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| Abstract = The dynamic behavior of a two-level periodic rarketing
network having no market news i1s investigated, The present analysis
allows the traders to store goods , in contrast to cur pricr
analysis of such marksts., Otorage comnlicates the analysis,
but its overall effect is to ameliorste price swings. It is

shown that the present model has one and only one equilibrium

t

[N

state for exogeneously given supply and demand functions in

LG]

various marxets. Moreover, price disturbances propagate tinroughout
the network in a step-by-step fashlon, progressing no nore than

one market between consecutive market days. In this way, the
absence of. market news results in a sluggisn system, which
nevertheless dces convey market information by means of its

trading activities, Under certain circumstances, the merketing
_neuhork may generate apparently coentradictory mrice signais;

-that is, an oversupﬁly at one market may trigger a shortfall

in another market with the first market sending an initial zrice

signal for an oversupply through one part of the marketing
'

network and tiie second market sending an initial price signal

for a shortfall through another part of the nctworke. .

¥This work was sugported by the National Sciernce Foundation under

Grant MNCS 76-01992



le Introducﬁ%gi: Periodic marketing networks are
ubiquitous thrcoughout the less developed countries, .Morébver,
they éppear in a variety of forms [11, [2], [8]. In this work
‘'we continue a study undertaken in [9] of a certain kind of
periodic marketing system. In particular, we consider a
two=level system of rural periodic markets coupled to urban
wholesale markets as indicated by the bipartite graph of Figure l.
This is a system described by Jones [7]. The nodes mg denote
the rural markets, which we refer to as "farmers' markets';
their market days are assumed to occur periodically and simultaneously
at the values of the discrete odd-integer-valued time variable
t = eee =3, =1, 1, 3, see o On those days farmers bring to the
mj supplies of a given commodity and sell them to local consumers
and also to traders. The traders bulk and transport the commodity
to urban wholesale markets, which we denote by the nodes oy and
refer to as the "consumers! markets", The commodity is then
resold in the n, for retailing. The lattér event i1s assumed
to take place at t+l = eeey=lL, =2, 0, 2, L4, e.e, Dut in actuality
it may take place over a period of days between two consecutive
market days for the‘mj. The connections set up by the trsaders
between the farmers' and consumers' markets are indicated by
the lines in Figure 1,

Jones [7; p. 116] indicates that the traders tend to buy
regularly in the -same farmers' and consumers' markets and know
very little about prices in nearby markets, We idealize this

situation by assuming that each trader confines his activities
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to cne farmers!'! market and one consumersf market and that ne
knows the prices in his own markets but has no information about
prices in the other marketse In particular, we assume that there
is no market news disseminated between markets, Finally, we
assume that no trading goes on tetween two farmers! markets or
between two consumers' markets.,

It should also be noted that our assumption of simultaneity
for the market days of the various farmers' markets conform with
the conflictive arrangement of periodic marketing, in.écntrast
to the integrative arrangement. As is noted in [2], the
conflictive arrangement is not uncommon; it occurs for example
in Southern South America and Southern Africa,

Our hypothes;s that the commodity flows from the rural
areas intoc the urban centers, as would an agricultural staple,
can be reversed. He.can take the commodity to be a gocd, such
as an item of clothing, that is manufactured in seversal urban
centers. The commodity is transpocrted by traders from those centers
to the periodic rural markets, where it is retailed., In
this case, we need merely let the mj denote the urban centers and

the n, denote the periodic rural narkets,

k i

Furthermore, our model may even be applicable to daily
markets wnere the bulking cf the good, perhaps a fcod stagle,
by the traders:occurs in the mj during the early morning hours
and is resold during the day in tie N e In this case, t wonld
denote the early morning hcurs and t+l the rest cf the day.
” The analysis we undertoox in [S] and continue in the present

work is an economic one, cdespite the fact that an overzll

understanding of pericdic markets reguires historical. cultursl,



and scciological considerztions as well [3], [8]. Our narrcu
epproach is justified by the fact that we're asking a narrow
questicn: What are the dynamic variations in the prices and

n thne marketing network of Figure 1 under

4]
[y

commedity flows
particular conditions of supply .and demand? A question of
economics attacked by an econcmic analysis, Moreover, our
approach is founded initially on an atomistic examination of

the behavior of each trader, from which the overall behavior of
the marie ting network is built up through aggregation.

The principal differences between the‘present analysis and
the one given in (9] is that the traders are now allowed to
store gcods. This comi:licates the analysis of the consumers!
markets o it leads t supply functions in the n, that are not
perfectly inelastic, as they were assumed to be in [9] where
no storage was allowed, NKevertheless, most of the results
obtained in [9] are once again acheived herein

The behavior of the traders in the farmers' markets, where

they act as buyers, 1s assumed to be the same as that used in [9]

(]
o §
ct

In the next section we suopplen

the arguments of [9]
that assurned demand behavior with a derivaticn based upon a

treatment of the trader as a firm supplying the services of

J

bulking and transportatiuﬁ. ne resulting aggsregate demand
functions in the farmers! markets are described in Section 3.

In Section L we develop a supply bvelhavior for each trader in the
consumers! markets based upon a cost schedule fer his storage of
goods, and this is aggregated in Scction 5 tc get overall suzrly
functicns in the consumers! marhet‘. Gur total mocel for. the

marketing netwcerk ccnsists of a set of nonlinear differeiice



equations cbtaired by equatirg supply and demand in every msrket,
Time series in the various prices and commodity flows can be

oobtalned froem tuese equations by recursicn (Section 6)e The

of our mcdel appears in Section 7. Our model exihibits Jones!
step-by-step transmittal of price disturbences [7]; this ic

discussed in Section 8. ¥inally, we snow in Secticn 9 that =
sudden oversup.ly at one market can lead to seemingly contrad

price signals being propagated in different

®

rts of the marketing

o]

etwork; in

G

may ope dcwnward signaling thereby an oversupply vhereas in

.

e
[¢]
o
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articular, in one part the initial price perturbations

another part the initial price perturbationsmay be upward signaling

thereby a shortfall,.

2e The demand behavicr of the truders in the farmers:!
St Mo L e BT I T ]

marikets, The economic behavior of a trzder in a farmers! maries

—~—

can be derived frcm the customary analysis of cost functions

[6; ppe 71-75] if we treat the truder as a firm supplying the
services of bulking and transportation, From this point of view,
his output for a particular trip is directly proportional to

‘the amount g of goods he acquires in the farmers!' market,

Ve shqll take a to be the measure of his output,

As was discussed by Hay and beavon [5; pp. 30-31], the
costs incurred in prcviding the outpﬁt g might include the
following: ‘

le normal profit

2. 1interest on stock in trade

3. variable bulking and transport costs (e.g., additicnul
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wear and tear, gas cr feed, labor ccst, etc. incurred in carrying
.the stock betwecn nmar
e cost of transportation ecuiprment (rent or devreciation

. Eruck, bicyele, pack animel, etc.)

