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A DYNAMIC ECONOMIC MODEL OF PERIODIC MARKETING RINGS

Abstracte A periodic marketing network operating on an
n-day market week is examined. Traders are assumed to stock
up on the first day of the week in a number of restocking centers
and then to follow various marketing rings during the rest of
the week selling goods in rural markets., .These rings
are allowed to intersect and diverge in any fashion. An
economic model for this is devised which allows the computation
of time series in the verious prices and quantity flows. The
key step is a modelling of each trader's demand curve in his
restocking center and of his supply curves in the other markets
of his ringe It is shown that a shortfall in supplies in one
restocking center can lead = under suitable circumstances = to
a fall (rather than a rise) in price in at least one of the
rural markets, This yields one possible explanation of the
apparently erratic behavior of periodic markets that has been
reported in the literature. We 8lso show that a single isolated

marketing ring always has a unique equilibrium state.



l, Introduction. Virtually all of the theoretical literature

on the spacio-temporal structure of periodic markets has been
concerned with such questions as the following. How did periodic
markets originate? Where are they located? What is their hierarchal
structure? How do their time schedules synchronize? Which firms
are mobile and which are fixed? What kinds of routes do mobile
traders follow? (See, for example, R.H.T.Smith's survey paper [8]
or the many references in R.J.Bromley's bibliographies (11, [2].)
However, there has been hardly any theorizing about the dynamics
of price and commodity-flow variations over space and time, In
1968, WeO.Jones [6] explicitly posed this problem for two-level
periodic marketing networks and described a phenomenon that
apparently arises when there is very little market news: namely,
price information propagates from market to market primarily by
means of the trading activity, and therefore the marketing system
as a whole responds only sluggishly to variations in supply and
demand. ﬁore recently, two alternative mathematical models of
two=level periodic markets have been proposed [91, [12]1, [13];
they reproduce Jones' phenomenon and establish other results as
well, such as the existence, uniqueness, and stability of
equilibrium statesé

The purpose of the present work is to mathematically
model another common type of periodic marketing system:
one wherein the markets open on a time=-staggered schedule and
the traders follow rings of market-places., We hasten to add
that the rings we consider herein are defined only in terms

of the individual traders., We do not assume any aggregate



shifting of entire markets from place to place; Instead, we

allow the individual trader rings to intersect and diverge in

any fashion. In general, the union of the individual trader rings
ylelds no more than a system of spatially distributed market-places
which open on a staggered and periodic = but otherwise unstructured =
time schedule, (In this regard, see the discussions of [3] and [81.)

The model we develop is an economic one; 1t relates price
variations and commodity flows in the marketing system to the
supply and demand fanctions in our network of markets. In our
analysis the traders are the key agents, BEach trader is assumed
to follow some particular ring and to possess a transfer=supply
schedule, Moreover, we take it that each trader stocks up in
a restocking center on the first day of the market week and
then proceeds to sell goods in the subsequent.markets of his
ring until his stock is either exhausted or he reaches the end
of his ring on the last day of the market week. This process
keeps repeatinge.

The principal result of our work is a model for ring=type
periodic marketing networks which allows the prediction of prices
and commodity flowg - at least in principle. This we believe has
not been attained before., 7To be sure, the use of our model to
represent actual periodic markets would require the measurement
of a large number of factors, such as supply and demand functions,
a virtually impossible task we expect. Nevertheless, our model
can be used to draw qé}itative conclusions concerning the

behavior of periodlic markets.. This we do,
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As 18 to be expected from a model based on dynamic difference
equations, our mdédel exhibits W.0.,Jones! market-by-market
propagation of price disturbances. Another result is also of
importance, we feel. It has been indicated in the literature
that price swings in periodic markets appear at times to be erratic
and unpredictable; see [5; ppe. 23-25] and [ 7; pp. 21-22]. Our
model indicates how at least some of these apparently erratic
price swings can be explained. As was mentioned above, the key
to our analysis is our assumed output behavior of the traders,

We propose a new model for this. In this regard, let us quote

D.W.Jones [5; ppe. 24-25]s "Previously available models of

periodic marketing eee offer only simplistic relationships
between prices and the endogeneous variables, Several decades

of experience in being surprised by peasant output reéponses
should warn us that we are studying complex, general equilibrium
systems in which indirect (or at least unsuspected) relationships
attain some importance." We hope that our present model will

help to dispel some of the mystery.

2e A trader's excess=-supply function. Assume there is a

spatial distribution of market=places, each of which opens as a
periodic market on a particular day of the market week and is
closed on all other days of the market week, The market week is
taken to have n days, where n 2 2; 8 =1, ese , n will be the
index for those days, numbéred chronologically. We let t =

eee 3 =1, 0, 1, o+ be the index for all market days (non-market
days are ignored) and ¥ = ,,., =1, O, 1, ... be the index for

the market week., Therefore, t =vn + s and
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=
y =
n
where [x] denotes the largest integer that does not exceed x.

