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.I.

THE BALANCEDSTATES OF A PROPORTIONINGN~TWORK

A.H.Zemanian

~psJ;rac~. Proportioning networks that need not be bipartite

arise as models of certain hypothetical marketing systems. This

work examines the balanced states of such networks. Necessary

and sufficient conditions for the existence of at least one

balanced state as well as for the existence of more than one

balanced state are given.

1. Bipartite proportioning networks model certain marketing

systems in underdeveloped economies [1]. ~hey permit the

computation of time series in prices and quantities of a particular

commodity at the various markets by means of a system of nonlinear

difference equations that describe the flows of that commodity

along the branches of a bipartite network whose nodes represent

the markets. There does not seem to be any way of extending

the theory of (lJ to marketing networks ttat are not bipartite.

Nevertheless, we can postulate a different kind of marketing

system involving many commodities which is modeled by a not

necessarily bipartite proportioning network. This is described

in the next section.

A balanced state in either of these two kinds of marketing

systems is one wherein the various time series in prices and

quantities maintain constant values and in addition the flow

in one direction along any branch always equals the flow in the

other direction. The objective of this work is to investigate

the balanced states of proportioning networks that need not be

bipartite. In ~ection 3 we extend Theorem 3 in [1] for the
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existence of at least one balanced state to nonbipartite pro-

portioning networks. In Section 4 we establish necessary ani

sufficient conditions under which there is more than one

balanced state.

~oth~~~cal m~~ti~3~ste~ mod~ledb~~

nonbipartite proportioning network. We now describe a multi-
~~"~~'~~~' ~~'~-

commodity marketing system that leads to a proportioning network

that need not be bipartite. Although the assumptions employed

herein are considerably less realistic than those used in [1],

they do lead to at least one extreme case wherein nonbipartite

proportioning networks arise.

Assume there exists a geogr~phic region isolated from all

outside trade. The region is partitioned into a finite number

of localities, each of which produces a particular commodity

both for domestic consumption within the locality and for trade

with the other localities. The commodity produced in each region

is different from those produced in all the other regions.

Assume furthermore that there is a general shortage of all goods,

as a result of which the governing body of the entire region

has decreed rigid price controls by specifying the price of

ever'y commodity. For simplicity, we normalize the unit of

quantity for each commodity in such a way that those units all

have the same monetary value.

Markets meet periodically an& on the same day in all

localities. An authority in each locality decides on each

market day how much of the goods produced in that locality ~

to be made available for domestic consumption and how much ~

to be traded for the goods of the other localities. Each trader
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always operates between exactly two marKets, trading in one

market on one market day, proceeding to his other market on

the next market day, returning to the first market on the

third market day, and so forth. When two markets are so

connected by a trader, we assume that there are at least two

traders traveling between those two markets in opposite directions.

Since demand always exceeds supply everywhere, each trader

sells all the goods he has brought with him to a particular

market on a particular day and then acquires as many goods ~

the authority in that locality is willing to sell to him.

He is willing to do so since, because of the price controls

he makes a fixed monetary profit on e~ch unit he transports.

On the other hand, each local authority desires all the goods

offered him by the traders and wishes to sell all of the supply

of the local product, other than that set aside for domestic

consumption, to the traders in order to maximize the amount

of money received. Finally, in order to treat each trader

.. equitably, the local authority allocates the local supply on

any given market day in such a fashion that that day's relative

prices of the traders' commodities measured with respect to

the local commodity are all the same. This means that he

allocates the local supply to the traders in proportion to the

amounts of the goods provided by the traders. These assumptions

allow the relative price of any good to varJ' from market day

to market day even though its monetary price renlains fixed.

(We are also assuming that every agent always has enough money

to buy whatever goods are offered to him at the fixed price.)
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All this is represented by a proportion ing network with

exogeneously given node values as illustrated in F'igure1.

Each local market is represented by a node. Two nodes,

between which at least one trader operates (and therefore at

least two traders operate in opposite directions), are connected

by two arcs oppositely directed and are said to be adjacent;

otherwise, there are no arcs between them. Throughout this

paper, every network will be assumed to be finite. The

integer values of the variable t represent the market days.

