoid set of nodes in Y such that no

two nodes in G are adjacent. (In particular, any single node of



M is a gap set.) The gap set G is said to be in a subnetwork
M of MWif G is contained in the node set of M. (In particular,
M can be void in branches and therefore just a collection of
nodes in M.)

If N is a set of nodes in %, the adjacency A of N is the
set of nodes such that each node in A is not in N but is adjacent
to at least one node in N,

A gap g is a value assigned to a gap set G and is defined
as follows, Let H be the adjacency of G. Let wG(and wH) be
the sum of the node values for all the nodes in G (respectively,
H)e. Then, g is defined to be wy = W,e We shall say that g
is the gap for G. Given the subnetwork M of 1, g is said to
be a gap in Mif it is the gap for some gap set in W,

Theorem l. Let there be given a network M with specified

nonnegative node values, There exists a set of nonnegative
branch values, which with the given node values comprise a
balanced state for N, if and only if all the gaps in W are
nonnegative,

Proof. "Only if": Assume " has a balanced state, choose
a gap set G in ¥, and let H, wy, W;, and g be defined as above,
Upon expanding wy and W, &8s sums of branch values by using (3.1),
we see that the sum W, appears as part of the sum w,. Since

H
all branch values are nonnegative, g = w, = Wo = 0,

H
"[f": Assume that all gaps in N are nonnegative. If M
has any nodes whose values are zero, assign the value zero
to all the branches incident to those nodes and then delete

those nodes and branches., This does not alter the gap values

for those gap sets not containing the deieted nodes., Thus,



all gaps in the resulting network nl are nonnegative.,

Next, assume that a disjoint subnetwork?ﬂl of‘Wl (7 might
be all of ﬂl) is bipartite with respect to the gap set G (i.e.,
every branch of Wﬁbconnects a node of G to a node not in G) and
that the gap for G is zero. Since all other gaps in G are
nonnegative, it follows from Theorem 3 of [1] that there exist
values for the branches in’Hﬁ which together with the node
values comprise a balanced state for ???l.

Step A. Assign those values to the branches of ﬂa'and
then delete’ml.

Let'n2 =’nl -Mm. . (Nhen'mi is void, WE =7?1.) Assume
that Wa has a gap set G whose gap is zero and let?ﬁe be the
smallest disjoint subnetwork ofﬂ2 that contains G. Assume
that7ﬂé is not bipartite with respect to G Let H be the
adjacency of G, let I be the set of nodes in the adjacency of
H that are not in G, and let K be the set of nodes that are not
in GUHU I, (I and £ may be void.)

Step B. Assign the value zero to every branch connecting
two nodes of H and also to every branch connecting a node of
H to a node of I, Then, delete all such branches,

This deletion does not alter the gaps in G, but it will
decrease the gaps in I,

Let W3 be the network that ﬂz becomes after Step B is
applied. Let ?7.’3 be the disjoint subnetwork of ?:’3 having the
node set GU He ?n3 is bipartite with respect to G. Moreover,
the gap for G is zero and the other gaps in G are all nonnegative.
So, agaln by Theorem 3 of [1], we can apply Step A to'ﬂ%.

Let??h = Wj - W%. (ﬂh is the disjoint subnetwork of ﬂB



having the node set IUK.) We wish to show that all the gaps
in.Wu_are nonnegative. Let J be any gap set in'ﬁu. Now,
consider the prior network Wz. In ﬁz, GUJ is still a gap set
since no two of its nodes are adjacent. By letting g(X) denote

the gap for the gap set X, we may write (for‘%2 still)

g(GUJ) = g(G) + g(J) - w(M),

where M is the set of nodes in H each of which is adjacent to

both & node in G and a node in J and w(M) is the sum of the

values of all the nodes in M, (When M is void, J is contained
entirely in K and w(M) = O.) Since g(G) = 0, g(GUJ) = g(J) = w(M).
Also, we have again that g(GU J) 1s nonnegative in.WZ. Sinee

g(J) = w(M) is the gap for J in WLI—’ it follows that this gap

is nonnegative, which is what we wished to show.

