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Abstract. A model is constructed for a two-level periodic

marketing network wherein traders buy goods from farmers in a

number of spatially separated markets and transport them to

urban centers for sale to consumers. It is assumed that there

is no market news dissemination. As a result, market disturbances

are transmitted throughout the network at a rate limited by the

trading activity- Moreover, distant markets may even be isolated

from local disturbances. 'l'his model possessesone and only one

equ1:.ibrium state- That equilibrium state 1s asymptotically

stable if the slopes of the various supply and demand functions

are :nli'ficientlyrestricted in the vicinity of the equilibrium

state.
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1. Introduction

In certain ~rlcan countries such as Njgeria, Kenya, and

Sierra L30ne there exist two-1ev.,lmarketing systems having

essentially no market news [4]. Figure 1 IE.a schematic

representation of suCh a system. The nodes mj' where j '= 1, 2,

3, ... , denote farroe~~' ~~ and t~~ nodes nk' where k =

1, 2, 3, ... . denote consume~1 mar~ets for a particular cammodity.

The farmers' markets °Fen periodically, per.hapsone day out of

every four days. We st.all assume that the market days J:or every

nj occur at the odd in1iegervalues of the time variable t: t =

... , -3, -1, 1, 3, ... . At each t farmersin the ruralareas

of some geo.sraphicregion bring their supplies of the commodity

to the mj and sell them to tradels. The traders in turD transport

those supplies to the urban centErs or the region and sell them

to consumer:;between the times t and t + 2. As a notational

conv~nience we shall assume that these sales to urban CQ~sumers

occu:, at the even integer time value:! t + 1. Each urban center

comprises one consumers' market ;~. We assume that pure competition

occurs in every m.anc every ~. In addition there is local demand

in each mj. Thus.,in mj traders are competing not only among

themselves a.s buyt,rsbut also againsf;domestic consumers.

Furthermore, there is (,ssentiallyno market news for the

disstmination of price and (uantity conditions in the various

ma.rk(,ts. In fact, Jones [4: p. 1161 reports the tendency of

tradE rs "to buy regularly !ILthe same producing centers, and

~ot . 0 know what prices are elsEwhere, or if they do, to buy

the re . Further than this, i;radErsin mOJt of the commodities

lnch dad in our study confe;lstv knowing vepy little about prices
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in nearby towns that are also consuming centers." We shall

idealize this situation by assuming that each trader restricts

his activities to one farmers' market and one consumers' market

and is ignorant of the conditions of the markets in which he

does not trade.

In this paper we develop a mathematical analysis of such

a two-level marketing system. It is based upon some assumed

behavior for the agents in the systom as expressed by various

supply and demand curves. These lead to a system of nonlinear

difference equations from which time series in the prices and

quantities exchanged can be recursively computed. We then show

that the qualitative behavior described by Jones (4; p. 119]

for the propagation of a disturbance throughout the marketing

system is reproduced by our model. Furthermore, we prove that

every marketing system satisfying our assumptions has one and

only one equilibrium state for a given set of supply curves in

the farmers' markets. That equilibrium state is asymptotically

stable if the supply and demand curves satisfy certain sufficiently

strong restrictions on their slopes.

We have previously given another analysis [8], [9J of this

kind of marketing system, but the present analysis adopts a

radically different approach. The prior work assumes that

traders maintain conceptions of normal prices in the markets

and adjust the amounts they buy in the farmers' markets in

accordance with the deviations of prices fram their normal values.

Moreover, the resulting analysis has points of similarity with

the classical cobweb phenomenon. (See. for example, [2], [3],
~

[6] I and [7J.) The present work assumes!thateach trader has a
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normal capacity for shipment (e.g., the size of his truck) and

adjusts the price he is willing to pay in mj far that amount of

goods.

Other differences between these works are as follows.

The basic equations governing the dynamic behavior of the

system are somewhat simpler in the former work, although their

de.rlvation is more complicated. Also, the assumptions imposed

there seem to be less realistic than those of the present work.

In fact, the most severe assumption of the former work is that

the price elasticity of demand (of anticipated supply) in mJ

(respectively, in nk) for the aggregate of all traders operating

between mj and ~ is independent of k (respectively, j). One
result of this is that all the traders in a consumers' market

might cut off their activities if price deviations became too

large. But, if they do, they do so simultaneously and can never recover

activity once it has stopped. Cons,}quently, the former work is

restricted to moderate price deviations around normal values.