To the arc aik directed from node ni to node nk we assign the

value sik(t), which denotes the amount of the commodity beirg

shipped from node ni to node nk between market day t and market

day t ,.1. On the other hand, we denote by si(t) the total

supply of the local product made available to all the traders

at the market ni on market day t. Therefore, si(t) = Z:k sik(t).

A term s (t) in this summation is taken to be zero if n and
pq p

n are not adjacent. The proportioning principle under whichq

the local authorities allocate supplies leads to the following

equation.

(2.1) sik(t)
= ski(t - 1)

{ . ki (t - 1) S i (t)

HeI'e, every quantity is a nonnegati ve number. Upon writing

(2.1) for each of the arcs aik in the proportioning network,

specifying the s.(t) as positive numbers for all i and all1

t = 1, 2,3, ... , and then assigningthe initial values ski(O)

such that, for each i, ski(O) is positive for at least one k,

we can solve the resulting system of eQuations recursively to

determine each time series {sik(t)};=l.
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Although the single-branch structure of the proportioning

networks of [11 looks quite different from the double-arc

structure of Figure 1. the latter reduces to the former in the

special case where the proportioning network is bipartite.
#

Indeed, let M and N denote the node sets/inthe two parts of a

Then, for every t, the s (t),
ik

where ni E !vIand nk E N, depend only on the Spq (t - 1), where

Similarly, the sik(t) for ni E Nand nk E M

bipartite proportioning network.

n E Nand n EM.
P q

depend only on the s (t - 1), where n E M and n E N.pq P q

Consequently,the system of equations (2.1)describingthe

behavior of the proportioning network can be decomposed into

two systems, each of which does not depend on the other.

Moreover, each one has precisely the form of the equations

obtained in [lJ, where the signals sik(t) flow from, say, M

to N just after the odd values of t and from M to N just after

the even values of t. Therefore, we no longer need to represent

a transportation leg by two separate arcs and may use a

single branch, as was done in (lJ.

3. Necessary and sufficient conditions for at least one
~~-,~~~ ~--~,~~,,-," '., .---'---~-'-~-'-~~~~'~~-~-

balanced state. A balanced state for any proportioning network
~~-~~- ,,--.'

~ of the form shown in Figure 1 is an infinite time series ina

the set of all arc and node values such that

(i) the value for any arc or node does not vary with

time t (so that we may drop the arg~~ent notation in t),

(ii) sik = ski ~ 0 for every i and k, and

(iii) for each i, ski> 0 for at least one k.

When (i) holds, it follows from the governing equation (2.1)

that the conjunction of (ii) and (iii) is equivalent to the
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condition:

(3.1) si
= L ski

k
> 0

for every i. As before, we take the term ski in the summation

of (3.1) to be ~ero if node nk is not adjacent to node ni.

(3.1) will be called the node condition at node ni. When it

holds at all the nodes, we shall say that na satisfies the

node conditions. ,'~Since sik = ski for every k and i, we may

replace each pair of oppositely directed arcs by a single

(undirected) branch. The resulting network has no branches in

parallel and, as before, is finite. Throughout the rest of

this paper, we shall always assume that these two conditions

hold for every network, but we will not require in general that

the network be either connected or bipartite. Any collecticn

of components of a network n will be called a disioint subnetwork

of n. Let k be a disjoint subnetworkof n; n - ok. will denote

the network obtained by deleting all the nodes (and therefore

all the branches as well) of 'J<.. from n.
Equivalent to our prior definition is the definition of

a balanced state for n as a set of time-invariant
positive node values and time-invariant nonnegative
branch values such that the node condition (3.1) is satisfied

for every i 8 Here, si denotes the value of node ni and

sik = ski denotes the value of the branch connecting ni to nk8

We shall somewhat relax this latter definition of a balanced

state for Yl by merely requiringthat all the si be nonnegative

rather than positive.

A ~ set G is a nonvoid set of nodes in n such that no

two nodes in G are adjacent. (In particular, any single node of
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~ is a gap set.) The gap set G is &aid to be in a subnetwork

m of 11 if G is contained in the node set of m. (In particular,

m can be void in branches and therefore just a collection of

nodes in rt.)

