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Abstract. A model is constructed for a two-level periodic
marketing network wherein traders buy goods from farmers in a
number of spatially separated markets and transport them to
urban centers for sale to consumers, It is assumed that there
is no market news dissemination. As a result, market disturbances
are transmitted throughout the network at a rate limited by the
tfading activity, Moreover, distant markets may even be isolated
from local disturbances. This model possesses one and only one
equi  ibrium state, That equilibrium state is asjmptotically
stable If the slopes of the various supply and demand functions
are sufficlently restricted in the vicinity of the equilibrium

state,.



l. Introduction

In certain African countries such &s Nigeria, Kenya, and
Sierra Laone there exist two=lev:l marketing systems having
essentially no market news [4]. Figure 1 is a schematic
reprosentation of such a system. The nodes mj, where j = 1, 2,
3, eee » denote farmers' markats and the nodes n, ., where k =
1, 2, 3, eee , denote consumers' markets for a particular commodity.
The farmers' markets oren periodically, perhaps one day out of
every four lays, We srall assume that the market days for every

n, occur at the odd integer values of the time variable t: t =

J

eee 5 =3, "L, 1, 3, eee o At each t farmers in the rural areas

of some geozraphic region bring their supplies of the commodity

to the mj and sell them to tradeis, The traders in turn transport

those supplies to the urban cente¢rs of the region and sell them

to consumer: between the times t and t + 2, As a notational

conv3nience we shall assume that these sales to urban coisumers

occu~ at the evén integer time valueun t + 1, Each urban center

comprises one consumers! market A We assume that pure competition

occurs in every m; anc every n,. In addition there is local demand

in each mj. Thus, in mJ traders are competing not only among

themselves as buyors but also againsti domestic consumers,
Furthermore, there is ¢ssentially no market news for the

dissimination of price and cuantity conditions in the various

markets., In fact, Jones [4 p. 116] reports the tendency of

traders "to buy regularly in the same producing centers, and

10t " o know what prices are elsewhere, or if they do, to buy

there, Further than this, “raders in mo3t of the commodities

Inclided in our study confeiss tu knowing very little about prices



in nearby towns that are also consuming centers.," We shall
idealize this situation by assuming that each trader restricts
his activitles to one farmers'! market and one consumers' market
and is Iignorant of the conditions of the markets in which he
does not trade,

In this paper we develop a mathematical analysis of such
a two-level marketing system, It is based upon some assumed
behavior for the agents in the system as expressed by various
supply and demand curves, These lead to a system of nonlinear
difference equations from which time series in the prices and
quantitles exchanged can be recursively computed, We then show
that the qualitative behavlor deseribed by Jones [L4; p. 119]
for the propagation of a disturbance throughout the marketing
system is reproduced by our model, Furthermore, we prove that
every marketing system satisfying our assumptions has one and
only one equilibrium state for a given set of supply curves in
the farmers' markets, That equilibrium state is asymptotically
stable if the supply and demand curves satisfy certain sufficiently
strong restrictions on their slopes,

We have previously given another analysis [8], [9] of this
kind of marketing system, but the present analysis adopts a
radically different approach. The prior work assumes that
traders maintain conceptions of normal prices in the markets
and adjust the amounts they buy in the farmers' markets in
accordance with the deviations of prices from their normal values,
Moreover, the resulting analysis has points of similarity with
the classical cobweb phenomenon. (See. for example, [21, [3],

£
[61, and [7]e) The present work assumo%that each trader has a



normal capacity for shipment (e.ge., the size of his truck) and
adjusts the price he is willing to pay in mJ for that amount of
goods,

Other differences between these works are as follows,
The basic equations governing the dynamic behavior of the
afstem are somewhat simpler in the former work, although their
derivation is more complicated, Also, the assumptions imposed
there seem to be less realistic than those of the present work.
In fact, the most severe assumption of the f'ormer work is that
the price elasticity of demand (of anticipated supply) in mj
(respectively, in nk) for the aggregate of all traders operating
between mg and n, 1s independent of k (respectively, j)e One
result of this is that all the traders in a consumers' market
might cut off thelr activities if price deviations become too
large, But, if they do, they do so simultaneously and éan never recover
activity once it has stopped. Consoquently, the former work is
restricted to moderate price deviations around normal valueé.
No such assumption of common elasticities is imposed in this
work, and, although trading can cutoff, it will restart once
price conditions return to more normal values, Still another
fundamental difference is that the former work requires the
supply curves of the farmers in the m.1 to be perfectly 1inelastic,
whereas the present work takes those curves to be sloping,
On the other hand, it should be pointed out that the former work,
having more structure, leads to certain interesting mathematical
questions that do not arise in the present work. So, although
the present work is perhaps more realistic and allows stronger

conclusions to be drawn, the former work remains of interest



from the mathematical point of view,
2e The Model
We assume throughout that the two-=level marketing network