If possible, keep applying Step A or Step B or both to
get a sequence Wg,'ns, 1, 4 eee of reduced networks until we
are left with either the void network or with a network £ whose
node values and gaps are all positive, In the former case,
we will have obtained a balanced state for all of #. In the
latter case, we proceed as follows to reduce X to a network
in which there is at least one node with a zero value or one
gayv equal to zero,

Step Ce Choose any branch b ind . Assign to it the value x,
specified below, and decrease the values of b's nodes by X.
(But, do not delete b fromd.)

Let Il denote the network having the same graph as £ but
with the node values resulting after the application of Step C
toL. We shall say that a gap set G is adjacent to a node n

ir n.¢ G and n is adjacent to a node of G. During the transition
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from £ to Il’ every gap whose gap set is adjacent to one node
of b and is neither adjacent to nor contains the other node
of b is decreased by x, and every gap whose gap set is adjacent
to both nodes of b is decreased by 2x. All other gaps remain
unchanged during that transition., Now, choose for x that unique
positive value which makes at least one node value or gap in
Il equal to zero but does not render any node value or gap in
Jl negative, It follows that, if a balanced state can be found
for fl, then the addition of x to the found value for b and to the
two node values of b yields a balanced state for £

We now delete every node in ii whose value is zero and
then apply Step A or Step B or both to Il repeatedly until
either a void network is obtained or another network K having
only positive node values and positive gaps is found. In the
latter case, Step C is then applied to K. Continuing this
procedure, we will eventually arrive at the void network since
the original network is finite and at each application of Step A
or step B at least one branch is removed., 1The values aszigned
to the branches of Y as they are removed with the addition of
the values obtained while applying Step C constitute with the
originally given node values a balanced state for N. <1his can
be seen by reversing the process by which the network N was
decomposed.,

h. Necessary and safflclent conditions for more tnan one
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balanced’QPate. We will specify a tracing through a network
n along some nodes and branches by writing down the symbols
for tnose nodes and branches as they are met in the tracing,

For our purposes however it is important to distinguish between
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any branch (or node) and its appearances in the sequence. To
do so we shall refer to the former as a branch (respectively,
node) of the seguence and to the latter appearances as branch

terms (respectively, node terms) in the secguence. Thus, any

branch or node may appear many times as branch terms or node
terms in the sequence,
A walk is a (possibly infinite) alternating sequence of
branch terms and node terms wherein the terms immediately
ad jacent to each branch term in the sequence are the node terms for
the nodes of the corresponding branch. If the sequence is flnite
or semiinfinite, its terminal terms are node terms, The length
of a walk is the number of branch terms in it, and the walk

is called even (or odd) if its lengtah is even (respectively, odd),

A closed walk is a finite walk where the first and last node
terms are the same,

We now turn to the idea of a unit weighting of a finite
walke. Assign the value +1 or =~1 to every branch term of a
finite walk in such a fashion that the branch terms immediately
sdjacent to a branch term with the value +1 (or =1) have the
value -l(reSpectively, +l). That is, the branch=term values
+1 and -ifg;lernate as one traces the walk., <Then, assign to
any branch that contributes branch terms to the walk the sum
of all the values assigned to its branch terms in the seguence,

Assign to every other branch the value zerc. This assignment cf

an integer to every oranch in 7 will be called a unit weighting

of a finite walk, and the integer for any branch will be called

the weight of the branch. Note that a finite walk has exactly

two unit weightings,one of which can be obtained from the other

by reversing the signs of all branch values.
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A finite walk W will be said to be degenerate on & branch b

if a unit weignting of W results in a weight of zero for b.