If N is a set of nodes in n, the adjacenc~ A of N is the

set of nodes such that each node in A is not in N but is adjacent

to at least one node in N.

A ~ g is a value assigned to a gap set G and is defined

as follows. Let H be the adjacency of G. Let wG(and wH) be

the sum of the node values for all the nodes in G (respectively,

H). Then,g is definedto be wH - wG. We shallsay thatg

is the gap ~ G. Given the subnetwork~ of n, g is said to

be a gap in m if it is the gap for some gap set in rYl.

Theorem 1. Let there be given a ne~work n with specified

nonnegative node values. There exists a set of nonnegative

branch values, which with the given node values comprise a

balanced state for 'n, if and only if all the gaps in 11 are

nonnegative.

Proof. "Only if": Assume n has a balanced state, choose

a gap set G in n, and let H, wH' wG' and g be defined as above.

Upon expanding wH and wG as sums of branch valu.esby using (3.1),

we see that the sum wG appears as par-tof the sum wH.

all branch values are nonnegative,g = wH - wG ~ O.

"If": Assume that all gaps in n are nonnegative.

Since

If .n

has any nodes whose values are zero, assign the value zero

to all the branches incident to those nodes and then delete

those nodes and branches. This does not alter the gap values

for those gap sets not containing the deleted nodes. Thus,
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all gaps in the resulting network nl are nonnegative.

Next, assume that a disjoint subnetwork?n1 of n1 (ml might

be all of nl) is bipartite with respect to the gap set G (i.e.,

every branch of ml connects a node of G to a node not in G) and

that the gap for G is zero. Since all other gaps in G are

nonnegative, it follows from Theorem J of [lJ that there exist

values for the branches in1nl which together with the node

values comprise a balanced state for -ml.

Step A. Assign those values to the branches of m1 and

then delete ml.

Let 7/2 = 171 - m1. (When '1171is void,. t12 = n 1.) Assume

that ~2 has a gap set G whose gap is zero and let?n2 be the

smallest disjoint subnetwork of n2 that contains G. Assume

that n72 is not bipartite with respect to G. Let H be the

adjacency of G, let I be the set of nodes in the adjacency of

H that are not in G, and let K be the set of nodes that are not

in G U H U I. (I and K may be void.)

Step B. Assign the value zero to every branch connecting

two nodes of H and also to every branch connecting a node of

H to a node of I. Then, delete all such branches.

This deletion does not alter the gaps in G, but it will

decrease the gaps in I.

Let nJ be the network that n2 becomes after Step B is

applied. Let ~~ be the disjoint subnetwork of nJ having the

node set G U H. m J is biparti te wi th respe ct to G. Horeover,

the gap for G is zero and the other gal-'sin G are all nonnegative.

So, agaLn by 'rheoremJ of [1], we can aplJly Step A to mJ.

Let '714 = nJ - n?J. rn4 is the disjoint subnetwork of YlJ
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havingthe node set I U K. ) We wish to show that all the gaps

in n4 are nonnegative. Let J be any gap set inn4. Now,

consider the prior network r/28 In 'Yl2' G U J is s~ill a gap set

since no two of its nodes are adjacent. By letting g(X) denote

the gap for the gap set X, we may write (for n2 still)

g (G U J) = g(G) + g(J) - w(M),

where M is the set of nodes in H each of which is adjacent to

both a node in G and a node in J and w(M) is the sum of the

values of all the nodes in M. (When M is void, J is contained

entirely in K and w(M) = 0.) Since g (G) = 0, g (G V J) = g (J) - w (1'.1).

Also, we have again that g(G U J) is nonnegative in 'n2. Sinre

g(J) - w(M) is the gap for J in n4' it follows that this gap

ia nonnegative, which is what we wished to show.

If possible, keep applying Step A or Step B or both to

get a sequence 112' '713' 114' ... of reduced networks until we

are left with either the void network or with a network l whose

node values and gaps are all positive. In the former case,

we will have obtained a balanced state for all of n. In the

latter case, we proceed as follows to reduce ~ to a network

in which there is at least one node with a zero value or one

gap equ~l to zero.

step- C.' Choose any branch b in'£ . Assign to it the value x,

specified below, and decrease the values of b's nodes by x.