5. license fees

Hay and Beavon [5; pe 3C] consider normal profit as being

T i

the major cost item. In their words, "... it is the view of
the authors that the major cverhead cost is the trader{s time.
This can be apyrcached in the usual way as the normal profit,
or irrecucible wage cost of the operaticn. This is consistent

with the definition of normal profits as being thet level of

profits sufricient to induce the entrepeneur to stay in business,

Under conditions prevalent in most developing countries thiis time

3

cen be conceived elther as the incentive

(=5

ecess o induce the

ary

-
(n

3

)

individual to surrender non-working time or (and more likely)
the opportunity cost, the loss of income due to & reduction cof
effort in other directions (e.g., farmingj.
We take normal profit to be a variasble cost since it can
be avoided simply by not taking the trip between markets ana

performing instead an alternative jocb. The second and third

items are alsc variable costs, The fourth may be either a variable

1

or fixed cost devending on whether the trader rents or owns hi

trensportation ec“lpmena. s 5 and 6 will be either varlable

or fixed costs depending on vhether they ray be paid on & dalls

il i
= - v

basis or must be pald for an extended neriod of time.



In any case, the marginal cost (MC), average variable
cost (AVC), and average fixed cost (AFC) curves ight resenble

n Figure 2, Those are dreawn on the assumpticn

[ 5

those indicated
that the veriable costs, especially item 1, are conciderably

o

larger than the f

L1y)
O

ixec costs and that the marginal cost of th

first unit produced is very high because of item 1 but then fzlls

to small values until the trader!s transport capacity is apprcached.
The sharp sudden rises in the MC and AVC curves at the largest
values of q reflect the fact that item 3 Wwill increase sharply

once the trader's transport capacity is exceecdec, (We're assuming
that the truder cannot acquire an extra truck or pack animal during
the middle of his trip.) The standard argurent [6; pp. 73=7L]
asserts that, as q decreases from large values to zero, the traderis
-demand curve in the farmer's market follows the MC curve downward

until the minimum value T of the AVC curve is reached: it then
3

follows a horizontal line q = T toward the crdirate axis, and,

wnen q = 0, it coincides with the ordinate axis alcng the segent
O =p<=T. T is thus the critical price for the trader's

services above which he will acauire goods in the faurmers! nariet,
Now, to be more specii'ic, we number all the traders by the

index i = 1, 2, 3, ;.. « Consider the ith trader and assume that
he operates between the farmers' mariket mj and the conzumers!

mariet Ty e Let T?k be his cost corresponding to T in Figure 2.
(ie need not display thie subscripts j and k on T
has a unique ] and k assigned to it; but we do
of clarity.) The trader'!s derived deriand curve in m, at time t

can be obtained from his supply curve of Figure 2 by first

obscrving that the quantity of goods he exiects to supply in n,

£



upon returning from mj depends upon tne price he expects to
receive for his services. The latter is the aifference between
the price L.(t+l) he exrpects to receive in o at t+1 and the price
Hj(t) he has to pay in my at te That is, upon setting
p = Ei(t+l) = Hj(t) and referring to the sup
Figure 2, we obtain the amcunt of goocds
buy in mj at t, this being the amount of g
in n at. t+l, licte that, for E:
i

Finally, for E (t+1) - R (8) =T,

of the horizontal jump in the supolr schedule dictated by the

determined by the 1C curve. For Ei(t+l) -« R,(t) < T, t; (%) = 0,
@5

standard theory ol the firm.
In view oi these remarks, we can redraw the supply schedule
of Figure 2 to get the derived demand curve Ior the trader in
mj at t, as shown in Figure 3. This merely requires the reversal
and shifting of the supply curve in Figure 2 with resgject to the
p &xis,., liote that, whenever Ei{t+l) varies, the derived demand
curve of Figure 3 will shift in the vertical direction by tne
same amounte
Note also that this derivation assumes that the frader Iknows
exactly what his costs are., He doesn't. What we can assure hﬁuevsr
is that tnrough exverience the trader arrives at a demand scaedule
like that of F Figure 3. That experience would give him a falrly
critical
good idea of what higAper-unit cogt T
goods is. for prices above E;

he would demand notaing

in mj becsuse he would be exiecting a.loss on any acquisition,



For prices significantly belcw L. 13 he would expect a
profit and would £ill up most or all of his trensport equipmente.
Finaliy, it seems unlikely thiat he would make an "all or nothing"
‘decision at p = dk(t+l} - T.... Instead, there should bte scme
transition region wiiere his dublcusness about the expected profit or
loss would cause him to follow a more continuous transition from

no load to full load, as indicated in Figure L. 7This is the

demand curve we used in [9] and will ccntinue to use in this

paper.

However, there is still another assumption associated with

Figure L which we snould dlsci

o
1]
w
.

vie are assuming that the

‘trader behaves with perfect consistency., Given any value cof
i ; ' , : .
Ek(ﬁ+l) - Rj(t), the amount of goods he acquires in mj is

precisely determined, whatever be the value of t., More realisticzlly

there snould be some uncertainty about his actions, This night
be modelled by a probabllity distribution regarding his possible

acquisitiohs. But just which provesbility distribution should be

o

used requires still anofther assumption wiich might ve just as

difficult to justify. UWorse still, such & prcbabalistic approzch

. 1

might render our model intractable., In any case, sorething has
mlg : s &

3

to be assumed, or thnis atomisti pproach will have to be zbandoned.