N, 1llustrated in Figure 1, has a finite connected simple graph,
which is bipartite with respect to the partition of its nodes
into the set of farmers' markets and the set of consumers'
markoets, There exists a branch joining a farmers' market and a

consumers' market if and only if there are traders available
for transporting goods between those two markets. In each
farmers' market m, at time t, the farmers supply the quantity

J

S.(p, t) if the price is p, as shown in Figure 2. Thus, the

J

supply curves are allowed to shift from one market day to another.
On the other hand, we take domestic demand from local consumers
at m._l to be determined by the fixed demand curve Lj(p) shown
in Figure 2, (Essentlally the same analysis would hold if we
allowed L, to shift from one market day to another,)

To model the aggregate behavior of all the traders between
two given markets, say, m.1 and n, , we first postulate the
behavior of the ith individual trader between those markets as
follows. <That trader restricts his activities to the markets

m, and n, and may or may not transport goods between them

J
depending on the prices. In particular, at time t he views the

the last received price Pk(t-l) in n_as the most likely value
of Pk(t+1J. Moreover, we assume that his cost T}k
one unit of the commodity from m.1 to n, and selling it in n,

of transporting

remains fixed with respect to time (but we allow ?ﬁ‘to vary as
i varies), Thus, at time t that traders anticipated profit in

selling one unit in Nk at time t+l is



ey e, |
Pk(t 1) = T

Jk - Hj(t)’ (l)

where RJ(t) is the price in m, at t, Finally, we assume that
each trader possesses a limited capacity for the transportation
of goods, He refuses to acquire any goods in m, at t if (1) 1s
negative, but, as (1) increases into positive values, the amouht he
buys rapidly increases until his capacity is filledé. In short,
we assume that the demand curve of the ith individual trader
looks like the curve of Figure 3.

Since there can be many traders between my and.nk each having
perhaps a different Tik’ the aggregate demand cﬁrve in m‘1 for
all those traders will look like that of Figure l, where Tjk =
min, Ték is the largest price difference Pk(t-l) - Rj(t) below
which all treders between m, and n,_ will refuse to acquire goods
in mJ « In accordance with the preceding paragraph, we shall
assume that the aggregate demand curve 1n mj at t of all the

traders between rn‘1 and n, is given by
ij[Pk(t-l) = R, p] _ (21

where VJk(x) is a continuous function on == < x < =« that equals
zero for x S 0, is strictly increasing for x > O, and tends

to a finite limit V., (=) as x —>=, The stipulation that the

k
monotoniclity of ijdbe strict on the positive real line 1s imposed
to avoild certain technical problems of a mathematical nature;
it can be supported by noting that traders will tend to stretch
their transportation cepacities (perhaps by overloading their

trucks) as anticipated profits become more and more lucrative.

Given any node v of a graph, we define the adjacency of v



as the set of all nodes that are adjacent to v,

The aggregate demand curve DJ(p, t) inm, at t is the sum

J

of the demand curves for the local consumers and the various

traders at mye Thus,

e : b3 : 1Y - -
Dy (p, t) Li(p) + ﬁEkj ij[Pk(t 1) = 2y, D] (3)

where K, 18 the index set for the adjacency of m The price

J
(t) at which the market m

JC

R clears at t is the value of p for

J
which

J

Dj(p, t) = SJ(p, t). (4)