Bach trader is assumed to traverse periodically a ring of
markets eee, Cbl, ¢2’ cee 5P d)l, Dos eee » D, CP]_, e 3
where ¢  denotes a market that opens on the sth day of the
market week. Different traders will follow in general different
rings. In this work we confine our attention to the one-commodity
case, We assume that ¢1 is a restocking center and that ¢, «.. s &y
are rural markets. We also assume the following pattern of
buying and selling for a trader: Usually, he buys a week's
supply of stock in.cbl and then proceeds along ¢é’ coe s by
selling that commodity. However, if he exhausts his stock before
reachingfbn, he returns home and waits for the beginning of the
next market week to resume his trading cycles The model we shall
develop will allow the trader to buy goods in @ , where 2 £ s S n,
if the price there 1s sufficiently low and to sell goods in(bl
if the price there is sufficiently high.

As was mentioned above, the keystone of our approach is the
assumed behavior of the traders, To quote Bromley [3], "Of the
various groups of zﬁarket participants, the most complex and
least-understood group is probably that of 'traders',” We
shall simply slice through the complexity by assuming herein
that the traders are rational economic agents, namely,
profit-maximizing firms that supply the service of transferring
gocds and ownership over space and time; that is, traders

®

buy goods in.¢l, bulk them, ship them, and sell them to new

owners. A trader's supply function for that service can be

derived from the standard theory of production costs. This



was done in a prior work [13], but, since it is crucial to our
present effort, we briefly present the argument here as well,
Throughout this paper, we adopt the following notational
conventions When s =n, 8 + 1 will mean 1; when s =1, 8 = 1
will mean n., (We have addition and subtraction modulo n except
thaaour integers range from 1 to n rather than from O ton = 1,)
Figure 1 shows the cost functions accruing to a trader as he
transfers a quantity q from one market to another. AFC means
average fixed cost, AVC means average variable cost, and MC means
margindl cost, The heavy line is the trader's supply curve for
the transfer of goods from:bs tObe+1. (We measure the service
he supplies by the amount q of goods he transfers,) The curve
coincides with the p-axis for low values of p, then jumps to

the minimum point on the AVC curve, and finally follows the MC

curve for large values of p [l4; ppe 73-T4]e Reasons for the shapes

we assign to these curves are given in [13; Section 2]. Let us
merely say at this point that the sharp rise in the marginal-cost

curve and therefore in the trader's transfer=-supply curve for

larger values of q is due to the fact that the per-unit cost remains

relatively low until the capacity of his transportation equipment
is approached, at which point it rises rapidly; in other words,
we assume that it is very costly to the trader to overload his
equipment appreciably.

The actual amount Cs(t) of goods the trader transports from

(bs to q@+l is determined by his transfer=-supply curve and the price

he expects to receive for that service. That price 1s the difference

between the clearance price Es(t) he expects in ¢, at t+l

- while operating in ¢8 at t and the clearance price Pg(t) he



finds in1$s at t. Es(t) is determined from some memory function

of past prices in(p and possibly of past prices in the

s+l
other(Pk as well, That memory function should be a monotonically
increasing function of each past price, more recent past prices
should have a greater effect in determining Es(t), and & history

of a constant price in §__, should result in the same value for
Es(t). The simplest reasonable rule that satisfies these conditions

is obtained by setting Es(t) equal to the last price in ¢ at

s+l
time t + 1 = n,

In accordance with our arguments in [13], we replace the
horizontal jump at p = T by a sharp but continuous transition
just above the value p = T, This yields the trader's transfer-
supply curve in ¢E at t shown in Figure 2; it has the shape we
shall assume throughout this paper.

In Figure 2, p represents the per-unit price the trader expects

to receive for transferring q units from ¢, to @ In other

s+1°
words, a knbwledge of p allows us to obtain from Figure 2 the
amount q the trader wishes to have while traveling from ¢, to
Pgpye This implies a demand curve for the trader in g, which we
can plot by altering the meaning of p. We now let p be the price
of the commodity in ¢, and we treat Es(t) as a parameter., This
is indicated on the ordinate axis of Figure 3, where the actual

per-unit price the trader expects for his service is the distance
from p = P (t) to the value E_(t). Thus, to obtain that demand

curve we simply flip the curve of Figure 2 upside-down and shift

it vertically. The result is shown in Figure 3; 1t is the demand

curve used in [12] and [13].



Now, however, there is another complication we must take into
account, The trader brings into ¢, an amount Cg.y (t-1) of goods,
which is in general greater or less than the amount g = Cs(t) he
would demand in ¢ had he no goods at all. Therefore, if

s-l(t -1) > Cq (t), he will sell C, 1(t-l) - a (t), and,

if Cg (t) > Cg l(t 1), he will buy C_(t) = Cyq (B- l). How should
he value the goods he possesses as he operates in ¢a? By the
price Ps(t) they command in ¢s’ we claim, That is, goods on
hand and goods on sale have the same value for him, we assume,
All this implies the existence of an excess~supply function for
the trader as he operates in ¢s' It is shown in Figure L and is
obtained by flipping the curve of Figure 3 through a right-to=left
reversal and then shifting the result to the right by the -

amount Cs_l(t-l).