[&]

The precise behavior depicted by Figure L seems to be a reasonable

compromise between realism and tractabilit

With regard-to the expected price L (t+1), we could set this

equal to some memory function of past prices:

-

B (1) = M [P (£-1), P _(£=3), 2, (873), «ee]s (2.1)



That is, at time t, each trader arrives in his own

10

way at scme

expected price Ei(t+l) in n, for t+l from his memory of past

k

prices therein., . This should be some weighted average of past

prices, where more recent prices are given greater

also require that

M;(a, By €5 swwl B Ki(a', By 8y swn)

weights., We

(2.2)

ifasa’, bSb'y cScly eee , with strict ineguality holding

in (2.2) if strict inequality holds for one of the
Morecver, a history of constant prices should lead

expected price; that is, Mi should satisfy
P |
&. - I"{k(a, a, a’ l..)

for every positive value a. The simplest relation
these requirements is

Ei

% fo-l)c

(t+1) = Pk(

It's the memory used in Ezekial's classical cobweb

We denote the function of Figure L by
1w 8 -
ij[hk(t+l) Tjk o}l

. - - i . "
where the function V. (x) is continuous for all x,

_ Jk
for x S 0, and strictly monotonic increasing for x
rises rapidly for small positive values of x and

and approaches a finite value as x—r<«,.

arguments,

to the same

(2.3)
satisfying

(2.4)
rmodel [Li]e

ecval to zero

=z 0., It

4

then levels cf
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3 Sugply eand demand in & farmers!'! market. We now
e e i S e

——

proceed exactly as in [9] to set up the supply and demand functions
. T - " o b :
in m, at time t., These are shown in Figure 5. S,(p, t) denotes
.] =] J 2
.the aggregate supply functicn of all the farmers selling the

cormedity under ccnsideration in mj at t, Demand consists cn

A -

the one hand of local demand from consumers who shop in mj Their

" aggregate demand function is Lj(p, t); a possible form for it

e

is shown in Figure 5. On t:..e other hand, we have the demand
functions, shown in Figure l, of the various traders who opersate
all

g

in mj. Upon eggregating demand over the consumers and all the

s

traders who shop in mj and then equating supply to demand, we

get the following equation for clearance in mj at t.
si(e, t) = Di(p, ¢) (3.1)
where
£ = + i .

-3

The inner surmation on i in the right-hand side is a sum over

the indices i for those raders who orerate between mj and D, e

‘'The outer summation-is over the index set Kj of the adjacency of

£
. st
m i

J
(3,1) is illustrated in Figure 5.
t) o

and Lj are assumed to be exogeneously given. Eguation

'

The solution p = Rj (3.1) is the clearance price for

mj at t, and the value of either side of (3.1) at that price is

the total quantity Qj(t) exchanged in m, at t. oreover,
J



wl P om 3 i 5 X
: = Vs LB 1) @9 = R L o2
F (%) %' Jk[ L (541) = T3 WJ\L}] (3.2)
is the amount of goods transported frecm m, to n, between times t

and t+l.

i, The supply and storage behavior of the traders in the
e e e

e

e

consumers'! merkets. In [9] we assumed that every trader sold in
'w

his n, at t+1 all the gocds he had acgquired in his mj at t and
that he accepted wnatever price he could get for his goods.

In other words, his supply function in nk'was perfectly inelastic,
We now wish to relax this restriction by a2llowing the traders to
store goods., If the price in oy is so low that the trader would
incur a loss upon selling goods in s he might instcad store at
least some of his goods and wait for a better price, In this
circumstance, the amount that he stores depends not only on the
price in n, but alsoc on how much it costs him to store gocds,

We postulate therefore that the ith trader, wino we asszume
is operating between m. and o, has a per-unit cost u.k(q) fer
storing goods for one market period (i.e., from t=1l to t+l for
any t); that cost depends upon the amount ¢ being stored. E
We also nostulate that the function %
Figﬁre 6. That is, it costs the trader very little to store a

few goods, but the per=-unit cost increases as the amount stored
e

Cin b

expands. Djk is his storage capacity, and I % is the correspinding
per-unit storage cost at full canacity. For q > BJ{, e
assume that Zj1(q) which is just another way of saying

that the trader won't store any more than 5%, e
FeS

e pe
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All ﬁhis legds to a supply sciiedule in n, atv btime t+1l for
the ith trader as shown in Figure 7. Iec:11l that ﬁi(t) is the
price that the trader has paid in n, (t=1) is the

J
‘amount of goods in storsge between t~l and 4+
hat storage takes place at nk.) Also, Giﬂ(t+l} is the total
< J
amount of goods he has availlable in 0, at t+1l; it consists of

the amount transported into o, plus the carry~over stocks from

storage., Indeed,

i = i g - - |i - ] ¥
Oy (8#1) = A3 (s=1) + Vi [E] (8+1) = 75 Rj(,)].

to sell when the price in n

i 5 B g 2 4
Kemember that Tjk is the minimum expected price rise from

mj to 0, below which the trader will cease operations in mj.
, . s S ;
For an actual price difference larger than Tjk he malzes some

he was planning on

ct

profit, perhaps more or less than the profi
if and when he acgquired goods in mj, but nevertheless a profit.

We assume therefore that he 1s willing to sell the amount

V?k[Ei(t+l) - 77, - Rj(tJ]

:

i
&

jk

he has just transported into n, so long as ke can make scome
L
profit on that sale,

r i .
With regard to the amount ﬁjk(t-l) he has in storsge, ve
& &

assume that he values.those goods in the same wqy as the gocds

he has just transported into n,, acspite the fzet thiat he may
< Kk’ 5 J

have paid a price for his stcred goods dif:erent from R,(%).

S

In other words, his valuatiocn of stored goods is devermined by

(4e2)



current market conditions, a practical viewpoint. Consequently,
i , ‘ o o
for p 2 Rj(t) + Tjk we asswme that he sells all his gocds at

hand, namely, CT, (t+1).

jk

If however p < Rj(t) -+ Ti

%2 the trader will suffer a loss

on his sales, and so he must decide whether to incur a loss on
sales or a loss resulting from the storage cost between t+1 and
t+3+. More precisely, he must decide how much to sell and how much
to store, Uiven a clearance price p = Pk(t) somevhere between

R.(t) + 7%, and R.(t) + T
j 7 J

[y

Kk %~ IER’ his smallest loss occurs when
his per-unit loss on sales equals his per-unit cost of storage

for the amount A?k(t+l) he decides to store. Any smaller (larger)
storage would mean that his per-unit sStorage loss would be less
(respectively, greater) than his per-unit sales loss, and it would
therefore pay him to store more (respectively, less) goods. This
is the situation depicted in Figure 7, which siows the trader's

supply function in n, at t+l. The vertical line at ¢ = C k(t+1}

e

results from the reascning given in the

for p = Rj(tJ + 7 ¥

Ce e

preceding two paregraphs. The curved part of that supply schedule
a reversal and shifting of the storage-cost function of Figure €.
For the clearence price Pk(t+l) indicated, the trader stores

iy e :
&jk(t+l) and sells qjk(tfl}.
Pinally, for p < Rj(t) + T?k - IEV’ the trader stores as much

i

e - ' .3 - , w
as he possibly can, namely, ﬁj& and then sells the amcunt C.x(urlj

C

in excess of that storage capacity at whatever price he can
get. This is represented by the lower vertical segment of the
supply schedule in Figure 7. This assumes of course that

i 2 O (ta If 51 > Ci [ERT b © 2s o 4 e 5 e gin]
Bjk AR PR ij 2 B RS ls fien &s p decresases, the suiply

schedule curves in toward the ordinate axis until it either rmeets
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the ordinate axis or meets the abscissa axis. In the former case,
it follows the ordinate exis toward the origin. In the latter
case, it terminates at the abscissa intercevt. An ordinate sezvent
means that the trader'exhaué%s'his supoly before his storage
capacity is filled, 4&n abscissa intercept means that it is cheaper -
for the trader to give some of his goods away rather than trying
to store all of them.