W itself will be called degenerate if it is degenerate on every

branch. W will be called nondegenerate if it is not degenerate

on at least one branch. We shall say that W is admissible if
it is nondegenerate, closed, and even,

A homogeneous state for 7 is the assignment of real values

to the branches of M such that for each node the sum of the
values for the branches incident to that node ecuals zero,
A homogeneous state is called trivial if every branch value is

zero and 1is called npontrivial otherwise, A unit weighting of

any closed even walk is an example of a homogeneous state.
Theorem 2. A network Nl with given nonnegative node values

cannot have more than one balanced state if it does not contain
an admiscsible walke

. Proofs Assume the proportioning network has two_different
balanced states Bl and 52 for the given node values., Subtrsact
Bl from 82. That is, assign to each branch the value U, = Uq,
where Uy (respectively, u2) is the branch's value with respect

to bl (respectively, 52). this yields a nontrivial homogeneous

state B, = bl. _
Now, choose a branch bl having a nonzero value in b2 = bl.
Start tracing a walk by proceeding from one node n, ol bl along bl to

the second node n, of bl' Leave n, by proceeding along a branch
b2 whose value in B2 - Bl is not zero and of sign opposite to
that of bl; b2 exists by virtue ofthe fact that the sum of the
values in 82 = bl of the branches incident to Ny equals zero,

Continue tais procedure inusiinitely by leavirg each node
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along & branch wnoSé nonzeroc valiue has & sign opposite to that

of the branch along which the node was approached. <This generates
a semiinfinite walk W, Upon assigning +1 (or =1) to each branch
term in W if the corresponding branch has a positive (respectively,
negative) value, we get a proper unit weighting for any finite
subwalk F of W, Thus, every such F is nondegenerate on each

of its branches.

Since ¥ is finite, there must be a branch term e that occurs
more than once in W, Indeed, there will be a finite subwalk
having e as its first and last branch terms and such that e
appears nowhere else in it. Trace that subwalk. Suppose that
both tracings of the branch corresponding to e are in the same
direction. Then, that subwalk with its last node and last branch
deleted is a closed walk wl. It is also of even length since

the +1 and =1 branch terms alternate along Wl and the values

of the first and last branch terms of W, are of opposite signe

1

Thus, W, is an admissible walk,

1
If no branch term such as e exists in our one-ended walk W,
then there must be another branch term f having three consecutiwe
appearances in W such that a tracing of W passes through the
branch correspcnding to £ in tke same direction for the first
and third appearances and in the opposite directicn for the
second appearance., Let w2 be the closed walk having the first
appearance of f and the branch term preceding the third appearance
of £ as its first and last branch terms. Again, branch-term
values alternate in sign as W2 is traced and the first and last
branches of w2 have values of opposite sign. Hence, Ne is even,

Thus, we have again found an admissible walk W This proves tre

2.

theoren.
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The network of Figure 2, wherein every node is assigned
the value 1, shows that having an admissible walk is only a
necessary but not a sufficient condition for & network to
have more than one balanced state., It is easy to check that all
gaps are nonnegative so that the network has at least one balanced
state, But, in any balanced state, every end branch must have
the value 1 and therefore every branch of the inner square must
have the value O, Thus, there is exactly one balanced state,
even though the inner square comprises an admissible walk,

To obtain necessary and sufficient conditions for a network
to have more than one balanced state we introduce still another
definition. Let B be a balanced state in a network, and let
W be a walk with a unit weighting. W is said to be admissible

with respect to B if either (but not necessarily both) of the

following conditions is satisfied:
5
(1) Bvery branch with a postive weight has a nonzero value

A
in B.

(ii) Bvery branch with a negative weight has a nonzero value
in B,

Theorem 3. A necessary condition for a network with given
nonnegative node values to have more than one balanced state is
that, for every balanced state B, there exists a walk W such
that W is admissible with respect to Be

Proof. Let Bl and 82 be two different balanced states,
Generate an admissible walk W as in the proof of Theorem 2,
Assign a unit weighting to W such that +1 is assigned to the
branch terms whose branches have positive values in 82 - Bl.
(This can be done because the branch values found in B, = B, as

2 i i
W is traced alternate in sign.) Then, every branch that
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contributes terms to W and has a positive weight also has a
positive value in 82 - Bl' Since the branch values for Bl are
all nonnegative, W is admissible with respect to Boe This
completes the proof because B, can be any balanced state.

We define an incremental state V of a network to be an
assignment of values to the branches of the network in the
following fashion: Choose an admissible walk with a unit weighting
and choose some real number a, The value of any branch b is
a8 times the weight of be.