In summary, when the price p = Ps(t) of the commodity in ¢g
is above ﬁs(tJ - T, the trader sells all of his stock Cs_l(t-l)
because he does not wish to transport any goods to ¢%-l according
Lot to Figure 2. When P; < Ps(t) < EB(t) - T, the trader sells the

amount Q(t) and transports the remainder C (t) to ¢ this

s+l’

case is illustrated in Figure L. When P_(t) < P;, the trader buys

the amount -Qs(t) (now, Qs(t) < 0) and transports Cs(t) = Cs_l(t-l)

- IQB(tJI to ¢s+1' All this applies whether the trader is.in his

restocking center(pl or in one of his rural markets ¢3, 288 & n,
For a given trader, how will his transfer-supply curve (Figure 2)

vary from one market to another? The main change we feel will

*be in the value of T, the minimum value on the AVC curve. To be

sure, the variable costs will depend upon which two markets are

at hand, and this will effect not only T but also the MC curve.



But, the MC curve contributes to the transfer-supply curve
only where MC rises rapidly due to the full-loading or
overloading of the trader's transport equipment, and this loading
effect should be about the same for the various markets. So, we
might simplify our analysis by assuming that the curves of
Figures 1 and 2 maintain exactly the same shape for all markets
and merely change in the value of T as the market changes.
However, we will not impose this assumption, even though we draw

our curves as though we had.

3¢ A single marketing ring., As a first application of our
model of a trader, we consider a single isolated marketing ring
{¢l, Gps eee ,(Dn} which is cyclically traversed by a number of
traders. In the next section we discuss the more pertinent case
of many intersecting but distinct marketing rings, each ring being
defined by the one or more traders who traverse it,

We indicate in Figure 5 how the various excess-supply and
excess-demand‘functions determine the prices in the mafkets and
the quantity flows between them. For that illustration we have
assumed n = lj, The traders are represented by excess=supply
functions whose aggregates are indicated in Figure 5 by the
increasing functions. All the other agents in the ¢  are
represented by excess=-demand functions wh ose aggregates are the
decreasing functions in Figure 5. The restocking centerc$l is
distinguished from the other markets by the fact that the agents
other than the traders are represented therein by an aggregate

supply function, which is indicated in Figure 5(a) as a negative

‘excess=-demand function Dl(P’ t), t = 1,
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For the sake of clearer illustrations, we have assumed three
further conditions for Figure 5. (i) The traders possess the
same memory functions of past prices. (ii) Their transfer-supply
functions (FPigure 2) do not change shape from one market to
another; only the T values may change., (iii) If the T value for
one trader does change from one market to another market, those
values for all traders change by exactly the same amount. As
a result, the aggregate excess-supply function for the traders
does not change shape from one market to another; it merely shifts
its position. None of these three assumptions are essential to
our arguments, and we do not impose them in our discussicn,

In Figure 5, T_ 1s the minimum of the T values for all the
traders in the market ¢ . Also, our lllustrations are for the
single cycle corresponding to the time values t = 1, 2; 35 b
The curves of Figure 5 have been drawn to illustrate the following
circumstances:

The traders exhaust all of their supplies during the preceding
cycle and return to ¢, empty-handed at t = 1; that is, the
aggregate amount Cu(o) they bring into ¢l at t = 1 is equal to
zero. (The same is true at t = 5,) |

Furthermore, in the restocking center ¢i the excess-demand
function Dl(p, 1) (which is negative and therefore in actuality
a supply function) is large enough to yield a relatively low
market price Pl(lJ. In fact, Dl(p, 1) intersects the aggregate
excess-supply function below the nearly horizontal portion of the
e°latter curve, which implies that all or almost all of the traders
.stock up in{ﬁl and carry full loads to ¢E’ the sum of those loads

being cl(l).
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In ¢2 the expected price E2(2) is somewhat larger than El(l)’
and Da(p, 2) intgrsects the aggregate excess-supply function on
its nearly horizontal portion to yield the market price P2(2).
That price determines through each individual trader's excess=
supply function the amount each trader will sell and the amount
he will carry forward to ¢3 (see Figure li). Aggregating those
quantities over all traders, we obtain the total amount Qa(a)
sold and the total amount C,(2) transported to 433. A similar

process occurs in<b3, where the amount Q3(3) is sold and the amount

| 03(3J is carried on to ¢h°

In ¢4 the traders expect in ¢l at t = 5 the price Eu(u), a
usually low value - as showne This causes their aggregate
excess=-supply function 1n(bh to be shifted downward substantially.
Thus, the demand function Dh(p, L) intersects that supply function
on its strictly vertical portion, which implies that the traders
sell all their remaining goods in q;h; that 15, cu(zg) = Q.

The process now shifts back to ¢, at t = 5. An illustration
much like Figure 5(a) could now be drawn, but ch(o) should be
replaced by Ch(h),and Cl(l), D, (p, 1),El(l), and Pl(l) should
be replaced by C,(5), D,(p, 5), E;(5), and P,(5)s Similar
notational alterations in the subsequent illustrations w uld
continue this graphical discussion.

Of course, individual traders may completely sell out befcore
reaching cbh;- in fact, they will all do so if D,(p, 2) or D3(p, 3)
is so large or E,(2) or E3(3) is so low that the intersection point
in Figure 5(b) or 5(c¢) occurs on the strictly vertical portion

of the aggregate excess=supply functione. On the other hand,

; Dh(p, l4) may be so low or Eh(h) so high that the intersection
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point in Figure 5(d) is on the nearly horizontal portion of the

supply curve; in this case the amount Cu(h) > 0 is transported

back to ¢1 and the aggregate excess=supply curve in ¢1 at t = 5

is shifted to the right through the distance Ch(h)° We have not
illustrated these possibilities.