The . supply function S?k(p, t+1) dn n, at t+l for the ith
trader can be written as follows. (A4s befcre, we are éssumin=

that the ith trader operates between mj and nk.)

S;k[p, Rj(t), Ei(t+l), Aﬁk(t~l)]
r 1 -+ ‘. > _""'i
Cjk(t 1) fLor p 2 Rj(t) + Tsx
3 i y i
max {O, Cy, (t+1) = W [“.\t) * PL.. <D }
=-< jk Jk ':i_i ..J‘f ] . (lLe3)
. r R,(t) + T%, - I:. S p S R.(t) + T,
or 3( ) le jk P 3( ) igz
i Lkl @ 5 . SRR
Kmax {O, Cjk(t+l) Bjk) fer p = Rj(t) : ij ljk

Here, H?k is the fuﬁction-inverse ot Z?k‘ Also, it is understéod
that p is restricted to positive values,
| We menticned before that the trader values the goods he has
at hand in ny &t t+1 by the per-unit cost R (t) + T?k; this
: J
includes the stored goods as well even thouga a price different
I (t) may have been paid for them. We can relax this

from R

11 further = by renlacin

[

ion = and complicate our mcecdel st

(t) in (L.3) by & memory value of prior s poleas:
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‘«-j. I - -n = S \
j[Rjkt)’ Rj(t G)J_fljkv x..I.J’ g..] (L{..LL)

).

where Né satisfies conditions s imilar to those imposed on L,
This would allow greater flexibility in cur treatment of trader
tehavior,

As Rj(tJ (or alternatively the value of (li L)) varies, the
supply curve (L.3) shown in Figure 7 shifts vertically, and, &as
the goods on hand C?k(t+l) very, that curve shifts horizontally,
This then is a substantizlly more complicated model of trader

behavior in the nk than the one used in [G].

S. Supply and demand in a consumers' market. We assume that

in each consumers' market n, at any t¥l there is an ekogeneously
given demand function D;(p, t+l) with the conveniional slope
indicated in Migure 8.

To get the supply function in n,. at t+1l; we sum the
individual supply functions (Le3) for all the traders operating

out of Ny e This yields the agzregate supply function

S5 (p, t+1) i 2 s ([Ps Ro(8), B(t4l), A% (t-1)] (541)
Euk
. . . . ~C o
where J, 1s the index set .of the adjacercy of n e bk(p, t+l)

will have a form like that indicated in Figure 8.

The equation for clearance in 0, at t+1 is

Cc

Py

(p, t+¥1) = S

<)
-
ct
-+
'_.l
-
Ul
[
n
—

and 1ts solution p = P, (t+1) 1s the clearanc

o)
oy
H
e
Ie]
o
-
ot
4
],...I
L —

denotes the amount of goods exchanged, namely, the value of

either side of {5.2) at clearance.
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6. Recursive analysis, In order to perform a recursive
analysis on our model and also to establish the theorems presented
below; we have to impose precise conditions on the various supply
‘and demand functions, same of which we have already mentioned
but now repeat,

Conditions A.

Alz For each j and ¢, Lj(p, t) is a continuous nonnegative

function on 0 < p < « and strictly decreasing on 0 < p < R?(t} S =,
) :

If R(t) < =, Ly(p, £) = 0 on R?(t) Sp<e, If Rg(t) =,

Lj (py, t) >0 as p—-=,
Aaz For each j and t, S?(p, t) is a continuous nonnegative

function on 0 $ p < =, equal to zero on 0 S p S R3 (%), and
J 2

*_

J
L
jk

strictly increasing on R?(t) < p < =, where R?(t) < R,(t).

AB: For each i and its corresponding j and k, V., (x) is a
continuous nonnegative function on == < x < « such that V%k(x) =0
fap = & O, V?k(x) is strictly increasing on 0 S x < =, and

V?k(x) tends to a finite limit as x—e-m.. Moreover, 1tv satisfies

the Lipschitz condition
i i T -
]vjk(x) - vjk(a)l s Mz - v

for all x and y. (Since there is only a finite number o traders

in the whole marketing system, we can take the ccnstant i to be
independent of i, j, and k. It follows that every aggregate function
ij =Zi vik also satisfies a Lipschitz condition wita a ccnstant
that is independent of j and k.)

au: For each 1 ard its corresponding j and k, Z?k(x) is =
£

b

continuous nonnegative strictly increasing function on 0 S x S 542,
J

and z%k(O) = 0,
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AS: For each k and t, Dﬁ(p, t+l) is = continuoqs nonnegative
function on 0 < p < = and strictly decreasing on 0 < p < P;{t+1) S -,
If PL(t+1) < =, D (p, t+1) = 0 on PR(t+#1) S p < =, If PX(t+l) =
' D;(p, t+l) >0 as p—=, A4lso, as p— O+, Dﬁ(p, t+l) =,

We assume that the functions in these five conditions and
the T?k as well are exogeneously givén. Our model then consists cf
(301) and (5.2) for every j and k and for t =1, 3, 5, ... and
in addition some initial conditions. The latter are the initisal
stored quantitles AJk(O) and also the consumers! nhrket prices
Pk(O), k(-2), Pk(-u), eee for all the prices in the arguments

that appear in (2.1) for t = 1., If the memory function

X

of the M
(Lolt) is used in place of the Rj(t) in (Le3)s; we will also have

to specify those Rj(-l), Rj(-B), Rjt"S), eee (but excluding Rj(l})
that appear in (4.4) for t = 1,

Given these initial conditions for all i, j, and k, our
Conditions A insure that unique intersections exist between the
supply and demand functions in Figures 5 and 8. Indeed, we can
compute time series in every price, quantity exchanged, and
commcdity flow as follows, The initial conditions P (O), ,\ 2.k
P(=L), e determine through (3. 1), coupled with (2.1), the
farmers'! market prices Rj(l) for all j, as indicated in FigureIS.