(But, do not delete b from 1. . )

Let 11 denote the network having the same graph as £. but

with the node values resultingafter the applicationof Step C

to :t. . We shall say that a gap set G is adjacent to a node n

if n ~ G and n is adjacent to a node of G. During the transition
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from 1 to ll' every gap whose gap set is adjacent to one node

of b and is neither adjacent to nor contains the other node

of b is decreasedby x, and every gap whose gap set is adjacent

to both nodes of b is decreased by 2x. All other gaps remain

unchanged during that transition. Now, choose for x that unique

positive value which makes at least one node value or gap in

11 equal to zero but does not render any node value or gap in

/1 negative. It follows that, if a balanced state can be found

for Jl' then the addition of x to the found value for b and to the

two node values of b yields a balanced state for J.

We now delete every node in Jl whose value is zero and

then apply Step A or Step B or both to £1 repeatedly until

either a vold network is obtained or another network 7< having

only positive node values and positive gaps is found. In the

latter case, Step C is then applied to k. Continuing this

procedure, we will eventually arrive at the void network since

the original network is finite and at each application of Step A

or .::>tepB at least one branch is rerGoved. The values aS8igned

to the branches of n as they are removed with the addition of

the values obtained while applying Step C constitute with the

originally given node values a balanced state for n. 'llhiscan

be seen by reversing the ~rocess by which the network n was

decomposed.