The important point is that this graphical analysis can be
carried out to determine all prices and flows for t =1, 2, 3, ees
once the following exogeneous parameters are specified: (1) Ds(p, %)
for all s =1, eee ,nand all t =1, 2, 3, eee o (2) Bach
trader'é transfer=supply curve (Figure 2). (3) Each trader's
memory function that determines the price he expects in the
next market from prior prices (these memory functions may vary
from trader to trader and from market to market). (L) Initial
conditions which specify the various amounts the individual traders
bring in to <b1 at t = 1 from '¢'h and also specify enough prior
prices to allow the determination of all needed expected prices
from the individual memory functions,

We could at this point write down explicit equations by
which this recursive process could be carried out algebraicallye.
However, we will postpone doing so until the more common periodic
marke ting network consisting of distinct but intersecting

marketing rings has been introduced, This is our next objective,

lie The multiring model. In this case one or more days of
the marketing week have more than one open market, Thus, we have
to alter our notation, We assume that each market meets only
once a.week. (This is no restriction on the rural markets, for

we can view a rural market that meets r times per week as r different
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markets that happen to meet in the same market=-place,) We
index the markets that open on the sth day of the market week
by J = 1, eee m_ and denote them by(st' Thus, there are
m, open markets on the sth market day, and the total number of
markets is m = m,y + oo & m e

We can symbolically represent the entire marketing network
as in Figure 6, All the markets opening on & given market day
are gathered together. Bach arrow represents the possible movement
of traders and goods from one market to another between two
consecutive market days. An arrow that points from a merket ¢sj

to a market ¢ is conventicnally called an arc or a

s+l, k
¢§j't°-¢§+l,k arc, It can happen at times that all the traders

that ordinarily follow thed)sjﬁc—¢§ arc sell all their goods

+1l,k
before they leavecpsj, in which case ;o goods traverse the
¢sj-t°-¢3+1,k arce At thils particular time the arc is said to
be cut off,
The graph-theoretic infrastructure of this ring-type periodic
marketing network is a digraph that is the union of a number
of distinct but possibly intersecting cycles or rings of length ne.
ﬁqEED <— We use the words "cycle" and "ring" synonomously to mean a
' directed cycle thaﬁ is viewed by at least one trader as his marketing
itinerary.
As before, the(ﬂij represent restccking centers, and the
supply and demand curves fcor one of the ¢lj are like those of
Figure 5(a)e The<bsj, where 2 S s £ n, are the rural markets and
have supply and demand curves like those of Figure S5(b), 5(c),
;nd S(d)e As in the preceding section, for any market ¢aj the

égents other than the traders are represented by aggregate
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excess-demand functions, which are negative for s = 1 and
positive for 2 S 8 S n., On the other hand, the traders in

¢%3 are represented by aggregate excess=-supply functions obtained
by adding horizontally their individual excess=supply functions
shown in Figure L. The latter are determined once each trader's
expected price ES(tJ and incoming stock Ca-l(t-l) are specified.
Now, however, since the traders passing through a particular
market will in genereal be following different rings, the shapes
of the aggregate excess=supply functions may vary substantially
from market to market along any particular ring.

Let us write down a set of nonlinear difference equations
from which all the prices and commodity flows of our marketing
network can be recursively computed from given initial conditions.
To do so, we Will have to define a variety of symbols;

We have already defined p, q, t, s,», n, j, and ¢33'

Dsj(p’ t) denotes the excess-demand functions for all the agents
in ¢sj at time t toher than the traders. We impose the following

conditions on Daj(p, t)e

Conditions Al. For every fixed t = vn + 1, where v = 0, 1, 2,

and for every j in the index set of the restocking centers<blj,
Dlj(p’ t) is a negative, continuous, strictly decreasing function
of p for 0 < p < = such that Dlj(p’ t)—> 0= as p— 0+ and

Dlj(p’ t) > == as p—~> =, Also, for p =0, Dlj(o’ t) dencotes

the nonnegative q axis. For each fixed t =vn + s, where V =

0, 1, 2, eee &nd 8 = 2, eee , N, and for every j in the index sets
of the rural markets ¢sj’ Dsj(P’ t) is a positive, continuous,
strictly decreasing function of p for O < p < = such that

Dsj(p, t) —> e as p—> 0+ and Daj(p, t) —~0+ as p —=, Also, we
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use the convention that Dsj(p, t) = 0 if and only if p = =,

(One might wish to allow these demand functions to be
identically equal to zero for some ranges of p. But this can
b;;ffectively encompassed by taking the functions to be exceedingly
small but positive on those ranges. Similarly, we could replace
the limits at = by sufficienttly large finite limits., We have
imposed our stricter requirements to avoid some unessential
complications in our subsequent arguments,)