1 in

Also determined are the quantities Qj(l) exchanged at ¢
all the farmers! markets, the amounts (4.2) the traders transvort

just after t = 1, and the ik(Z) the last by virtue of the given

JK(O) and (4el). The Rj(l) (and, if (loY4) is used, the R, (-1),
J

RJ( =3)e eee) determine through (5.2),.coupled with (5.1) and w3l
i

all the consumers' market prices Py (2)s As is indicated in figure 7,

they also determine the ariount A1{(2) eacnh trader stores and



19

the amount Qﬁk{a) each trader sells at t+l = 2,. Thus, we have
in effect a new set of initial conditions displaced two units
of time later on. Consequently, our computations can be

‘cantinued for another periocd. Continuing in this way, we get

the aforementioned time series,

" Te Equilibrium. Our present model deals with three kinds
of variables: prices, commodity flows, and = in contrast to
the prior work [9] = stored amounts as well. The last variable
complicates our discussion of equilibrium states., Such a state
is said to exist if the indicated variables do not vary with
time. (We now denote the constant values fcr the varizbles simply

by dropping the arguments in t. Thus, P, _(t+l) is a varying vaiue,

k
but Pk is a fixed value - not a function.) An equilibrium state
state becomes a possibility when the exogeneously given supply
and demand functions Sg(p), Lj(p}, and Di(p) are independent of
time. Whether an equilibrium state does exist under these
conditions and whether it is unique is the subject of this section.
Consider the ith trader and assume again that he operates
between.mj and n, . Since under‘an eguilibrium state all varizbles
‘are constant with respect to time and Ei(t+l} = Pk for - 811 ¢

according to (2.3), the amount of goods taat trader transports

into n, on each trip is

V= (Pk-TEk-RJJ. (7.1)

i ak
Vihen P, > T,
k jk

+ Rj, (Tel) assumes a positive value, and we have
the situation depicted in Figure 9 where no goods remain in

2 - S . . _ -
in storage; ij is equal to (7.l) in this case. On the other
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hand, if Pk s T?k + Rj’ (7e1) equals zero according to our
definition of vi:k. Thus, in no equilibrium state does the treder
perpetually incur a loss on the goods he continually transports

into his nk.

However, equilibrium storage under the condition.Pk < T?k + Rj

is a more complicated affair, Rcaording to our model, S?k(p)

can be any of an infinity of curves, as is illustrated by cases

a through e in Figure 10; more specifically, it can be any of

the curves obtained by shifting the curve for case e té the left
aﬁd making it coincide with the ordinate axis below the point

where it first meets that axis., Thus, the perpetually stored
amount A?k can be any value from ¢ down to zero, the latter value
occurring when S?k(p) coincides with the ordinate axis for all

p (case a). Cases f and g are impossible however. Either one

would imply that the amount Ql or Q2 is perpetually transported

into nk, in contradiction to the fact that (7.1) equals zero when
< ok % :
its argument P, Tjk Rj is negative.

Just which possible case will occur depends upon how the
equilibrium state arises., For example, assume we have a dynanmic
variation in prices and flows. If the price Rj(t) in m, remains

. o

at the fixed price Rj but the price Pk(t+1) in n, jumps suddenly

i

down to the fixed price Pk from prior values well above T, + R.,,

Jk J
the curve of case e may ensue after possibly one more sale of

goods. The last step may occur as follows., The trader comes

tq oy Wwith more goods tian 4, finds a low Pk (fixed henceforth),

sells all his goods in excess of @ = A?k’ and then rerains with

the supply curve of case e while storing 4 perpetually,.
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As another example, assume that the price P, (t+l)

| i
gradually approaches a fixed Rj + T?k so that the amount brought
into ny approaches zero, but, before these limits are acheived,
. the Pk(t+lJ falls to and stays at the considerably lower value
shown in Figure 10. Then a supply curve quite close to case a
will ensuve. Intermediate cases between a and e can be generated
'~ by assuming other paths of convergence for Rj(t) and Pk(t+l).

The eqﬁilibrium behavior can be summarized as follows,
In an equilibrium state; each trader either sells in his n, &
fixed amount of goods at every value of t+l or he perpetually
keeps Iin storage a fixed amount of goods, or he neither sells
nor stores, However, he cannqt both sell and store; f he sells
gecods, he stores nothing, and, if he stores goods, he selis
nothing.

We should comment still further about the fact that our meodel
allows storage to occur perpetually in an equilibrium state,
This means that the trader never gives up hoping that the price
in n,. will imprqve sufficiently to allow him to sell at a profit.
In this respect ocur model is not a long-run one. Any trader should
eventually recognize thet the equilibrium price is not going to
‘improve and would then liguidate his stock to cut his storage
costs, perhaps by consuming it himself. He'may on the other
hand start selling off his stock. In either circumstance, case a
sheculd ensue, but tnerprice Pk may be perturbed while the trader
sells off his stock. -Our model does not enccripass this eventual
collepse of the permissible supply curves of Figure 10 into

the cordinate axis,
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Only the stored amounts-Aék exnibit the ambiguity in the
equilibrium state 1llustrated in Figure 10. The prices and
commodity flows are unicuely determined, This can be proven

. by relating the equilibrium states of our present storage mcdel
to the equilibrium states of our no-storage model of [$] as
follows,

Let there be given & particular storaze model, If discard
the cost schedules Z?k and assume instead that esch trader has

a perfectly inelastic supply schedule in his n,., We get a uniquely
determined no~storage model, which we shall refer to ss the
associated no-storage model. INow, if the storage model has an
equilibrium state, then the associated no-storage model has
one too with the same prices and quantity flows, To find the
latter, note first of all that every trader!s equilibrium price
Pk in the storage model can occur only where his supply schédule
is perfectly inelastic (or at an endpoint of such a range), at
is Iindicated in Figures 9 and 10, and his corresponding equilibriunm
commodity flow is the amount (7.l). By extending the perfectly
inelastic segment where Pk occurs, we get the supply schedule
for "the no=storege rnodel., Taus, with regard to Figure 3, under

quulibrium_the suppiy schedule forthe associated no=-storage model

is a vertical line passing through the equilibrium poin (qk, Pk}
of the storage model,
ConVersely,_stifl given the storage model, we incow frocm

Theorems 2 and 3 of [9] that the associated no=-storszge mcdel has
a2 unigue equilitrium state., In ti.at state the ith trace

a nonzero quantity (7.1) if and only if P, - T

J
in this case his supply function in the storage model for ecullibrium
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can be constructed for »rices below Hj + Tsy from hisg given

cost schedule Zék in accordance with Figure 9, On r?e other

hand, that trader transnports no goods if and cnly if Pk - T%? - Rj =
1 jk

Zi rius

5k can again be used to construct his supply curve undsr equililb

as one of the permissible schedules indicated in I'igure 10,

However, just which supply curve ensues dejends uzon the amcunt -

stored; the latter can be any amount between 0 and ¢
i
<+ - .