4. Necessary and sufficient conditions for more than one
~~~--,~~-~, ,~ ~-,.-~ ~ ~..~-~-'~"'-'-"""""'---'-""---"'~

balanced state.
~"-"" ..-- We will specify a tracing through a network

~ along some nodes and branches by writing down the sJwbols

for those nodes and branches as they are met in the tracing.

For our purposes however it is important to distinguish between



11

any branch (or node) and its appearances in the sequence. To

do so we shall refer to the former as a branch (respectively,

node) of ~ sequence and to the latter appearances as branoh

terms (respectively, node terms) in the sequence. Thus, any

branch or node may appear many times as branch terms or node

terms in the sequence.

A walk is a (possibly infinite) alternating sequence of

branch terms and node terms wherein the terws immediately

adjacent to each branch term in the sequence are the node terms for

the nodes of the corresponding branch. If the sequence is finite

or semiinfinite, its terminal terms are node terms. The length

of a walk is the number of branch terms in it, and the walk

is called ~ (or odd) if its length is even (respectively, odd).

A closed walk is a finite walk where the first and last node

terms are the same.

We now turn to the idea of a unit weighting of a finite

walk. Assign the value +1 or -1 to every branch term of a

finite walk in such a fashion that the branch ter-ms imrnediatel~'

adjacent to a branch term with the value +1 (or -1) have the

value -l(restJectively, +1). 'l'hatis, the branch-ter'Irl values
ShD..td

--,
+1 and -1 alternate as one traces the walk. 'lhen, assign toA

any branch that contributes branch terIT-sto the walk the sum

of all the values assigned to its branch terms in the sequence.

Assign to every other branch the value zero. This assignment of

an integer to every branch in n will be called a unit we.ighting

of ~ finite walk, and the integer for any branch will be called

the weifSht of the branch. Note that a finite walk has exactly

two unit weightings,one of which can be obtained from the otber

by reversing the signs of all branch values.



12

A fini te walk V~will be said to be del2:enerate Qil ~ branch b

if a unit weignting of W results in a weight of zero for b.

W itself will be called degenerate if it is degenerate on every

branch. W will be called nondeRenerate if it is not degenerate

on at least one branch. We shall say that W is admissible ll'

it is nondegenerate, closed, and even.

A homogeneousstate for r; is the assignmentof real values

to the branches of n such that for each node the sum of the

values for the branches incident to that node equals zero.

A homogeneous state is called trivial if every branch value is

A unit weighting ofzero and is called nontrivial otherwise.

any closed even walk is an example of a homogeneous state.

Theorem 2. A network n with given nonnegative node va~es

cannot have more than one balanced state if'it does not contain

an admissible walk.

, Proof. Ass'U...'11ethe proportioning network has two different

balanced states Bl and .62 for the given node values. Subtract

Bl from B28 'l'hatis, assign to each branch the value u2 - ul'

where ul (respectively, u2) is the branch's value with respect

to Hl (respectivelJr, D2). '.rhisyields a nontrivial homogeneous

state .62 - Dl.

NOH, choose a branch bl having a nonzero value in b2 - bl.

Start tracing a walk by proceeding i'romone node nl of bl along bl to

values in B2 - 131 of the branches incident to n2 equals zero,

Continue ttl1.spx'ccedm'e inuJ,fi rJ.tely by leavIng each node

the
second node n2 of ble Leave n2 by proceeding along a branch

b2 whose value in B2 - Hl is not zero and of sign opposite to

that of bl; b2 exists by virtue ofthe fact that the sum of the
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along a branch wnose nonzero value has a sign opposite to that

of the branch along which the node was approached.
"

~his generates

a semiinfinite walk W. Upon assigning +1 (or -1) to each branch

term in W if the corresponding branch has a positive (respectively,

negative) value, we get a proper unit weighting for any finite

subwalk F of W. Thus, every such F is nondegenerate on each

of its branches.

Since n is finite, there must be a branch term e that occurs

more than once in W. Indeed, there will be a finite subwalk

having e as its first and last branch terms and such that e

appears nowhere else in it. Trace that subwalk. Suppose that

both tracings of the branch corresponding to e are in the same

direction. Then, that subwalk with its last node and last branch

deleted is a closed walk Wl. It is also of even length since

the +1 and -1 branch terms alternate along Wl and the values

of the first and last branch terms of Wl are of opposite sign.

Thus, Wl is an admissible walk.

If no branch term such as e exists in our one-ended walk W,

then there must be another branch term f having three consecutive

appearances in W such that a tracing of W passes through the

branch corresponding to f in t~e same direction for'the first

and third appearances and in the opposite direction for the

second appearance. Let W2 be the closed walk having the first

appearance of f and the branch term preceding the third appearance

of f as its first and last branch terms. Again, branch-term

values alternate in sign as W2 is traced and the first and last

branches of W2 have values of opposite sign. Hence, W2 i~ even.

Thus, we have again found an admissible walk W2. ~his proves the

theorem.
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The network of Figure 2, wherein every node is assigned

the value 1, shows that having an admissible walk is only a

necessary but not a sufficient condition for a network to

have more than one balanced state. It is easy to check that all

gaps are nonnegative so that the network has at least one balanced

state. But, in any balanced state, every end branch must have

the value I and therefore every branch of the inner square must

have the value O. Thus, there is exactly one balanced state,

even though the inner square comprises an admissible walk.

To obtain necessary and sufficient conditions for a network

to have more than one balanced state we introduce still another

definition. Let B be a balanced state in a network, and let