Next, we number all the traders in our marketing network by
the index 1 = 1, 2, ees o I, where I is the total number of traders.
Corresponding to each i there is a sequence of n index pairs (s, j)
determined by the ith trader's itinerary, namely, the subscripts
of the ¢sj in that trader's ring. In the following, various
parameters pertaining to the ith trader will be so deéignatéd by
a superscript i. h

céj(t) designates the amount of goods the ith trader carries
forward from his market ¢sj to the next market in his ring
between the market days t = vn + s and t + 1,

The transfer=supply curve for the ith trader in ¢sj
will be denoted by'Vij(p - Tij)' We shall assume that the costs

(Figure 2)

of transferring goods from ¢sj to the ith trader's next market
remains the same from week to week and therefore that the
function Vij does not vary from week to week. However, Vij does
change in general as (s, j) varies through the market indices of

the ith trader's ring. We also assume the next conditions,

Conditions A2. For each i, s, and j, Vij is a continucus
nonnegative function on the real line such that Vij(x) = ¢ for

250, Vij(x) is strictly increasing for 0 £ x < =, and Véj(x)
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tends to a finite limit as x—> =,

Tij is the value T indicated in Figure 2 that pertains to

the ith trader 1n‘¢sj; that is, it is the minimum value on his
AVC curve for the transferring of goods from ¢Ej to his next
market. Wg assume that Tij too does not change from week to week
but that it can vary as (s, j) changes.

Still another assumption is that the price Ei (t) the ith

J
trader expects to receive in his next market<b at time

s+l,k(1)
t + 1 while operating intpsj at time t = vn + s is determined
by a meﬁory function Méj specific to him and possibly dependent

on the values of s and j.
i . .
(4ol) Esj(‘bJ = MSJ[PSﬂ.'k(i)(ti-l-n), Pa+l’k(i)(t+l-2n),

Paed,u (1) (4¥1730)5 eee]

i
Here, the arguments of MSJ denote the prices in‘¢s+l,k(i) prior
: &
s]
to depend on prior prices in other markets of the ith traderts

to t. We could generalize this still further by allowing M

ring = and even on other markets outside his ring assuming that
some market news of other markets outside his ring exists. In
any case, and as we stated before, the Mij should be a monotonic
increasing function of each price among its arguments, more
recent prices should be more effective in determining Eij(t)
than earlier prices, and a history of constant prices in ¢aj

should yield the same price for Eij(t). We could, for example,

satisfy all of these conditions with the simple rule:

2

(Le2) Ep () = By y(q)(t+l=n)
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s §
a3*

at the corner point of the ith trader's excess-supply curve

Next, we let Fij(t) = Eij(t) - T This is .the price
for ¢Ej at time t. Then, that excess-supply curve (see Figure )

can be written as
(le3) G ()& = Vg[Fi(e) - 5]

where C:-l h(i)(t-l) is the amount of goods the ith trader brings
2

into ¢sj at time t from the preceding market ¢g-l,h(i) of his

ring. Finally, let‘Zij denote a summation over the indices i

of those traders that possess ¢sj as a market in their rings.

Then, the aggregate of all trader excess-supply functions for
¢3j is

(boh) Syl €)= %:sj{C§_1’h(i){t-1) - vi,[FL (6) - 5]}

We can now determine the market-cleargnce price in‘¢3j at ¢
by equating the aggregate excess-demand function to the aggregate

excess=supply function:
U-I-OE) Dsj(Ps t) = SSj(p’ t)

and then seeking the solution p = st(t). That there is one and -
only one such solution for given s, j, and t follows immediately
from Conditions Al and AZ'

In summary, our model for the multiring periodic marketing
system consists of Equations (4.1), (Lel4), and (4.5) coupled
with all the assumptions stated in this section. In addition,
we should state explicitly that this construction assumes that
there is perfect competition within every market on each of 1its

market days, but not for the entire marketing system as a whole,
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As in the single-ring model, these equations allow us to
determine all the prices and commodity flows through recursive
computations starting with an appropriate set of initial conditions.
For example, assume we'are given a multiring marketing network,

& specification of every trader'!s ring, and the Vij, Tij, Mij’
and‘DsJ(O, t) for every i, s, j, and t. Assume furthermore that
initial conditions are given as specifications of all the c;j(o)
and of enough prior prices in every'qgj to determine through (L.1)
every trader's expected prices for t = 1, 2, eee , Ne Then,
(4el) and (L.5) together can be used to determine sequentially
every price P;j(t), as well as the quantity sold Qéj(t) and
forward flow Cij(t) for each trader, as t progresses through
E %, 3, eee o This ylelds thereby a complete determination of
the dynamic behavior of our marketing network under the assumptions
stated in this sectione

One can conceive of modelling actual marketing networks in
just this way, but this would require the estimation of a very
large number of parameters, a discouraging prospect. We feel that
the main value of our model is that it provides for the first
time a means of explicitly examining the prices and quantity
flows of an idealized multiring periodic marketing network.

This enables us to draw qualitative conclusions concerning dynamic
behavior. Such conclusions may then be compared to known properties
of actual periodic marketing networks, or alternatively they may

serve as conject@%d properties worthy perhaps of empirical examinaticz,

It is to considerations of this sort that we now turn,
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Se Apparently erratic price behavior. One peculiarity of
perlodic marketing networks that has been commented on in the
literature is their irregular behavior. For one such comment,
refer again to the statement of D.W.Jones concerning surprising
peasant output responses quoted in the Introduction. With regard
to observed price variations in certain markets in Nigerla, W.O.
Jones was led "to suggest serious malfunctioning of the market
in response to short-term changes in market information" and
to the interpretation that "the market was responding erratically
end unpredictably to new information® [7; pp. 21-22].