No such assumption of common elasticities i~ imposed in this

work, and, although trading can cutoff, it will restart once

price conditions return to more normal values. Still another

fundamental difference is that the former work requires the

supply curves of the farmers in the Mj to be perfectly inelastic,

whereas the present work takes those CUI'vest,obe sloping.

On the other hand, it should be pointed out that the former work,

having more structure, leada to certain interesting mathematical

questions that do not arise in the present work. So, although

the present work is perhaps more realistic and allows stronger

conclusions to be drawn, the former work remains of interest

~
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from the mathematical point of view.

2. The Model

We assume throughout that the two-level marketing network

N, illustrated in Figure 1, has a finite connected simple graph,

which is bipartite with respect to the partition of its nodes

into the set of farmers' markets and the set of consumers'

markots. There exists a branch joining a farmers' market and a

consumers' market if and only if there are traders available

for transporting goods between those.two markets. In each

farmers' market mj at time t, the farmers supply the quantity

Sj(p, t) if the price is p, as shown in Figure 2. Thus, the

supply curves are allowed to shift from one market day to another.

On the other hand, we take domestic demand from local consumers

at mj to be determined by the fixed demand curve Lj(P) shown

in Figure 2. (Essentially the same analysis would hold if we

allowed Lj to shift from one market day to another.)

To model the aggregate behavior of all the traders between

two given markets, say, mj and ~, we first postulate the

behavior of the ith individual trader between those markets as

follows. 1hat trader restricts his activities to the markets

Mj and ~ and mayor may not transport goods between them

depending on the prices. In particular, at time~ he views the

the last received price Pk(t-l) in ~ as the most likely value
i

of Pk(t+l). Moreover, we assume that his cost Tjk of transporting

one unit of the commodity from mj to ~ and selling it in ~
i

remains fixed with respect to time (but we allow Tjkto vary as

i varies). Thus, at time t that trader's anticipated profit in

selling one unit in Nk at .tLmet+l is
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Pk(t-l) - Tjk - Rj(t),
(1)

where RjCt) is the price in mj at t. Finally, we assume that

each trader possesses a limited capacity for the transportation

of ~oods. He refuses to acquire any goods in mj at t if (1) is

nep;ative,but, as (1) increases into positive values~ the amount he

buys rapidly increases until his capacity is filled. In short,

we assume that the demand curve of the ith individual trader

looks like the curve of Figure 3.

Since there can be many traders between mj and ~ eaca having
i

perhaps a different Tjk' the a~~re~ate demand curve in mj for

all those traderswill look like that of Fi~ure 4, where Tjk =
i

mini Tjk is the largest price difference Pk(t-l) - Rj(t) below

which all traders between mJ and nk will refuse to acquire goods

in mJ. In accordance witn the precedi~ paragraph, we shall

assume that the a~gregate demand curve in mj at t of all the

traders between mj and nk is given by

Vjk[Pk(t-l) - Tjk - pJ
(2)

where Vjk(x) is a continuous function on -- < x < - that equals

zero for x ~ 0, is strictly increasingfor x > 0, and ten~s

to a finite limit VjkC-> as x~-. The stipulation that the

monotonicity of Vjk be strict on the positive real line is imposed

to avoid certain technical problems of a mathematical nature;

it can be supported by noting that traders will tend to stretch

their transportation capacities (perhaps by overloading their

trucks) as anticipated profits become more and more lucrative.

Given any node v of a graph, we define the adjacency of v
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as the set of all nodes that are adjacent to v.

The aggregate demand curve Dj(p, t) in mj at t is the sum
of the demand curves for the local consumers and the various

traders at mj. 'lhus,

Dj (p, t)
=

L J(p )
+ L V

jk[Pk(t-l) - T ok - p]kEK J
j

(3 )

wheI'8Kj is the index set for the adjacency of Mj. The price

Rj(t) at which the market mj clears at t is the value of p for
which

D j (p, t)
=

3j(P' t).
(4)

Under the assumptions stated below there will be one and only

one such value Rj(t). Consequently, the amount acquired by the

local consumers is Lj[Rj(t)], and the amount transported by the

traders from mj to ~ for sale at t+l is

Sjk<t)
=

Vjk[Pk{t-l) - Tjk - Rj(t)].
(5)