T. 3% (R jlc Pk)

of tne associated no=-storage mccdel, this process yicldas an

In any case, from the equilibrium state

equiiobrium state for the storage model, whnere the aggregate surzly

~

- c : s e . : : y
schedule Sk(p) in nk 1s uniquely determined for prices telow

P, but may be ambiguous above Pk' We can thierefore conclude

k
this argument with

Theorem 1. Let there be given a pericdic marketing network,

as specified in the penultimate paragraph of Section 6, which

satisfies Conditions A. Assume that the given L, (pJ, S.(p), ana

[
[

D (p) do not vary with time ¢t. “en that marketing network has
an eguilibrium state which is unicue with respect to the nrices

(B, - T

R, and P, and the commcdity flows V-
dJ £ k

g_J l._)o
t e e

Haw: =
Y Rj)' Hovwever,

k
i - g ; 5
the amount Ajk stored by each traaer can be any nornnegative value

: R i

up to and including W, (R, + T,. - 2 ),
s Jx J X

‘he question of the asymptotic stability of an equilibrium
state is obscured by the storage behavior. Inaeed, consider an
equlilibrium point wherein scme traders are storing goods. Lacha
such trader has a saoply curve like those indicated iIn Figure 10,
vie can alter amount the trader stcores to sorme extent so long ac
his supply curve remains within the range between czzces a and e,

. . " =t o

This does not cnange the equilibrium point uLecause the aggregste
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supply curve Sk (r) has been altered cnly fcr prices sbove thoe
equlibrium price Py, not at P . e can conclude that no equlibrium

state involving some storage is ssymptoticzlly staule becaus

[N

.1t is a member of a continuum of equilibrium states,.

Howeﬁer it may be true thzt the prices and flous of any
equilibrium state demonstrate asymptotic stability, even though
the.stored amounts do not. Ve haven't been able to show this,

Our conjecture seems especially recascnable for the case wher

Pk - Ték - Rj > 0 for every trader, In this case, no trader stores
goods, and in the vicinity of tnie equilibrium pecint we have once
agaln the same supply and demand curves of our no-storage model

of [9]. That model does demonstrate asymptotic stablity if
sufficiently strong assumptions are imposed on the slopes of

the demand and supply curves [9; p. 524]. To trensfer that result

to our present model, we would have to show that any equilibrium

state satisfying Pk - EK - Rj > 0 for every trader is stable
in the sense of Lyapunov. We haven't been able to prove this

either,

8. The propagation of disturbances. Since we are assuming
e o e .

———

. that there is no market news at all, the only way a distrubance
in supply or demand can propagate is through the trading activity,.
As a result, any disturbance cen progress no more tuan one

(N

“hiz ma

—

market from one valug of t to the next.

[ ]

ces the system

b

(=

sluggish, Iioreover, a local disturbvance

s not amelicrated by
the resources of the entire systen, as it would be in a develored
econcmy having good transportation, werehouses, waoleszle and

retall facilities, and of course narket news. It si:iculd therefore

ces are morc volatile for local

Fi-

. be exprected that local pr



disturbances but more insensitive to variations in distent
markets. Thils is the phenomencn discussed by Jenes [9; p. 119].
Our objective in this secticn is to show how our mathematical
"model exhibits a similar step-by-step propagation of a disturbance.
In this section, we continue analyzing the more general model
wherein the memory function (2.1) and (L.L) are used, We need

scme more notation. Set

1 I i |

Fp(8) = Vy[Ee(es) - 15 - mye)] (8.1)

- i [ 4= A

and ij(t) = 21 Fieltie (C.2)

_ij(t) 1s the flow of goods along the line (j, k) connecting
mj to o3 this flow cccurs at the end of market day t and
before t+l.

Let there be two dynamic processes for which the supply ana
demand functions Sq(p, £); Lj{p’ t), and Di(p, t+1l) are the same

J

everyvwhere for all t except at my for t = 1 (and possibly &t m

for t = 3, 5, Ty eee too)s We will denote the variables for

A

the two processes with either a superscript 1 or

o
(%)
&

e}
o
L
r
o
H
I_ da

o
ct
n

and will refer to the two processes as the first and seco:nd nrocesscs,

(6]

We partition the two sets of market indices as follows: Y, = {1}
ii84; Yi is the set consisting only of the index 1. For
Y=3,5, 7, eee , We let X, (or Zv-l) denote the set of indices
for those mj (regpecéively, nk) that are at a distance v-1
(respectively,){-2) fron my e This .partitioning is illustrated
in ¥igure 11, which is simply a rearrangement of Figure 1, There

is no line between any two nodes of a single index set,



Choose & shortest path P between m, and mj (cr nk}.
-— &
Consider the following sequence of flows for tlie wth process
(0w =1, 2):

e 5% 5 ks BY 5 3 P 5, 80 FD 150 s (8.3)
b " 33 2 33 4 351“'4 35% ) }

where (1, kz) is the first line in P, (33, ) is the second line

in P, (j3, kh) is the third line in P, ete. Therefore, k, ¢ Z

& 27
j3.€ Yé, kh-e Zh, j5 € YS, ese o This secuence is called an
ml-to-mj passage (or an ml-to-nk passmga) for the wth process,

<yhb shall say that coincident cutoff occurs for the given passage
if either or both of the following conditions hocld.
l., There is at least one term in the given passage (8.3)
that is zero for both processes,
2e There is at least one consumers'-market index kp
appearing in the given passage (8.3) such that zll the goods

brought into n, alcng the (j§~l’ k,) line go into storuge at

k
S at time t+L =Y for both processes,

v
We call the first event a coincident flow citoff and the
second event a coincident storage cutoffl,
Theorem 2. Assume that there are two dynamic processes
for a given periodie marketing network of the form of rigure 1,

which satisfy Conditions A and the following three hypotheses.

4e The initial conditions for both proces:es are the same;

that is, for t = 1, =1, =3, ees , Pp(t-1) = PE(t-1) for all X,
RE (t-2) = R2(t=2) for all tadiny = A2I9(6) £
; = Ry(% or all j, and AJ, ( Jf ) for all

i, i, and k.