In a prior work concerning two-level periodic marketing networks,
we showed how apparently contradictory price signals can be generated
by & single disturbance in supplye. In particular, a sudden
oversupply at one market can lead to an initial fall in price
propagating in one direction of the network and an initial rise
in price propagating in another direction., This can occur when
some arcs of the marketing network cut off (that is, when no
traders carry goods along those arcs because of unfavorable prices
at their terminsl markets). We shgll now indicate how another
apparently contradictory price variation can arise in our multiring
network. More interestingly, this event can occur even without
any arcs cutting off,.

Consider the marketing network ﬁf Figure 7, where ¢il and
(pla are restocking centers on the first day of the four-day
marketing week and ¢2,:b3, and ¢h are rural markets meeting
on the next three days. We shall show how a sudden shortfall
}n ¢il can appear int$3 two days later as either a rise or a
fall in price depending on the demand in ¢b. We will argue
graphically,.



We assume that one group of traders operate out of ¢El
and proceed along the upper ring of Figure 7 and that another group
of traders operate out of ¢32 and proceed along the lower ring.
We let Hl and Ha denote the aggregate excess=supply curves in the
various markets for the first and second groups respectively.
(Aga;n, we draw our illustrations as though the Hl and Ha curves
have the same shape and do not change from market to marketj
they merely shift their positions.)

Figure 8 shows one possible sequence of positions for
_ ‘dl and HZ. Dll’ D12’ and D2 denote the excess=demand functions
in q)ll, ®,,» and ¢, respectively., (We have let D;; = D,,, but
this too is not an essential assumption.) We view the positions
of Figure 8 as a normal situation, just for the sake of argument.
In this case, both groups of traders acquire the same amount in
®,, &nd ¢, and sell most of it in.¢2 to arrive with their
aggregate excess=supply function Hl + “2 in ¢3, as shown in Figure
8(a). |

Now,consider Figure 9, We assume that a sudden short-fall
in supply occurs in ¢11 on the first day of the market week., This
shifts the excess=demand function Dll to the steeper position
shown in Figure 9(a). In ®;,, Dy, remains in its normal position,
as shown in Figure 9(b). We wish to examine how this shift in

D,, affects the price 1n.¢3. We shall assume still further that

11l
the expected prices depend upon prior prices not only in the
market to which the treder will next go but also in other markets
as well. For example, if the price in‘¢il rises at ¢t = 1, the

trader will raise the price he expects in ¢3 while operating in



¢@ at t = 2, (We could also assume that this price rise in
¢11 at t = 1 induces a simultaneous rise in his current exﬁected
price in ¢b while operating incbll at t = 1. This would merely
alter somewhat the changes we describe below. We won't make
this assumption.)

Figure 9(c) shows the excess=supply curve for both groups
of traders simultaneously, and Figure 9(d) shows their aggregate.
With the excess~demand function D2 positioned as shown in
Figure 9(d) (the same as in Figure 8(c)), the traders working out
of (1)12 sell all their goods in q>2,'whereas those working out of
¢11 sell in ¢, only & small part of their stocks. This ylelds
the W, and W, of Figure 9(e) and the aggregaﬁe W, + W, in Figure
9(f)e

For(D3 we now wish to compare the W, + W, curve in the normal
case (Figure 8(d)) with the W, + W, curve in the shortfall case
(Figure 9(f)). We do this by drawing them in Figure 10 on the
ssme set of axes, Consider the comparatively.low demand function
DLrin Figure 10, The resulting price in the normal case is lower
than the resulting price in the shortfall case, as is to be
expected. But, for the relatively high demand function DH’ the
situation is reversed. The price in the normal case 1s higher
than the price in the shortfall case., Without the theory provided
by our model, one might view the latter occurrence as inexplicable,

We can sumarize this phenomenon as follows. When ¢,, has
a shortfall and.(D12 stays normal, both groups of traders acquire
Aabout the same amount in ¢il and ¢12, but the price in(bll is

much higher than the price in.¢12. In ¢2, the traders out of
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¢11 sell very little because they need & high price to make a
profit, but the traders out of ¢12 sell out. Thus, in ¢b’ the
traders out ofcblz have nothing to sell, but the traders out of
<¢11 still have most of their stock, amounting to more than what
both trader groups would have in aggregate under normal conditions,
This means that the shortfall price in ¢3 can be lower than the
normﬁl price and the shortfall sales can be larger than the
normal sales if demand in ¢3 is high enough to cause the traders
out of ¢;, to sell most of their stocks

Finally, it should be stated that this phenomenon need not
always happen. Its occurrence depends on the relative positions
of the supply and demand functions and on the memory functions

of past pricess,

6o Equlibrium in a single ring. Once a dynamic model becomes
avallable, a natural questioh to ask as whether it has an
equilibrium state. This question does not appear to have been
asked about periodic marketing systems evidently because dynamic
models had not been available for them. The first results along
these lines appear in [127] and [13]. (For a less realistic model
of periodic marketé, similar results appear in [9], [10], and
f113.)