We next assume that traders do not store goods; they sell

the goods they have on hand at time t+l for whatever price they

can get. Thus, the supply curve in nk at time t+l is completely

inelastic; that is, it is a vertical line intel'secting the

quantity axis at the value

l~ Sjk{t)
j€Jk

where Jk is the index set of the adjacency of nk. On the otheroi

hand, we take the demand curve Hk(P) fo~the consumers in nk to

be fixed with time and of the shape shown in Figure 5. Thus,

Ck(t)
= (6)

the market nk will clear at a unique price Pk(t+l) if the
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inverse Gk of the demand curve Hk is a well-defined function on

0 S q <a. We shall relax this condition a bit by allowing Gk(O)

to be either finite or infinite. 1hus, we may write

Pk(t+l)
=

Gk[Ck<t)].
(7 )

In the event that Ck(t-2)=0 and Pk(t-l) = -, the value used

for (5) in (3) and (6) (as well as in (8) and (9) below) is the

finite number Vjk(~).

Upon combining equations (3), (4), (5), (6), and (7), we

obtain the two basic equations for our model: For every j,

Sj(Rj(th, t] = L j [R j (t)] + ~K V jk (p k (t -1) - T jk - R j (t )]
j

(8)

and, for every k,

Pk(t+l) = Gk
fL Vjk(Pk(t-l) - Tjk ..Rj(t)]}

. j€Jk

(9 )

We now list all the assumptions that we shall impose on

the various supply and demand functions of the marketing network

N throughout this paper.

Conq.itions I:

Il. Lj(p) is a continuous nonnegative function on 0 < P < -

and strictly decreasing on 0 < p < Rj S -. If Rj < " Lj(P) = 0
.)t.

on Rj S P < -. If Rj = ., LJ(P)~O as p~..

12. ~'oreach fixed t, Sj(p, t) is a continuous nonnegative

function on 0 S P < -, equal to zero on 0 S P S Rj(t), and

strictly increasing on Rj(t) < P < " where Rj(t) < Rj-

1J- Vjk(X) is a continuous nonnep;ative function on

-- < x < - such that Vjk(X) = 0 for x S 0, Vjk(x) is strictly



I.J

increasing on 0 < x < -, and Vjk(X) tends to a finite limit Vjk(-)

as x~ -. Moreover, it satisfies the Lipschitz condition

I V jk (x) - V jk (y) I

:ii Mix - yl

everywhere. (Since the marketing network N is finite, we can

take the constant M to be independent of j and k.)

I4. Gk(q) is a continuous positive strictly decreasing

function on 0 < q < -. Aa q-+-, Gk(q)~O.

tends to P:, where P~ can be either a finite

set Gk(O) = P;.

These conditions and a specification of the initial prices

As q --+0+, Gk(q)

number or -. We

Pk(O) for all k such that 0 ~ Pk(O) s P~ allow us to compute

recursively the price series (Rj(t): t = 1, 3, $, ...J and

!Pk(t+l): t = 1,3, $, ...J for all j and k. Indeed, since
s )(-

Rj < RJI the continuities and strict monotoniclties of Sj(p, 1)

and Dj(P' 1) dictate that for each j there is a unique positive

value Rj(l) for which (8) is satisfied. The corresponding

values for the Sjk(l) are all nonnegative and finite, and therefore

(9) yields the nonnegative values Pk(2) for all k. The computations

proceed in this fashion.

It will be understood throughout this work that the initial

)(-

value of Pk(t+l) will be restricted according to Pk(t+l) $ Pk.

All subsequent values of Pk(t+l) satisfy this restriction.

Note that, when P~ = -, the time series in the Pk(t+l) may

have - as some of its terms. Indeed, when Ck(t) = 0, we have

Pk(t+l) = P~. In this case we set Sjk(t+2) equal to the limiting

value Vjk (OD). But, since the latter' is finite, the computations

continue without difficulty.
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Also. note that

Ck(t)
s C* = ~ Vjk(-)

j€Jk

< -. (10)

Henee.

Pk(t + 1)
>-

Gk(C*)
> 0 (11)

for t ~ 1.

3. The Propagation of Disturbances

W.O.Jones [4; p. l19J has pointed out that a two-level

marketing network without market news responds only sluggishly

to disturbances in supplies at the farmers' markets. In parti-

cular, suppose a shortage of supplies occurs at some farmers'

market mj. The resulting price disturbances will be propagated

through the marketing system only by means of the trading activities.

AB a result, a rise in price due to the supply shortage can

appear at a distant market no sooner than the minimum time it

takes for a signal to be transmitted in a step-by-step fashion

along the shortest path connecting mj to that distant market.

We shall show "in this section that our model possesses this

qualitative behavior and moreover that the time lag before the

price rise occurs in the distant market may actually be longer

than the aforementioned minimum transmittal time.