Under the assumptions stated below there will be one and only
one such value Rj(t). Consequently, the amount acquired by the
local consumers is LJ[RJ(t)], and the amount transported by the

traders from m, to nk for sale at t+l is

J
Sy(t) = vjk[Pkw-l) gy Rj(t)]. (5)
We next assume that traders do not store goods; they sell
the goods they have on hand at time t+l for whatever price they
can gete. Thus, the supply curve in n, at time t+l is completely
inelastic; that is, it is a vertical line intersecting the

quantity axis at the value

C(t) = 2 5y(t) (6)
Jed,
where J, 1is the index set of the adjacency of ny. On the other

hand, we take the demand curve Hk(pJ foﬁthe consumers in n, to
be fixed with time and of the shape shown in Figure 5. Thus,

the market n, will clear at a unique price Pk(t+l) if the



inverse Gk of the demand curve Hk is a well=defined function on
0 S g <=, We shall relaex this condition a bit by allowing Gk(O)

to be either finite or infinite. <Thus, we may write

P (t41) = Gk[Ck{tJ]- (7)

In the event that Ckgb2)= 0 and Pk(t-l) = «, the value used
for (5) in (3) and (6) (as well as in (8) and (9) below) is the
finite number ij(*).

Upon combining equations (3), (4), (5), (6), and (7), we
obtain the two basic equations for our model: For every jJ,

sJ[RJ(tJ._ t] = LJ[RJ(t)] + kze“xj vjk[Pk(t-l) - 'rjk - Rj(t)] (8)

and, for every k,
Pk(t+l) = Gk{:z: ij[Pk(t-l) - Tjk - Rj(tJ]} (9)
Jch
We now list all the assumptions that we shall impose on
the various supply and demand functions of the marketing network

N throughout this paper,

Conditions I:
Il' Lj(p) is a continuous nonnegative function on 0 < p < =
and strictly decreasing on 0 < p < Rg S e, If R? <=, Lj(P) =0

on R Sp<e, IfRf=we L

J _ J J
I,. Yor each fixed t, S

(p)—>0 as p—> =,

j(p, t) is a continuous nonnegative
function on 0 S p < =, equal to zero on 0 S p S R?(t), and

strictly increasing on R?(t) < p <=, where_Rg(t) < R;.

13. ij(x) is a continuous nonnegative function on

== < X < * such that V,, (x) = 0 for x S 0, V k(x} is strictly

Jk J



increasing on 0 < x < =, and ij(x) tends to a finite limit ij(,)

as x—> =, Moreover, it satisfies the Lipschitz condition
!vjk(xJ - ij(y)[ s Mlx - y|

everywhere, (Since the marketing network N is finite, we can
take the constant M to be independent of j and k.)

Ih' Gk(q) i1s a continuous positive strictly decreasing
function on 0 < g < », As q—>=, Gk(q)—ero. As g —>0+, Gk(q)
tends to Pﬁ} where Pﬁ can be either a finite number or =, We
set Gk(O) = P;.

These conditions and a specification of the initial prices
Pk(O) for all k such that 0 S Pk(O) S P; allow us to.compute
recursively the price series {Hj(t): B= Xy 3,5, wes] HBd
IPk{t+1}: t =1, 3, 5, eee} for all j and k. Indeed, since

3
J
and Dj(p, 1) dictate that for each j there is a unique positive

R; < H;, the continuities and strict monotonicities of sj(P’ 1)
value Rj(l) for which (8) is satisfied. The corresponding
values for the Sjk(lJ are all nonnegative and finite, and therefore
(9) ylelds the nonnegative values Pk(ZJ for all ke The computations
proceed in this fashion.

It will be understood throughout this work that the initial
value of P, (t+1) will be restricted according to P, (t+1) S Py.

All subsequent values of Pk(t+1) satisfy this restriction,

*=
k

have = as some of 1ts terms. Indeed, when C, (t) = O, we have

Note that, when P <, the time series in the Pk(t+1} may

P (t+#1) = P¥. In this case we set S,,(t+#2) equal to the limiting

k
value ij(m). But, since the latter is finite, the computations

continue without difficulty.
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Also, note that

C.(t) S ¢ = D V., (=) < =, (10)
k jea, jk
Hence,
P(t+1) 2 Gk(c"J =.. 0 (11)
fortal.