The importance of addressing this question lies in the followirg
facts. If it can be shown that no equilibrium state exists, then
we can conclude that the periodic marketing system is condemned
to perpetual price variations even when the exogeneous supply and
demand functions are fixed with respect to time. One might then

ask what regularities those variations might have. For example,
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do 1limit cycles exist, and, if so, are they stable? On the

other hand, if an equilibrium state exists, then we have the
possibility of steady and predictable prices, upon which rational
economic planning can be based, In the latter case, the questions
of uniqueness and stability for the equilibrium state should be
investigated,

With regard to our general model of Section L, we have not
been able to establish or to disprove the existence of an equilibrium
state. However, we have been able to show that the single-ring
model of Section 3 does have one and only one equilibrium state,
This is what we now present,

As before, let R = %bl’ Pss eee 5 O}, where n 2 2; be a
single isclated marketing ring traversed cyclically by m traders,
We use the notation of Section 3 but now delete the time symbol ©
becaus;;e're interested in equilibria in time., There being but
one open market on each day, we also drop the market index j.

In addition, we set
c, = E‘LC;‘ = ;Zvi(Es -1 - ),
and

| _ _ 1
Ds(Ps) = Q = IZQS.

R with fixed excess~demand functions Ds(p), s = l; Fa 5 n;
is said to be in equilibrium if none of its variables change with
time. The corresponding set of all prices and gquantity flows is
called an equilibrium state,

Assume an equilibrium state exists, In view of our assumed
properties of the memory functicns and the fact that prices

remain constant, every trader's expected price E; is equal to



the prica Pa+1' We let Es =P denote this common value of

s+l
all the Ei. This means that the aggregate excess=supply

functions 55 line up with each other as is indicated in Figure 11,
where we have assumed that n = Lo (In general, the shapes of

the 35 may change from market to market, because, for one reason,

for different i1 the Ti may change differently as s varies,

We have nevertheless indicated an unvarying shape in Figure 1l.)
It is important to note that, if in an equilibrium state

a positive amount of goods is carried from ¢ £o<$a+l, we must

i

g+ &nd therefore E .1 < By since

: have that PS < E8 - mini 1T

BE = Pge Thus, if a positive amount of goods reaches the

s=1
last markettpn, we will have E < El < ¢** <E _;¢ In this
case, we cannot have a positive amount of goods being carried
from ¢_ to ¢; in an equilibrium state, for such would imply that

B < En, which coupled with the last conclusion would yield

< il
E ., < En-l’ an impossibility. Thus, C = Ce

Next, we show that in an equilibrium state a positive amount

of goods must reach ¢ _, and therefore we will always have

(6,1) B =P, <E, =P, <E, =P, < e <E _

p g e By =Ry Ry WIS als

1

Indeed, assume that no goods reach.¢nf Then there will be some

smallest s > 1 for which no goods reach ¢8; that is, C = 0,

s=1
If s 2 3, then C,_, > O. This means that in ¢, the
intersection between Ds-l and the excess-supply function Ss-l
will be on the strictly vertical part of Ss-l located above
q=C,s > 0. (See Figure 12.,) Hence, E .y < =, and therefore
Ps é Es-l
from Conditions &1 that Pg = =, 2 contradictione.

< =,However, since 0 S D(P ) =Q5 S C ; = 0, we have
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If s =2, our assumption that no goods reachc}b2 requires
that El be so low that Sl 1ntersécts D, at the origin. Again
we conclude that P2 = El < =, But, by the last sentence of the
preceding paragraph, P2 = =, gagain a contradiction.

Thus, we have proven that Cs >0 fors =1, eee , n=1,
that C, = 0, and that (6.1) holds. Hence, P < =. Consequently,
every price Pg is positive and finite, and some goods are sold
in every market (i.e., Q = Cs-l - c, > O). The following relations
subsume these facts and the condition that all variables are

independent of time,

- 1
(6.2) 0> Dl(Pl) = = Gy, =0,BE =P, >P, + min Ty

— - : i
(6.3) 0 = Ds(Pa) el Cs-l’ Es - P3+1 = PS_+ min Ts

8 =2’ se e 3 n-l

(6aly) 0 < Dn(PnJ

Comjn OB, =8 < B, <=

We have shown that these relations are necessary for thé'
occurrence of an equilibrium state. They are sufficient as well,
for their fulfillment during the marketing weeks prior to, say,

t = 1 insures their fulfillment for all subsequent marketing
weeks, This can be seen by applying the recursive analysis
described in Sections 3 and L.