W be a walk with a unit weighting. W is said to be admissible

with respect to B if either (but not necessarily both) of the

following conditions is satisfied:
i

(i) Every branch with a po~tive weight has a nonzero value
in B.

(ii) Every branch with a negative weight has a nonzero value

in B.

'fhe orem '3. A necessary condition for a network with given

nonnegative node values to have more than one balanced state is

that, for every balanced state B, there exists a walk W such

that W is admissible with respect to B.

Proof.
Let Bl and B2 be two different balanced states.

Generate an admissible walk W as in the proof of Theorem 2.

Assign a unit weighting to W such that +1 is assigned to the

branch terms whose branches have positive values in B2 - Bl.

(This can be done because the branch values found in B2 - B1 as

W is traced alter-inatein sign.) Then, every branch that
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contributes termB to Wand has a positive weight also has a

positive value in B2 - BI. Since the branch values for Bl are

all nonnegative, W is admissible with respect to B2. This

completes the proof because B2 can be any balanced state.

We define an incremental state V of a network to be an

assignment of values to the branches of the network in the

following fashion: Choose an admissible walk with a unit weighting

and choose some real number ~. The value of any branch b is

~ times the weight of b.

It follows that an incremental state is a homogeneous state.

Theorem ~. A sufficient condition for a network with

given nonnegative node values to have more than one balanced

state is that there exist a balanced state B and a walk W such

that W is admissible with respect to B.

Proof. By multiplying the weights of a unit weighting of W

by -1 if necessary, we can insure that the branches of W with

positive weights have nonzero (and therefore positive) values in

B. Let b denote any branch with a positive weight, let kb Qe

the weight of b, and let ab be the value of b in B. Let e > 0

be the minimum of the values ab/ I kb I for all such b. Finally,

let V be the incremental state obtained by multiplying all the

branch weights by -0, where 0 < 0 S e. Then, every branch in tre

state B + V is nonnegative. Moreover, B + V satisfies all the node

conditions for the given node values of the network because V is

a homogeneous state. Thus, B + V is another balanced state.

Upon combining Theorems 3 and 4, we get

Theorem 5. A necessary and sufficient condition for a

network with given nonnegative node values to have more than

one balanced state is that there exist a balanced state Band
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a walk W such that W is admissible with respect to B.

Figure 3 shows an example of a network having a balanced state

(the branch values are indicated with parentheses, the node values

without) but for which the necessary condition of Theorem 3 is

not satisfied. This can be seen by examining a unit weighting for

the admissible walk of that network resulting from a tracing once

around the hexagon.

Figure 4 shows a network for which the necessary and sufficient

condition of Theorem 5 is satisfied. Figure 4(a) shows one

balanced state, 4(b) an incremental state, and 4(c) the sum of

those two states. In terms of the proof of Theorem 4, we have

chosen an admissible walk that traces the entire network in a

single IIfigureeight" and have chosen the unit weighting such

that it is the two horizontal branches and the single vertical
.

~
branch that have the postive weights.A As a result, e = 2 for

Figure 4(a). We have then set 0 = -1 to get the incremental

state of Figure 4(b).

Since the proofs of Theorems I and 4 are constructive, they

provide a means for finding all the balanced statesfor a network

with given nonnegative node values. The proof of Theorem 1

yields at least one balanced state, if any exist. Then, the

proof of Theorem 4 yields many others; in fact, it allows all

the other balanced states to be found because the difference between

any two balanced states is a finite sum of incremental states,

as we shall now show.

Theorem 6.
Let HI and B2 be any two balanced states of a

network with given nonnegative node values. Then, b2 = Bl +

L ~=l Vi' where each Vi is an incremental state and m is finite.

~. This is equivalent to saying that every homogeneous
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state is a finitesum of inc~emental states.

Proof. By proceeding as in the proof of Theorem 2, we

can generate a walk W, all of whose branches have nonzero

values in B2 - Bl which alternatein sign as W is traversed.

b be any branch of W, let cb be the value of b in B2 - Bl '

and let kb be the weight of b under a unit weighting of W.

L~

lil

kb are nonzero by virtue of the way W is generated. Let c be

that value of !cb/kbl which is smallest for all b in W. Thus,

c > O. Assign to b the value tJkblc where the plus (minus) sign

is chosen if b has a positive (respectively, negative) value in

B2 - Bl. Assign the value zero to all branches not in W. This

yields an incremental state VI such that each branch has a value

in Bl + Vl that does not lie outside the closed interval between

its values in Bl

c = /cd/kdl, the

That is, B3 = Bl

on all such branches d.

and B2. Moreover, for each branch d for which

value of d in Bl + VI equals its value in B2.

+ Vl is a balanced state that coincides with B2

Repeat this procedure with Bl replaced by 53. This gives a

new balanced state B4' where at least one more branch has the same

value in B4 as it does in B2. Moreover, the values of all the

branches dare unchtmged in going from B3 to B4. (Their values

in B2 - 53 are zero so that they do not appear in the new walk.)

Continuing t~is procedure, we get a sequence of balanced

states, where at each step at least one more branch has its

value changed to the value it has in B2 while all the branches

whose values were previously converted to their values in B2

are unaflected. Since there are only a finite number of branches,

the procedure will terminate after m steps with the last balanced

state being b2.
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Now, let Vi be the incremental state generated at the ith

s~ep. Then, B2 = Bl + LC~=l Vi.
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