3. The Propagation of Disturbances

W.0.Jones [l4; p. 119] has pointed out that a two-level
marketing network without market news responds only sluggishly
to disturbances in supplies at the farmers' markets, In parti-
cular, suppose a shortage of supplies occurs at some farmers'
market mj. The resulting price disturbances will be propagated
through the marketing system only by means of the trading activities.,
As a result, a rise in price due to the supply shortage can
appear at a distant market no sooner than the minimum time it
takes for & signal to be transmitted in a step-by-step fashion
along the shortest path connecting mJ to that distant market,
We shall show in this section that our model possesses this
qualitative behavior and moreover that the time lag before the
price rise occurs in the distant market may actually be longer
than the aforementioned minimum transmittal time,

The length of a path joining two nodes of N is the number
of edges in the path. The distance between those two nodes is
the smallest length among all the paths joining those nodes,

It follows from the governing equations (8) and (9) that it
takes at least d units of time for a disturbance to travel a

distance d, We will assume that a disturbance occurs at the



1l

farmers' market m e For t = 3, 5, Ty eee , let Y, (or Zt_lj

denote the.set of indices of those mJ (respectively, nk) that

are at a distance t=1 (respectively, t=2) from mye Y, will denote

the set consisting only of the index 1, Because N is bipartite,

no two nodes in Y,  are adjacent, and the same is true for Zt-l'
Let y denote either a farmers' market or a consumers' market.

Choose & shortest path between m; and y and let {baggzl be the

sequence of branches met as one traces the path from m, to y.

1
In the following we will be considering two different dynamic
processes in N and will denote the variables of each dynamic
process by the superscript 1, where i =1, 2, If s is odd (even),
we let Fi(s) (respectively, F:(s+l)) denote the amount of goods
flowing along bs that were acquired in a farmers! market at time

s (respectively, s+l) for sale in a consumers' market at time

s+l (respectively, s+2). The resulting sequence
{F{Q1), F3(3), F3(3), FL(5), FE(5), «u.] (12)

will be called an my to y passage for the ith process, We shall
say that a goincident cutoff occurs for the two passages if there
exists a term in the sequence that is zero for both values of i.

Theorem l. Let the superscript 1 and 2 denote two different
dynamic processes in N, Assume that

(«) PL(0) = P2(0) S P} for all k,

(8) S1(p, 1) < 55(p, 1) for all p such that s2(p, 1) > ©, and

(v) S}(p, t) = S?(p, t) for all p > 0, for all j # 1, and for
BllL &t =1, 3, 5y ewe «

Then,for every odd positive integer t, we have the following

conclusions:
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(o) Yor | e ¥, RE(t) 2 R® (t)s Strict inequality holds

Ll | J
if and only if there exists at least one my to m.‘1 passage having

no coincident cutoff. (Thus, for j = 1, strict inequality holds.)
2 . , 1 SRS
(b) For J ey .U Y“hu ces , RJ(t) = RJ(t).
(¢c) For k ¢ Lt+l’ P (t+l) 2 P (t+1)., Strict inequality
holds if and only if there exists at least one my to n, passage
having no coincident cutoff,

(@) For k€ Zy,a U Zy U ooe , PL(t+1) = PZ(b+1).

t+3
Note: We interpret hypotheses (<), (8), and (y) to mean

that the conditions at all the markets other than m, are the

for both processes” 1
samghand that a shortfall in supply has occurred in my at t =1

for the first process but not for the second.)

Proof. It follows from («) that Di(p, 1) = Df(p, 1)« S0,

by virtue of (), the strict monotonicities of the Di and Si

< B
J

2.
2 2
of Vi), We also have si'k(l) < sfk(l) except when Ry (1) > Py (0)

functions, and the condition that R?

we have Ri(l) > Rf(l). Now, let k ¢ 2

for both processes,

By the strict monotonicity

- . ‘1 = .2 = -
Tjk' In the latter case, Slk(l) = Slk(l) = 0; thus, coincident

cutoff occurs on the my to n, passage, that is, at time t = 1
on the branch connecting m to D e Moreover, it 1is clear that

R}(l) - R?(l) for § € Yy U YU oo .

Since conditions are the same at all the other farmers!

markets at t = 1, we have st (1) =82 (1) for jJeY, and k € Z

jk jk 3 2*

But, Ci(l) = :ZjeJ Jk(l), where 1 = 1, 2. Consequently, for

ke i,, Cl(l) sSC (1) and therefore, by the strict monotonicity
of Gy, P (2) 2 P (2)e We have strict inequalities here if and
only if coincident cutoff does not occur on the my to n, passage.

On the other hand, for k € Z) U Z, 0 es+ , Wwe have C.(1) = CZ(1)
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and therefore Pi(a) = Pﬁ(ZJ.