The len~th of a path joining two nodes of N is the number

of edges in the path. The distance between those two nodes is

the smallest length among all the paths joining those nodes.

It follows from the governing equations (8) and (9) that it

takes at least d units of time for a disturbance to t~avel a

distance d. We will assume that a disturbance occurs at the
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farmers' market mle For t = 3, $, 7, ... , let Yt (or Zt-l)

denote the set of indices of those mj (respectively, nk) that

are at a distance t-l (respectively, t-2) from mle Yl will denote

the set consisting only of the index 1. Because N is bipartite,

no two nodes in Yt are adjacent, and the same is true for Zt-l.

Let y denote either a farmers' market or a consumers' market.

Choose a shortest path between ml and y and let [bs\~=l be the

sequence of branches met as one traces the path from ml to y.

In the following we will be consideri~ two different dynamic

processes in N and will denote the variables of each dynamic

process by the superscript i, where i = 1, 2. If s is odd (even),

we let F;(S) (respectively, F;(S+l» denote the amount of goods

flowing along bs that were acquired in a farmers' market at time

s (respectively, s+l) for sale in a consumers' market at time

s+l (respectively, s+2). The resulting sequence

[
1 111 1

JFl(l), F2(3), F)(), F4($), FS($), ...
(12)

will be called an ml ~ y passa~e for the ith process. We shall

say that a coincident cutoff occurs for the two passages 1f there

exists a term in the sequence that is zero for both values of ie

Theore~ 1. Let the superscript 1 and 2 denote two different

dynamic processes in N. ASsume that

(~) P~(O) = P~(O) $ p~ for all k,

(~) Si(p, 1) < S~(p, 1) for all p such that Sf(p, 1) > 0, and
1 2

(Y) Sj(p, t) = Sj(p, t)for all p > 0, for all j ~ 1, and for

all t = 1, ), 5, ... .

Then,for every odd positive integer t, we have the following

conclusions:
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(a) J.t'or j E Yt' R}(t) ~ R~(t). Strict inequality holds

if and only if there exists at least one ml to mj passa~e having

no coincident cutoff. (Thus, for J = 1, strict inequality holds.)

(b) lo~or j E Yt+2 U Yt+4 U ... , R~(t) = R~(t).

(c) For k E Zt+l' P~(t+l) ~ P~(t+l). Strict inequality

holds if and only if there exists at least one m1 to ~ passage

having no coincident cutoff.

(d ) For k E 4t+ 3 U 4t+5 u ... , p~ (t+ 1) = p~ (t+ 1 ) .

~: We interpret hypotheses (~), (~), and (y) to mean

that the conditions at all the markets other than m1 are the
for bot~ processes'

sameA and that a shortfall in supply has occurred in m1 at t = 1

for the first process but not for the second.)
1 2

Proo~. It follows from (~) that Dl(P, 1) = Dl(P, 1). So,
i i

by virtue of (~), the strict monotonicities of the Dl and Sl
Sit-

functions, and the condition that Hj < Rj for both processes,

we have R~(l) > Rf(l). Now, let k € 42. By the strict monotonicity
1 2 2 2

of Vlk' we also have Slk(l) < Slk(l) except when Rl(l) > Pk(O)
. 1 2- Tjk. In the latter case, Slk(l) = Slk(l) = 0; thus, coincident

cutoff occurs on the m1 to ~ passage, that is, at time t = 1

on the branch connecting ~ to~. Moreover, it is clear that
1 2

Rj (1) = Rj (1) for j € Y3 U Y5u ... .
Since conditions are the same at all the other farmers'

markets at t = 1, we have S}k(l) = sjk(l) for j € Y3 and k € 42-

But, C~(l) = 2jEJ S3k(1), where i = 1, 2. Consequently, for
1. ~

k € Z2' Ck(l) ~ Ck(l) and therefore, by the strict monotonicity

of Gk' P~(2) ~ P~(2). We have strict inequalities here if and

only if coincident cutoff does not occur on the m1 to nk passage.

On the other hand, for k G 44 U 460 -.. , we have C~(l) = C~(l)

- - -------
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1 2
and therefore Pk(2) = Pk(2).

We now construct an inductive proof. Assume that, for

some t ~ 3, (c) and (d) both hold with t replaced by t-2.

That is:

(i) For k € Zt-l' P~(t-l) ~ P~(t-l). The inequalities are

strict if and only if there exists at least one ml to nk passage

having no coincident cutoff.