Be Si’l (p, 1) < Si’z(p, 1) for all p such that Si’ (p, 1) > 0O,

Ye Other than the supply function of Hypothesis B, all
the exogeneously given supply and demand functions (i.e., those
indicated in Conditions al, Ae, ana RS) are the sams for both
processes,

Then, for every t = 1, 3, 5, ees, we have the following results

a. For every j € Yt’ R%(t) z R?(t). Strict ineguality
holds if and only if tiiere is at least cne ml-to-mj passage having

no coincident cutoff.

edoed = i
4“ seey uj(U} Rj(u}c

EH1? P (Lel) 2 P (u+l) Strict inequality

F s
be or every j € Yt+2 u Y
Ce: for every k € a4
holds if and cnly if there is at least one ml-to—hv passage
having no coincident cutoff,

d. FOI‘ every k € Z U Zt+5u eoe o Pi(t+l) = Pe(t‘ﬂ‘l)

t+3 k
151 - P o
Jk (t+1) = Ajk (t+1) whatever be i and Je

Proof. Except for the conclusion about the stored amounts,

and A

this theorem is the szme as Thecrem 1 in [$], but the proof is
more complicated now because of the possibility of storage.
Moreover, in contrast to [9], we now allcw the treders to have
different memory functicnse.
It follows from Hynoubes;s < that the aggregate demand functi
i~ 2

in m, are the same for both processes, S0, by liypotiiesis 8

by the strict monotonicities of the supply and demand functions
S 1( - P

J

1) > R{(1). Wow, let k €

in ml, and by the conditions that Kk, 1) and R (1) are both
less than Rj(l), we have that R?( 5

; " — 1 3 i
By the strict monotconicity of the Vlk’ we also have that

(1) 2 Vl’a(l) - Tiy for every

-

H

(l) except when R
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5 between qy and n e In the latter 'case,

(1) = 0; that is, a coincident flow cutoff occurs
on the m_-tc-ny_passave at t =1, Lloreover, Hypotheses « and y

R;(1) for 1§ & YS u YB U ees o

Conu*zue te let k € ZE' Just after market-day 1, the amounts

stored in n, and amounts brought into o, by the traders from the

N

famers' markets other than m, are the same for both processes,

In view of our conclusion about the prices in the various

farmers'! markets, we also have
i
i\jk[R (1), R (-lj’ hj(-B}, l.i]

2w [, R3-1), B3(=3), ...]

with strict inequality holding for J = 1 and equality holding
; - : . . C,yl, sC 2
for j € 13 U Ys U ese o Consequently, bk (ps2) S k,

all p. By the monotonicities of the supply and demand functions

(p,2) for

: 2 T, R— -
in n,, we have P (2} Pk(E). Now, not only can coincident flow
cutoff occur ‘along the 1-to-nk line but also coincident storage

cutoff can cccur in n, e The latter cccurs when the supply curves

for all the ml-tomnk traders are of the form of cases a to e in
Figure 10 for both processes at time t+l1 = 2, This means that’

the aggregate supply functions for both processes in Dy at t+l = 2
differ from each other only abcve the point where they intersect

(] 2 ‘ 3 ? L4
he Dk(p, 2) curve. e can therefore conclude from the strict

monotonicity of D (p, 2) that P(2) > P2(2) if and only if

ceincident cutoff dces not occur on the m,~to=n. passage, On
) 1 I of =
; % ; . 1 . < P
the other hand, for X € Z) U Z, U e.. , we have P (2) = fk(a}
“ - o

and a2t (2)

3k = A5f (2) for every s adjacent to n,, whatever ve 1,



because conditlons are the same for both rrocesses inm, at t = 1

J

and in n, at t+1 = 2,
We now ceastruect an inductive argument., Assume that

Coniclusions ¢ and d both hold for all values of t up to and

I
l.—.—l

uding a given t 2 1. %We have shown thzt they hold for t = 1,

virtue of (2.2), we have for j € Y, .o that Dg’l(p, t+2)
D ’g(p, t+2) with strict inequality holding for at least some

e by ed

p > C when coincident cutoff does not occur on the ml-to—mj

passege. In view of Hypothesis y and the monotonicities of the

supply and demand functions, H%(t+2) = I 2(t+2 Tor j € Y o0
Strict inequality occurs if and only if the S}{p, t+2) curve

intersects the 'g’l f 2(

(p, t+2) and D py, t+2) curves at different

cints. But, thls occcurs if and only if there is a k e Z in
P ’ o t+1

at least one ml-to-mj passage for which the condition in Conclu

for strict inequality holds (i.e., no coincident cutoff occurs

on the my=to-n, passage) arnd in addition F “?k(tf2) >0 (i.e., the
.difference in P}(t+l) and Pi(t+l) is effective in mj}. In other
1
J

words, R (t#+2) > ? (t+2) if and only if there is some my ~to-m,

J

passage having no 001nci ent cuteff, This establishes Conclusicn

with t replaced by t+2.
Conclusion b with t replaced by t+2 follows directly from

Hypothesis ¥ and our assumption that. Conclusion d holds for the

given t. (The two processes are the sare at a given market until

the perturbation at y reaches that market.)

Next, for j € Yt+2 and k € Zt+3’ we have from Conclusion d
) e r - 2 i}l‘ 2 — i’a":_ ~ ) - G 3% 8 Fa =
that, for every i, Ek (t+3) = E] (E+3), and therefore

£

1]

¢
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i

sd Tealzd - m - - i i,e -l o

B 2

Tor all p. Hence, if hj(t+2) > Rj(t+2) and if R?(t+2) <

- . ;
E (t+3) = T for at least one i, we have from the strict

e jk ;
0F0u01lcit" of the Jk (x) for x > 0 that F J (t+2) < ikz(t+2J
for some i, On the other hand, FJ (u+2) ?ie(t+2) for all i

i ol 14. = 1 -2 -
if either Rj(u+2) Rj(t+2) or Rj(t+2) = Ek {t+3) ljk big'a s -t s &

The former condition holds if and ohly if coincident cutoff
occurs in every ml-to-mj passage, and the latter condition holds
?k(t+2) = F?k(t¢2) = 0 (i.ee, coincident flow

cutoff occurs in the (j, k) line at t+2). Tius, we have shown

if and only if F

- & B \ - : : z 2 B &
that EJk( t+2) S F k(u+2; and that strict inequality holds if and
only if either one of the two stated coincident cutcffs occur.
However, the carry-over stcrage in n, from t+1 to t+3 is the
same under both processes,
4 3 o 3 i 1= 7
On the other hand, for j € Yt+h and k € Lig3

from Hypotheses « and y that F%k(t+2) = F?k(t+2)' Upon ccrbining

with our pricr conclusions concerning flows, prices, and carry-over

s 1t follows

this

storabe, we can see that S (p, t+3) < Sc 2(p, t+3). Since
(p, t+3) = Dk’ (p, t+3), we have that P,(t+3) 2P 1\u+3)
Strict ineoua‘ity occurs if and only if the S; lip, t+3) curve.
and the S (p, t+3) curve intersect the demand curve at differen
points. But, in view of cur preceding paragraph, this occurs

if and only if there is saume trader, say the ith trader, ozerating

5 1
where now j € Yt+2’ for vhom 0 S Fl (t+2)

betwesn m, and n, ,
5 J K jk
< Fi (t#2) and who sells some of his suvnly under the seccnd

s : SRR, TP i , 5
proccess, that is, not all cf FS; (t+2) + a* (t+1) goes intc
i

jk(

C_;

storage (A,, (t+l1) is the same for both processes). &ll this Iis

.
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the seme as saying that coincident cutoff does not occur on an
b *to*nk'passage that includes the line on which that trader
operates, This proves Conclusion ¢ with t replaced by t+2.