We now construct an inductive proof. Assume that, for
some t 2 3, (c) and (d) both hold with t replaced by t=2.
That 1is:

(1) For k € Ly s Pi(t-l) > Pi(t-l). The inequalities are
strict if and only if there exists at least one my to n, passage
having no coincident cutoff.

(11) For k € Ly U Zg,yU eee , PL(t=1) = PE(t-1).

We have shown above that these conditions hold for t = 3,
Now, upon combining (i) and (ii), we have that for j € Y., vwhere
s 2 3,'D}(p, £) 2 D?(p, t) with strict inequality holding for
at least some p under the condition stated in (i). Since S%(p, t)
= S?(p, t) by (y), it follows from the monotonicities of the

1 and S1 that Rl(t) 2 Ra(t) where j € Yt. Strict inequality

J J J J
will occur if and only if the supply curve S}(p,t) = S?(p, )

D

intersects the Di(p, t) curve at a point different from that

for D?{p, t) curve, But, this occurs if and only if there is

t=1 for which the conditlon of (1) for striect
18

inequality holds and in addition Sjk(t) > 0., In other words,

at least one k € 4

R}(t) > R?(t) if and only if there is some m, to mj passage
having no coincident cutoff. Thus, all of assertion (a) has
been obtained.

Assertion (b) follows directly from (ii) and (y).

Next, for 1 € Yt and k € Zt+l’ where t € 3, we have from

(11) that
Vlboe=1) = 2y = p] = vy fefe-1) - T = B]
1 2 2 2
for all p, Hence, if Ry(t) > Rj(t) and if R{(t) < P (t=1) = Ty,



1L

we have from the strict monotonicity of the VJk(xJ for x > 0

that SJk(t) < sJk(tJ. On the other hand, Jk(t) = Sjk(t) 1%
l —4 - -
elther Rj(t) = Rj(t) or RJ(t) 2 Pk(t 1) Tjk’ The former case

holds if and only if there 1s colncident cutoff in every m, to

m, passage, and the latter case holds if and only if Sik(t) =

2
Sjk(t) = 0 (1,064, coincident cutoff occurs in the mJ to n,
branch), Thus, we have shown that S%k(t) = S?k(t) and that strict

inequality holds if and only if there is at least one m, to n,
passage having no coincident cutoff. On the other hand, for

JeY U Yt+htj eee and k € Z, iJ Z eee . we clearly

o4 v
have from (ii) and (y) that Sjk(t) = Sjk(t)'

By virtue of the strict monotonicities of the G these

k?

results on the S. 's immediately imply (c¢) and (d), which completes

jk
our inductive proof,
e The Lkxistence of an Equilibrium State
We now wish to determine whether it i1s possible for the
various prices and quantities in our marketing network to be
fixed with respect to time. We say that N is in equilibrium
if Sj(p, t), RJ(t), and Pk(t) are independent of t for every

J and k. By an equilibrium state for N we mean the corresponding

set of all R.1 ani Pk. The governing equations for an equilibrium

are obtained by deleting the time variable from the equations
(8) and (9). That is, for every j
S,(R = L,(R + - -

and for every k
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P, = Gk[:jga ij(Pk - Ty = Ry ]. (14)
k

Note that, under Conditions I and for any assumed values of the

P, such thet 0 £ P, S P¥, (13) has a unique positive solution

k ™ g
Rj'for every j. Therefore, the question at hand is whether (1l)
has a nonnegative solution P, when the RJ are deter mined by (13).
In the following we shall use the demand functions Hk(p)
in the_nk. In accordance with Condition Ih' each Hk is a continuous
positive strictly decreasing function on 0 < p < Pz. It tends

to = as p—0+. If P, is finite, H (Py) = 0., If P; = =,

k k
Hk(p)'ﬁ-o as p—~«<, In the latter case, we also write
H, (PF) = H (=) = 0.

In this and the next two sections we assume that each mJ
has a fixed supply function Sj‘

Theorem 2. The marketing network N has at least one
equilibrium state.

Proof. For each k we will construct a finite or infinite
nonincreasing sequence of values for each of the Pk which will
either end at or tend toward a value for that Pk corresponding
to an equilibrium state for N.