(ii)
1 2

F'or k E Zt+l U Zt+3 U ... , Pk(t-l) = Pk(t-l).

But, this occurs if and only if there is

k E Zt-l for which the condition of (i) tor strict
1

inequality holds and in addition Sjk(t) > O. In other words,
1 2

Rj(t) > Rj(t) if and only if there is some ml to mj passage

having no coincident cutoff. Thus, all of assertion (a) has

We have shown above that these conditionshold for t = 3.

Now, upon combining (i) and (ii), we have that for j E Yt' where

t ~ 3, D1(p, t) ~ D~(P' t) with strict inequality holding for

at least some p under the condition stated in (i). ~ince S~(p, t)
2

= S.(p, t) by (y), it follows from the monotonicities of theJ
i i 1 2 .

Dj and Sj that Rj(t) ~ Rj(t) where j E Yt. Str~ct inequality
1 2

w.ill occur if and only if the supply curve Sj(p,t) = Sj(p, t)
1

intersects the Dj(P' t) curve at a point different from that
2

for Dj(p, t) curve.
at least one

been obtained.

Assertion (b) follows directly from (ii) and (y).

Next, for j E Yt and k € Zt+l' where t ~ 3, we have from

(ii) that

Vjk[P~(t-l) - Tjk - p] = Vjk[P~(t-l) - Tjk - p]

1 2 2 2
for all p. Hence, if Rj(t) > Rj(t) and if Rj(t) < Pk(t-l) - Tjk'
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we have from the strict monotonicityof the Vjk(X) for x > 0

that S~k(t) < S~k(t). On the other hand. S~k(t) = S~k(t) if

either R~(t) = R~(t) or R~(t) ~ P~(t-l) - Tjk. The former case

holds if and only if 'thereis coincident cutoff in every m1 to

mj passage. and the latter case holds if and only if S~k (t) =
2

Sjk(t) = 0 (i.e.. coincident cutoff occurs in the mj to ~
, 1 2

branch). Thus. we have shown that Sjk(t) ~ Sjk(t)and that strict

inequality holds if and only if there is at least one m1 to ~
passage having no coincident cutoff. On the other hand. for

j € Yt+2 U Yt+4 U ... and k € Zt..lU Zt+3U ... . we clearly

have from (ii) and (y) that S1k(t) = S~k(t).

By virtue of the strict monotonicities of the Gk. these

results on the Sjk'S immediately imply (c) and (d). which completes

our inductive proof.

4. The ~istence of an Equilibrium state

We now wish to deter.minewhether it is possible for the

various prices and quantities in our marketing network to be

fixed with respect to time. We say that N i8 in equilibrium

if Sj(P. t). Rj(t). and Pk(t) are independent of t for every

j and k. By an equilibrium state for N we mean the corre'sponding

set of all Rj ani Pk. The governing equations for an equilibrium

are obtained by deleting the time variable from the equations

( 8) and ( 9 ) . That is, for every j

Sj(Rj) = Lj(Rj) .. L Vjk (Pk - Tjk - Rj)'k€K
j

(13 )

and f'or every k
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Pk
=

Gk[ j~ Vjk(Pk - Tjk - Rj)l.k
(14)

Note that, under Conditions I and for any assumed values of the

Pk such that 0 ~ Pk ~ P;, (13) has a unique positive solution

Rj for every j. Therefore, the question at hand is whether (14)

has a nonnegativesolutionPk when the Rj are determined by (13).

In the following we shall use the demand functions Hk(P)

in the nk. In accordance with Condition 14' each Hk is a continuous

positive strictly decre41singfunction on 0 < P < P;. It tends
~ * .~

to . as p ~ 0+.. If Pk is finite, Hk(Pk) = O. If Pk = .,

Hk(P) -+ 0 as p -+ GO. In the latter case, we also write

Hk(P~) = Hk(w) = O.

In this and the next two sections we assume that each mj

has a fixed sup~ly function Sj.

Theore~ 2. The marketing network N has at least one

equilibrium state.

Proof. For each k we will construct a finite or infinite

nonlncreasing sequence of values for each of the Pk whiCh will

either end at or tend toward a value for that Pk corresponding

to an equilibrium state for N.