We now argue that, given all the Ds and every trader's
transfer-supply curve, there always exists an equilibrium state
and it is unique. To show this, we steadily increase E1 from
Fhe value 0. For some low El we will have the situation indicated
in Figure 13, Setting P

5 = El’ as must be the case in an equilibrium

state, we obtain a point A, on D, and the corresponding amount
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>
Q?_‘fold in ¢,. But, for this low value of E,, the amount C

A
brought into ¢2 is less than Q,, an impossibility. Thus, for
this El’ no equilibrium state is possible,

Let B2 be the point on D2 corresponding to Cl’ As El
increases, AZ moves upward and_B2 moves downward along D2 until
for some unique El we get Az = B2 and an 32 positioned as is Sh
in the ¢h diagram of Figure 1ll. At this stage, the horizontal
positioning of S, 1s determined by the fact that S,'s strictly
vertical part is located at q = Cl' However, 32'3 vertical positionirg
is not ﬁniquely determined., It merely satisfies the condition
that D2 intersects 52 somewhere on 32'8 stricltly vertical part.
Hence, 02 = 0,

Next, assume a further increase in El' This dictates a
higher point A2 on D,e Now, as is illustrated in Figure 1., 32's
position is uniquely determined because not only must its
strictly vertical part lie at q = Cl, which has increased, but
it must also pass through &2, which has shifted ieftward and upward.,
Such a unique position for 82 exists by virtue of our assumed
continuity and monotonicity properties for D2 and for each
tradert!s transfer-supply function.

On the other hand, for the situation shown in Figure lu; we
= P, and a B, on D, dictated

2 a B 3
by C,e Since A3 # B,, no equlibrium state can exist. However,

have again an A3 on D3 dictated by B

as E1 keeps increasing still further, so too do Cl’ CZ’ and E2

with 52 shifting its position in a unique fashion. Moreover,

AB approaches B3 until the critical case 1s acheived in£P3

when AB first equals 83 and D3 intersects 33 on the latter's strictly

vertical part. At this point. C3 = 0. Any further increase
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1n.E1 generates a situation in ¢3 Similar to that shown in the

¢b diagram of Figure 1lli; in particular, 03 becomes positive,
We continue this process of increasing E.1 and generating

a movement of goods further along the sequence of markets

¢ﬁ} Dos see 5 Ppe Eventually, we will get the situation where

the critical case occurs incyn (1.0, C; > Q5 eee , C >0, C =0)

n=l
with the Ss (s =1, 2, eee » n=1) uniquely positioned. The

last step is to insert an Sn which intersects Dn at the quantity

C

qQ n=1 °F Sn's strictly vertical part and which is positioned

vertically to satisfy'En = Pl' These conditions uniquely locate
Sn.

At this point, we have fulfilled the relations (6.2),
(663), and (6.4)e Thus, an equilibrium state has been found.
That equilibrium state is unique, for any further increase in
El will dictate a Cn > 0, a violation of the second relation
in (6.2).

We summarize this section with the following conclusions:
Let there be given a singleperiodic marketing ring with
time=~invariant excess-demand functions DB and time=-invariant
traders' transfer-supply curves. Let the dynamic behavior
of this ring be dictated by the assumptions and equations of
Section 4. Then, there exists one and only one equilibrium state,
Necessary and sufficient conditicns for the occurrence of that

equilibrium state is the fulfillment of (6.2), (6.3), and (6.lL).

7+ Propagation of disturbances. W.O0.,Jones [6] described
‘another characteristic of periodic markets, one that occurs

when there is very little market news and traders do not alter

their marketing routes. Price disturbances propagate essentially
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through the trading activity and therefore in a step=by-step
fashion, progressing in general only along one arc between
two consecutive market days, Thus, if a price disturbance occurs
in one market, say, ¢ on day t = 1, the earliest time at which
. the effects of that disturbance can reach a distant market, say,
‘¥:?{f ¥ is d+1 where d is the length (measured by the number of arcs)
: of the shortest directed path from ¢ to Y.
However, it can happen that the time it takes for the
disturbance to reach Y may be even longer. This may occur
when af least one arc of every shortest ¢-to-%'directed path
does not have traders operating on it because of some temporary
price conditions, that is, when those arcs cut off just before
the disturbance reaches them and remain cut off for a while,
Thus, the disturbance may have to traverse a longer directed path
in order to reach ¥, if it does so at all.
We showed in [12] and [13] that two-level periodic marketing
netwobks transmit the initial swing of a price disturbance
properly so ibng as cutoff does not occur. That is, if a
disturbance reaches a distant market in the minimum possible
time, then a shortfall will be detected as an initial rise in
price and a sudden oversupply a&s an initial fall in price.
However, subsequent variations may oscillate in both directions,
In fact, in [13] we showed how cutoff may block out the initial
price increment and then induce the transmittal of an opposite
price swing, yielding thereby a confusion in price signalling.
o In our present mocdel the situation can be even worse. As
we saw in Section 5, the iniéﬁl price swing itself can be

- misleading even when no cutoff occurs. For example, under certain



circumstances, that initial swing can be a fall in price when a
shortfall in supply has occurred in another market sometime
earlier., Thus, we see again that periodic markets can exhibit
contrary behavior. The basic reason seems to be that we're
now dealing with a cobweb-type of phenomenon, but now the
cobweb variations are distributed over and transmitted through
a network,

All this argues for the development of better market-news
servises and improved transportation facilitles. If traders are
made aware of market conditions outside their fespective rings
and if good tranSportation-routes are available, traders may
respond to price-arbitraging opportunities by altering their
outes. This should allow the overall marketing network
to respond to disturbances with more of its resources and

thereby to mitigate the effects of those disturbances.

29
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