It follows that an incremental state is a homogeneous state,

Theorem l. A suffieient condition for a network with
given nonnegative node values to have more than one balanced
state is that there exist a balanced state B and a walk W such
that W is admissible with respect to B.

Proofe By multiplying the weights of a unit weighting of W
by -1 if necessary, we can insure that the branches of W with
positive weights have nonzero (and therefore positive) values in

Be Let b denote any branch with a positive weight, let k, be

b

the weight of b, and let a_ be the value of b in B, Let € > 0

b
be the minimum of the values ab/ | k | for all such b. Finally,
let V be the incremental state obtained by multiplying all the
branch weights by =6, where 0 < 8 S €, Then, every branch in tke
state B + V is nonnegative, Moreover, B + V satisfies all the node
conditions for the given node values of the network because V is
a8 homogeneous state. Thus, B + V is another balanced state.

Upon combining Theorems 3 and L, we get

Theorem 5. A necessary and sufficient condition for a

network with given nonnegative node values to have more than

one balanced state is that there exist a balanced state B and
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a walk W such that W is admissible with respect to Be

Figure 3 shows an example of a network having a balanced state
(the branch values are indicgted with parentheses, the node values
without) but for which the necessary condition of Theorem 3 is
not satisfied. This can be seen by examining a unit weighting for
the admissible walk of that network resulting from a tracing once
around the hexagon,

Figure l shows a network for which the necessary and sufficient
condition of Theorem 5 is satisfied. Figure lL(a) shows one
balanced state, L(b) an incremental state, and lL(c) the sum of
those two states, In terms of the proof of Theorem L, we have
chosen an admissible walk that traces the entire network in a
single "figure eight" and have chosen the unit weighting such
that it is the two horizontal branches and the single vertical
branch that have the po%&ive weights, As a result, € = 2 for
Figure li(a). We have then set 6§ = =1 to get the incremental
state of Figure l(b).

Since the proofs of Theorems 1 and L are constructive, they
provide a means for finding all the balanced states for a network
ﬁith given nonnegative node values, The proof of [heorem 1
yields at least one balanced state, if any exist. Then, the
proof of Theorem L yields many others; in fact, it allows all
the other balanced states toc be found because the difference between
any two balanced states is a finite sum of incremental states,
as we shall now show,

Theorem 6. Let Bl and B2 be any two balanced states of a
network with given nonregative node values. Then, BE = Bl +

?=l Vi, where each Vi is an incremental state and m is finite,

Note. This is equivalent to saying that every homogeneous
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state 1s a finite sum of ineremental states.

Proof. By proceeding as in the proof of Theorem 2, we
can generate a walk W, all of whose branches have nonzero
values in 82 - Bl which alternate in sign as W 1s traversed. Let
b be any branch of W, let y be the value of b in Bz v Bl s
and let kb be the weight of b under a unit weighting of W. All
k, are nonzero by virtue of the way W is generated. Let c be
that value of ch/kbl which is smallest for all b in W. Thus,
¢ > 0, Assign to b the value t[kb}c where the plus (minus) sign
is chosen if b has a positive (respectively, negative) value in
- 5

B Assign the value zero to all branches not in W. This

2 1®
yields an incremental state V, such that each branch has a value
in By + Vl that does not lie outside the closed interval between

its values in Bl and B2' More over, for each branch d for which
c = ]cd/kd[, the value of d in B; + V; equals its value in B,.
That is, B3 = Bl + Vl is a balanced state that coincidgs with B2
on all such branches de.

Repeat this procedure with Bl replaced by 83. This gives a
new balanced state Bh’ where at least one more branch has the same
value in Bu as it does 1in B2. Moreover, the values of all the
branches d are unch&nged in going from B3 to Bh' (Their values
in B, - B3 are zero So that they do not appear in the new walk,)

Continuing this procedure, we get é sequence of balanced
states, where at each step at least one more branch has its
value changed to the value it has in 52 while all the branches
whose values were previously converted to their values in 82
are unaf:ected. Since there are only a finite number of branches,

tae procedure will terminate after m steps with the last balanced

state being 52'



Now, let V, be the incremental state generated at the ith

step. Then, B, =B, + X7 . V.
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