We start by setting all Pk = p~, which we also denote by

Pk O' Let Rj 0 be the corresponding unique solution of (13) for, ,

each j. Since Hk(Pk,O) = 0 whereas

L V
jk(Pk 0 - Tjk - Rj 0)

j€Jk' ,

:>- 0,

we have
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J:. V
J'k<Pk s - Tj k - Rj,S)

jE J k '
:: Hk{Pk,S) (15 )

for all k when s = O. If equality holds in (15) for all k, then

we have found an equilibrium state, namely, the set of all Rj,O

and Pk,O. (In this case, all Sjk = 0.)

If not, then there is strict inequality in (15) for at least

one k. Let h be the number of consumers' markets. ~noose .the
If

first intege~k in the ordered set (1, 2, ... , h), say kl for

which there is strict inequality in (15).
)(-

from the value Pk 0 = Pk
and all

l' 1
fixed, the curve Vj k (Pk - Tj k -111

!<'igure 2) for each j wher-eas all thE) other Vjk(Pk - Tjk - p)

remain fix~d. Therefore, the value Dj{P) decreases or stays

fixed at each value of P ~ O. By the strict monotonicity of

the Sj' the values of Rj and Q.j both decrease so long as Dj (p)

actually decreases for every p in a neighborhood of the initial

As Pk decreases1

other Pk,O (k ~ kl) are held

p) shifts (downward in

Rj8 Because of the continuities an.i strict monotonicities of

the Vjk for positive values of their> ar~uments, Dj{P) decreases

in that nei~hborhood for every j € Jk for which the corresponding
_J 1

term in the right-hand side of (15) is greater than zero. But,

for k ~ kl' Vjk(Pk - Tjk - Rj) will increase in value or stay

fixed at zero as Rj decreases, and the same is true for Lj{Rj).

Since Qj equals the right-hand side of (13) and actually

decreases, we can conclude that Vjkl{Pkl - Tjkl - Rj> decreases

as Pkl decreases and Rj taken on the values for which equality

holds in (1.3). This process W:.Lll continue until VJkl (Pkl - Tjkl - RJ)

reaches the value zero, which occurs before Pk becomes1
negatIve.
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On the other hand, Hk (Pk ) incre~ses as Pk decreasesIII
from Pk O' It follows that there will be some positive value

l'

for Pk for which equality is acheived in (15) (with s deleted)1

for k = k1. Furthermore, for k ~ kl the inequality (15) will

continue to hold and possibly get larger when Pk,s = Pk,O and
the R

j are replaced by the values corresponding to equality,s

in (13). This is because,for k ~ kl' Vjk(Pk - Tjk - Rj)

increases in value or stays fixed as Hj decreases and Pk remains

fixed. Let Pk,l = Pk,O for k ~ kl' but let Pkl,l be the found

value of Pk for which equality is acheived in (15). ~lso,1

let Rj,l denote the corresponding values that satisfy (13).

Next, choose the first value, say, k2 in the ordered set

(kl+l, k2+2, ... , h, 1, 2, ... , kl-l) for which strict

inequality holds in (15) with s = 1. (If no such k2 exists, we

will have found an equilibriwn state. So, assume a k2 does exist.)

Repeat the argument of the preceding two paragraphs, decreasing

now Pk instead of Pk and holding all other Pk fixed. We will2 1

obtain a new set of values for the Rj and Pk' which we will

denote with the subscript s = 2, such that (13) is satisfied for

all j and, for s = 2, (15) holds for all k with equality

occurring for k = k2.

Once again, choose the flrst value, say, k3 in the ordered

set (k2+1, k2+2, ... , h, 1, 2, ... , k2-1) for which strict

inequality holds in (15) with s = 2, and repeat the above

procedure. Continue this process as long as possible. Two

possibilities arise:
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(i) The process terminates aftnr a finite number of steps

because equality is acheived in (15) for all k.

(ii) The process continues indefinitely.

Under (i), an equilibrium state will have been found. We

will now show that, under (ii), the sequence fPk,S\ :=1

converges for every k to a value Pk,- such that equality holds

in (14) when Pk = Pk,~ and the Rj are determined by (13).
,l4'irst note that the above process generates a nonincreasing

sequence (Pk S!:=l for each k. Since Pk s ~ Gk(C*) > 0 by, ,

virtue of (11), the sequence converges to a positive limit Pk,c.

Thus, {Hk(Pk,S)};=l is a nondecreasing convergent sequence

tending to the finite li~rlt Hk(Pk,m).