We start by setting all P = Pﬂ, which we also denote by

P

Let R be the corresponding unique solution of (13) for

k,0° j,0
each j. Since Hk(Pk,OJ = 0 whereas

jg; Vi o = Ty " R; o) % 0,
X

we have
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J%L; Vo (B g = Ty = Ry ) F B (R ) (15)
'k

for all k when s = 0, If equality holds in (15) for all k, then
we have found an equilibrium state, namely, the set of all Rj 0
' L

and P (In this case, all SJ = 0.)

k,0° Kk
If not, then there is strict inequality in (15) for at least
one k. Let h be the number of consumers' markets. Choose the

#
first integeﬂk in the ordered set (1, 2, ««s , h), say k, for

which there is strict inequality in (15). As P, decreases
2§

R "
from the value Pkl,O = Pkl and all other Pk,O (k # kl) are held
fixed, the curve V (By: =T - p) shifts (downward in
Jk Tk Tk

F‘ 1 - %) - -

igure 2) for each j whereas all the other VJk(Pk TJk p)
remain fixed. Therefore, the value DJ(p) decreases or stays
fixed at each value of p 2 O, By the strict monotoniclty of

the S,, the values of K, and Qj both decrease so long as Dj(p)

§* J
actually decreases for every p in a neighborhood of the initial

R Because of the continuities ani strict monotonicities of

J.
the ij for positive values of their arguments, DJ(P) decreases

in that neighborhood for every j € Jk for which the corresponding
1

man

term in the right-hand side of (15) is greater than zero. But,

for k # ky, - ., = RJJ will increase in value or stay

Vi Py
fixed at zero as R

jk
decreases, and the same 1s true for LJ(RJ)‘-

J
Since QJ equals the right-hand side of (13) and actually

d ) - -
ecreases, we can conclude that ijl(Pk Tjkl Rj) decreases

i
as Pk decreasesa and Rj takes on the values for which equality
1
holds in (13). This process will continue until V (Pk = M. =1 )
Jky Ky Jky J
reaches the value zero, which occurs before P becomes

25
negative,
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On the other hand, Hk (Pk ) increases as Pk decreases

i 1 1
from Pk 0° It follows that there will be some positive value
l ?
for P for which equality 1s acheived in (15) (with s deleted)
1
for k = ky. Furthermore, for k # k), the inequality (15) will
continue to hold and possibly get larger when P =P and
k,s k,0
the Hj g are replaced by the values corresponding to equality
»
T 5 - -
in (13). This is because, for k # Ky, ij(Pk Tjk Rj)

increases in value or stays fixed as Rj decreases and Pk remains

fixed. Let P for k # kl, but let P be the found

B2 T Y0 ke o0

value of Pk for which equality 1s acheived in (15). 4lso,
1
let HJ 1 denote the corresponding values that satisfy (13).
?

Next, choose the first value, say, k, in the ordered set

(k1+1j k +2, *eee 3 h, l, 2’ LB N ] » kl-l) fOI' Which StI‘iCt

2
inequality holds in (15) with s = 1, (If no such k2 exists, we

will have found an equilibrium state. So, assume a k2 does exist,.)
Repeat the argument of the preceding two paragraphs, decreasing

now Pk instead of P and holding all other P, fixed. We will

k
2 1
obtain a new set of values for the R

k
and P, which we will

J
denote with the subscript s = 2, such that (13) is satisfied for
all j and, for 8 = 2, (15) holds for all k with equality
occurring for k = kz.

Once again, choose the first value, say, k3 in the ordered
set (k2+l, K;#2, eee 5 By 1, 2, eee , k2-1) for which strict
inequality holds in (15) with s = 2, and repeat the above

procedure. Continue this process as long as possible. Two

- possibilities arise:
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(1) The process terminates after a finite number of steps
because equality is acheived in (15) for all k.

(11) The process continues indefinitely,

Under (1), an equiliﬁrium state will have been found., We
will now show that, under (i1), the sequence {Pk,sk:=l

converges for every k to a value Pk » Such that equality holds

]

in (14) when P, = P and the R, are determined by (13).

k ky= J
First note that the above process generates & nonincreasing

sequence {Pk s}“
’

3 ) *
g=) for each k. Since Pk,s = Gk(C ) > 0 by

virtue of (11), the sequence cohverges to a positive limit Pk .
]

Thus, {Hk(P is a nondecreasing convergent sequence

k,sJ}s=l
tending to the finite limit H (P, ).
»