Minally, Conclusion d with t replaced by t+2 follows exactly
as did Conclusion b with t replaced by t+2. 7This comnletes
the prool.

Theorecm 2 asserts that, if a sudden fall or a sudden rise
in supply occurs in one market, then the disturbance in the price
structure can propagate throughout the marketing system no
faster than one line (in Figure 1) for each increrent in t.
Thus, if a second market is at a distance of d lines away from
the initially disturbed market, then the disturbance reaches
the second market d time units later at the earliest., DBut, the
minimum propagation time d can be realized only if cutoff, of
either the flow or storage variety, doces not interfere with the
propagation of the price signal. If cutolf does interfere, then
a price signal may still reach the second market at times later
than the minimum possible time, but under certain circumstances
it may be of the wrong kind. That is, if a sudden oversupply
occurs at the first market and if cutoff prevents tae resulting
'price disturbance from reaching the second market witnin d units
of time, then the first price signal received at the second
market might ve a rise in price signalling a shortfall - rather
thah the fall in pric; thhat would first be felt had cutoff{ not
occurred., wWe discuss.this phencmenon in the next sectlon,

Moreover, even when cutoff does not occur, the subseguent prices

i

21

(=
ct
|l

ni

e

at the second market may oscillate up and down after the

e ] 1

price signal has passed through. This can ve shown by example,

-



In any case, what we have established in this sectisn is theat
our model exhibits the sluggisn step-by-étep propagation of
price signals that was described by Jones [9; pe 119].

Our discussion so far has been based on a disturbance in supply
in a farrers' market. But, cther kinds of disturbsnce are also
possible., Thnere could be a sudden siift in loczl demand in a
farmers! market or in a consumers!' merket, These would simply
lead to minor veariations of Theorem 2 and its proof,

Before leaving this section, we should also note that
storage has its customary effect of moderating price swings.
Indeed, storage bends tihe supply curve in ny, to the left as
p decreases, the result being that at.low prices some goods
may go intc storage rather than being thirown upon the market.
This prevents the price from falling as low as it would were
there no storage. Sinilarly, a short supply and its consecuent
high price may trigger the sale of goods from stergsge. This
prevents the price from rising as high as it would were there

no storage.

9¢ The confusion in price signals caused by cutoff, Let us

see how a sudden oversupply at a farmers! market may be initially
felt at a distant market as a rise in price, rather than a fall

in price. Consider the marketing network of Figure 12, Assure

that the network is in an equilibrium state such that the (i, k)
T

-

line is cutoff with regard to flows whereas the (1, k) lines

are carrying flows but are not far from cutoff, Also, zssuue
that tihie flow along the (l,k) line is ruch hesavier than the
flow along the (j, k) line. Then, a sudden oversu:.ply at m, at

J
srice in n, at t+l = 2, Since

o £ '
eault in o fall-in

ot

= 1 will

H
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the (i, k) line is already cutoff, it remains so., However, s ince
he (1, k) lins is close to cutoff, the fall in price at n, may

induce cutoff in the (1, k) flow 2t t = 3, If the equilibrium

[

flow in (1, k} was much larger tnan the flow in (j, k), the effec*t
of cutceff in (1, k) may be to raiss the price in n, at t+l = L
above its initial equilibrium value, even though the flow in
(js kj may not have cut off. But now, this subsequent rise in
price in m, may trigger a flow in (i, k) at t = 5, Thus, the
first vrice variation in my caused by_the oversuprply at m, is
a rise - not a fall = in pricé. So long as the rest of the marketing
network does not cutoff, the initial price variation propagating
upward beyond . will continue to be an increase = not a decreace,

On the other hand, if no cutoff occurs in the (j, s) line
or in any line beyond N the first received price variation
that propagates downward from mj in Figure 12 will be a decrease,
indicating an oversupply. In this way, we can have a price sig:al
propaguting upward from m indicating a2 shortfall and another
price signal propagating downward from m, indicating an oversupzly.

of them are false

g,

Although they seem contradictory, neithe

signals. The first ore is ccmrmunicating the shortrlall In o
caused by the cutoff phenomenon, and the second one is communicating
the initial oversupply in mj.
©  Upon continuing the above reasoning, we can also conclude
that the subsequent price variations in any narket may be
oscillatory.
It should be noted thwat a shortfall in m, leads to a

J
different phencmenon. That shortfall at t = 1 will induce a
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price rise in n,_ at t+l = 2. 4 price signal may or may not
reach my at t = 3 deperding cn winether (i, k) starts'flowing oxr
remains cut off at ¢t = 3, But, in the fcrmer case, m. will
‘receive a proper signsal fcor a shortfall, namely, & price rise.

To put all this another way, since (i, k) is cutoff in the
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in n, sufficiently

large to induce 2 flow in (i, k) and thereby a price rise in Ils e
The question rerains es to how commonly such seemingly

contradictory initial price signals occur in actual periocdic

1 A

markets., That depends for one tning on how often lines cut off,
Is it a common phenomenon for a trader to refrain from trading
on a particular market day 1f he dislikes the prices facing him,
and, if so, are there any days when all the traders operating
between two markets refrain from trading because of unfavorable
prices? The latter will be unlikely if there are many trade:
with different T§ If the latter is a rare phencmencn, then

.

ccntredic tory initial price signals may alsc be rare,

s

Cutoff is more likely when tne prices are low in the
consumers! markets and higsh in the farmers! markets. The former

]

might be caused by a loss 1in demand i the consumers! marxkets

due perhaps to an increase iIn the subpply of a substitute cormmedity.
The latter may r l om & loss in supply in the farmers!' markets
due perhaps to a bad harvest. The overall result can be that

the marketing network breaks up info a number of isoclated networxs,

In any case, our model indicates that pericdic markets can

genrate disagreeing signals when cuteff occurs, thiat cutclf is



more likely if there are just & few tradel

be a desirable developnent.
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Figure 2.
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Figure 6.
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Figure 8.
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