Let {Hk,s\ :=1 and (Ck,S! :=1 be the sequences of va.lues

taken by Hk(Pk) and Ck =: L j EJ \ V (P - T - R ) respectively
k jk k jk j

at Each step of the a.bove process. We have already noted that,

if."- ,I~'

as B-+ .., Hk -'jo H
k (Pk -), the Hk are nonde cre as ing, and,s , ,s

Hk
~ C

k . Moreover, for each k there are subsequences such,s ,s

tha t, for n. = 1, ,~ , ... , Hk s =: Ck s: also, for n ~ 2 and, n ' n
1, Hk = H

k whereas C
kS is nondecreasing.

,s ,sn-l '
Here, the s depend on the choice of k. Wen

wisb to show that, for each k, Ck,S'-' Hk(Pk,.). By virtue of

the continuity of the functions Hk' Vjkl Ljl and Sjl this will

prove that, foI' Pk =Pk,GD' equality holds in (14) when the Rj

assu~e the lmique values for which equality holds in (13).

In the following we will be choosing subsequences of

s < s ~ 8 -n-l - n
(See ,l4'igLlre 6.)

subs.)quences. Out of consideration for the typesetter, we

introduce the following notation: s:n = s .n Thus, (Xs:n:)):\-L)~=l
denotes a subsequence indexed by \-Lof a subsequence indexed
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by v of a subsequence indexed by n of a sequence indexed by s.

Suppose Ck,s does not tend to Hk(Pk,...)as S'-+"'. Then,

there exists an e > 0 and an infinite subsequence {Ok,(s:n:v)-l};=l

such that

°
k,(s:n:v)-l Hk(Pk,..)

> e.

Since Ck .. = Hk S.. S Hk(Pk ..), rle have,s.n.v , .n.v ,

°
k, (s:n: )))-1 °k,S :n: v

> e.

Let IJkl denote the (finite) number of farmers' markets adjacent

to the consumers'market nk. Let {Vj,k,S};=l be the sequence

of values assumed by the Vjk(Pk - Tjk - Rj) in the aforementioned

process. Since the sum over Jk of the Vj,k,s equals °k,s' thare

exists a subsequencef Vj k S . . . J"=1 such that
, , .n.J).~ ~

v
j,k, (s :n:v :~)-l Vj,k,s:n:v:~ >

e-.
IJk'

Consider now the sequence of increments APk by which the,~

value of Pk drops for the step in the aforementioned process

corresponding to the increase in our index s from (s:n:v:~) - 1

to s:n:v:~. By virtue of the Lipschitz condition satisfied by

the Vjk' we must have that

APk,~
>-

e

IJ~IM .

It follows that Pk,s
fact that Pk > O.

,s

of this paragraph is

must tend to --, in contradiction to the

Hence, our supposition at the beginning

false. rhis completes the proof.



20

5. The Uniqueness of the Equilibrium State

We now show that N has at most one equil!brium state.

Theorem ~. N has one and only one equilibrium state.

Proof. Suppose there exist two different equilibrium

states (i.e., in at least one consumers' market the price under
~

one :3tate is different from the~rice under the other state.)
I

We shall denote the prices and quantities for one state with

the superscript 1 and those for the other state by the superscript 2.

We can choose that notation and a value kO for k such that
1 2
Pk > Pk and0 0

pl
kO

- p2
kO

~ plk p2k

for every k. Starting with the first equilibrium state, we shall

alter the prices in the consumers'markets in two steps:
1 2

Step 1: LetAPk = Pk - Pk. Thus,APk > O. Decrease
1 0 0 0 a lOa

every Pk bYAPk to get the value Pk = Pk -APk. (ThesePk0 0
may not correspondto an equilibriumstate.) Set

oa =
k ~ Vjk(P: - Tjk - Rj}

j€Jk
a

>
a

where the Rj are the values determined by (13 when Pk = Pk.

Since the Lj and the Vjk are continuous and strictly decreasing

and the Sj are cont~nuous and strictly increasing whenever

their range values are positive, it follows that

a a
)

Vjk(Pk - Tjk - Rj
s 1 1

Vjk(Pk - Tjk - Rj>

. for every j and k. Therefore,c~ ~ c~.
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Rj) either stays fixed or decreases in

a result, C~ ~ C~ .

001
Upon combiningthe results of these two steps, we get Ck

2 0
~ Ck. But, since Hk (p) is strictlyd6creasingon 0 < p ~

J 2 1 0 *
P: and 0 < Pk < Pk S Pk ' we have0 000

Step 2: Keep P~ = P~ fixed, but for every k ~ kO change
°a 02 2 a

the value of Pk from Pk to Pk. Thus, Pk - Pk ~ O. Consequently,

at this step Rj either stays fixed or increases in value so
2

that V
jk (Pk - Tjk -0 0 0

value for every j. As

2
Hk (Pk )0 0

> 1
Hk (Pk )0 0

= C1
kO

>- C2 .

kO

Thus, the second state cannot be an equilibrium state, in

cuntradiction to our assumption.