Let {Hk,aia=l and {Ck,slszl be the sequences of values

taken by Hk(PkJ and C, = EEJeJk vjk(Pk - Tjk = RJ) respectively

at each step of the above process, We have already noted that,

as s> =, H "’Hk(Pk,-J’ the H

G are nondecreasing, and
]

k,s

H S C Moreover, for each k there are subsequences such

k,s La"

that, forn = 1, &, eee , H also, for n 2 2 and

= C -
k,sn k,sn

< - -
8- = 8 s s, =1, Hk,s Hk’sn-l whereas Ck,s

(See Migure 6.,) lere, the s depend on the choice of k. We

is nondecreasing.

wish to show that, for each k, C, .— H, (P, _). By virtue of
X,s k',

the continuity of the functions Hy, V., Ly, and Sy, this will

prove that, for Pk = P, _, equality holds in (14) when the R

Ic; J
assume the unique values for which equality holds in (13).
In the following we will be choosing subsequences of
subscoquences, Out of conslderation for the typesetter, we
introduce the following notation: s:n = s . Thus, {Xs:n:ngkg;l

denotes a subsequence indexed by u of a subsequence indexed

Al
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by ¥ of a subsequence indexed by n of a sequence indexed by s.
Suppose Ck,s does not tend to Hk(Pk,-) as s —>«, Then,

there exists an € > 0 and an Infinite subsequence {Ck,(s:n:v)-liv=1

such that
ck,(s:n:v)-l - Hk(Pk,,) > €.
huce Cx,sinsy = ﬁk,s:n:v = Hk(Pk,,J, ve have
C > €,

Ck, (sinv)-1 = Ck,s:nzy

Let IJkl denote the (finite) number of farmers' markets adjacent

i -
to the consumers' market n . Let ivj,k,s}s=l

of values assumed by the ij(Pk - Tjk - Rj) in the aforementioned

be the sequence

process, Since the sum over J, of the Vj ol equals C s there
b Rt

k k,s

exists a subsequence {V such that
Jsk,s

:n:v:p}p=l

>

Vj,k.(s:n:v:p)-l - vj,k,s:n:u:p 1J

H, :

Consider now the sequence of increments AP m by which the
>

value of P, drops for the step in the aforementioned process

k
corresponding to the increase in our index s from (ssnsvsp) = 1
to s:n:vipe. By virtue of the Lipschitz condition satisfied by

the V we must have that
Jk?

AP £ .
Ik, i bd, t M
It follows that Pk 5 must tend to ==, in contradiction to the
»
fact that Pk ay =0 0., Hence, our supposition at the beginning
2

of this paragraph 1s false, This completes the proof.
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5S¢ The Uniqueness of the Equilibrium State

We now show that N has at most one equilibrium state.

Theorem 3. N has one and only one equilibrium state,

Proof. Suppose there exist two different equilibrium
states (i.e., in at least one consumers' market the price under
one state is different from the;rice under the other state.)
We shall denote the prices and quantities for one state with
the superscript l and those for the other state by the superscript 2.
We can choose that notation and a value ko for k such that

: § 2

Pr > P° and
ko Tk

for every k. Starting with the rirst equilibrium state, we shall

alter the prices in the consumers' markets in two steps:

Step 1: Let aP, = P1 - P2 e Thus, aP, > 0, Decrease
Ky 55 %y ko
every Pi by‘APk to get the value Pﬁ = Pi -zst o (These Pi
0 0
may not correspond to an equilibrium state.) Set
a a a
¢t = X v ez, =5
k jeu, kP = Ty = By
a

where the R? are the values determined by (13) when P = Ppe

Since the Lj and the ij are continuous and strictly decreasing

and the SJ are contlinuous and strictly increasing whenever

their range values are positive, it follows that

a 3
ViR Py = Top = R%) s v ik " RJJ

1
j (Pk .

jk
1 3

for every j and k. Therefore, C; = Cke



P |

Step 2: Keep Pi = Pi fixed, but for every k # ko change
0 0
a 2 2 a
the value of Pk from Pk to Pk‘ Thus, Pk - Pk 2 0. Consequently,
at this step Rj either stays fixed or increases in value so
that V., (P2 - T - R,) either stays fixed or decreases in
Ik kg Jkg J
value for every j. As a result, Cﬁ s CE .
: 0 0]
Upon combining the results of these two steps, we get Ci
0
= Cﬁ). But, since Hko(p) is strictly decreasing on 0 < p S
Pﬁ' and 0 < Pi < Pi s P;', we have
0 0 0 0
R T
0o 70 0 70 0 0

Thus, the second state cannot be an equilibrium state, in

contradiction to our assumption.