6. The Asymptotic Stability of the Equilibrium State

We continue to assume that the supply functions Sj(p) are

independent of t. Let Zj(q) be the inverse function of Sj(p).

Thus, ~j(q) is a continuous strictly increasing function on

0 < q < Sj(-)' where Sj(-) = limp-+CI>Sj(p). The right-hand

side of (8) will lie in the interval 0 < q < Sj(-) for every j.

Th~, (8) can be rewritten as

Rj(t)
=

ZjfLj[Rj{t>l + L Vjk[Pk{t-lJ - Tjk - Rj (tJJ)
.

kEKj

(16)

In order to examine the asymptotic stability of the equilibrium

state, we linearizethe dynamic equations (9) and (16) around

the equilibrium state. This can be done by taking total

derivatives of (9) and (16) with respeot to the Pk and Hj and

then solvin~: the two resulting equations for dPk(t+l) in terms
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o£ dPk(t-l) by eliminating dRj(t). We also assign to the

derivatives of the functions Gk' Vjk'

they assume in the equilibrium state.

Zj' and Lj the values that

We denote these values

by Gk' Vjk' Zj. and Lj respectively.
This yields

dPk(t+l)
=

Gk L
jEJk

Vjk dPk(t-l)
-

V
jlkZjl L V]l dPl (t-l)leK - -

- j

1 - ZI(L I -)" VI )

j j i€K jl
- j

.

, Let there be h consumers' markets. In terms of the vector

wet) = [dPl(t). ... . dPh(t)]T (the super~cript T denotes the

transpose), the last equation can be written in matrix for.m as

w(t+l) = Aw{t). A is a constant h X h matrix whose elements tend

to zero as the values Gk' Vjk' Zj, and Lj tend to zero.

'" Now, the equilibrium state is asymptotically stable if all the

eigenvalues of A have absolute values less than one [1; p. 126].

The latter will certainly be the case if the absolute values o£

every entry of A is less than K-l [5; p. 211]. This result can

be written out explicitly as bounds on the values Gk' Vjk'

Zj' and Lj which insure aS1Mptotic stability, but those bounds

will be in general much more restrictive than need be. In any

case, we have the qualitative result that the equilibrium state

is asymptotically stable if the slopes of the functions Zj' Gk'

Lj' and Vjk are small enough in neighborhoods of the equilibrium-

state values of their arguments. This means that, with respect

~. -1

to the axesof &igures2 and 5, the functionsZj = 8j and
-1

Gk = Hk shouldbe flat enoughwhereasLJ and Vjk shouldbe steep
enouVl in the vicinity of the equilibrium state.

-----.
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7. More ~oml)licatedModels of Anticipated Prices

The model we have discussed so far assumes that at time t

traders between mj and nk take the last received price Pk(t-l)

in nk as the anticipated value for Pk(t+l). This is similar

to the classical cobweb model [3]. A number of authors have

modified the cobweb model by using more complicated formulas

for expected prices. (See, for example, [21, [61. and [7J.)

Thus, one might assume that the mj to nk traders take at time

t some weighted average of many prior prices in nk as the

anticipated value of Pk(t+l). We denote that weighted average

by

Hjk[Pk(t-l). Pk(t-3), Pk(t-5), ...].
(17 )

This idea can be incorporated into the governing equations

for the dynamic behavior of our model simply by replacing the

term Pk(t-l) in the right-handsides of (8) and (9) by (17).
/I

The recursive computationpf the various time series in prices

and quantities proceeds as before, but now initial conditions

must be given on enough prior prices to determine (17) for

some t. In general, (17) serves to smooth out the effects of

disturbances.

If Bjk 1s a strictly increasing function of Pk(t-l) when

the Pk(t-3), Pk(t-5) ... are all held fixed, then Theorem 1

and its proof extend directly to our present model. If in

addition (17) assumes a certain value whenever all the Pk(t-l),

Pk(t-3), ... assume that same value, then Theorems 2 and 3 also

hold once again with no changes in their proofs. Finally, the
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equilibrium state will again be asymptotically stable under all

the assumptions stated so far if we add the requirement that

every first partial derivative of Bjk with respect to each of

its argulnentsas aot too large in the vicinity of the equilibrium

state.
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