6. The Asymptotic Stability of the Equilibrium State
We continue to assume that the supply functions Sj(p) are

independent of t, Let Z,(q) be the inverse function of Sj(p).

J

Thus, 4,(q) 1s a continuous strictly increasing function on

J

0<q < 8S,(=»), where S,(=) = 1lim i S.(p)e The right-hand

J J p J
side of (8) will lie in the interval 0 < g < Sj(“) for every j.

Thus, (8) can be rewritten as
Ry(t) = ZJ{LJ[RJ(t)] - :%kj ij[Pk(t-l) o T Rj(ti]}. (16)

In order to examine the asymptotic atability of the equilibrium
state, we linearize the dynamic equations (9) and (16) around
the equilibrium state. This can be done by taking total
derivatives of (9) and (16) with respect to the Pk and Hj and

then solving the two resulting equations for de(t+l) in terms
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of de(t—l) by eliminating de(t). We also assign to the
derivatives of the functions Gk’ ij, Zj’ and LJ the values that
they assume in the equilibrium state. We denote these values

by G, Vik’ Zi, and L} respectively, This ylelds

| B 5— -
= VK4 ;?KJ b vt L 1).]
dP,_(t+l) = G! 12 Vi dP (t=l) = .
k k Jk Tk 1 =21(Lt = 2 Vi)
Jed, . 4 i"“Kj Ji

Let there be h consumers' markets. In terms of the vector

w(t) = [dP (t), ves , dP (t)]T (the superscript T denotes the
transpose), the last equation can be written in matrix form as
w(t+l) = Aw(t). A is a constant hx h matrix whose elements tend
to zero as the values Gﬂ, Vik, Zj, and Lj tend to zcro.

Now, the equilibrium state is asymptotically stable if all the
elgenvalues of A have absolute values less than one [1; p. 126].
The latter will certainly be the case if the absolute values of
every entry of A is less than K [5; pe 211]. This result can
be written out explicitly as bounds on the values Gﬁ, ij,

Zj, and Li which insure asymptotic stabllity, but those bounds
will be in general much more restrictive than need be., In any
case, we have the qualitative result that the equilibrium state
is asymptotically stable if the slopes of the functions Zj’ Gk’
Lj’ and ij are small enough in neighborhoods of the equilibrium-

state values of their arguments. This means that, with respect

to the axes of !igures 2 and 5, the functions ZJ = S}l and
G, = H 1 should be flat enough whereas L, and V should be steep

k k J Jk
enough in the vlcinity of the equilibrium state.
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7+ More Complicated Models of Anticipated Prices

The model we have discussed so far assumes that at time t
traders between mJ and n, take the last received price Pk(t-lJ
in n, as the antlcipated value for Pk(t+1). This is similar
to the classical cobweb model [3]. A number of authors have
modified the cobweb model by using more complicated formulas
for expected prices. (See, for example, [2], [6], and [7].)
Thus, one might assume that the mj to n, traders take at time
t some weipghted average of many prior prices in n, as the

k

anticipated value of P _(t+l). We denote that weighted average

k
by

Bjk[Pk(t“l), Pk(t'B)’ Pk(t'S): ooo]c (17)

This idea can be incorporated into the governing equations
for the dynamic behavior of our model simply by replacing the
term Pk(t-l) in the right-hand sides of (8) and (9) by (17).
The recursive computation%f the various time series in prices
and quantities proceeds as before, but now initial conditions
must be given on enough prior prices to determine (17) for
some t. In general, (17) serves to smooth out the effects of
disturbances,

If B is & strictly increasing function of Pk(tﬂl) when

Jk
the Pk(t-BJ, Pk(t-S) eee are all held fixed, then Theorem 1
and its proof extend directly to our present model., If in
nddition (17) assumes a certaln value whenever all the Pk(t-l),

2, (t=3), ... assume that same value, then Theorems 2 and 3 also

hold once again with no changes in their proofs. Finally, the
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equilibrium state will again be asymptotically stable under all
the assumptions stated so far if we add the requirement that
every first partial derivative of Bjk with respect to each of

its arguments as anot too large in the vicinity of the equilibrium

state.
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