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NONUNIFORM SEEI-INFINITE GROUNDED GRIDS™
AJH .,Zemanian

State University of New York at Stony Brook

Abstract: Semi-infinite resistive grounded grids are
countably infinite electrical networks that arise from the
discretization of the partial differential equation governing
the minority=carrier density in a doped semiconductor. ILf the
doping varies with depth from the surface of the semiconductor,
the grid's resistances also vary with distance from the inputs
to the grid. This nonuniformity prevents the use of the
characteristic-resistance method for determining currents and
voltages., A computational method for making such a determination
is presented herein., It is based upon the theory of infinite
continued fractions whose entries are positive operators on a

Hilbert space, It 1s also shown that the solution given by the

0

3

method is precisely that solution for which the power dissipated
in the network is finite. Finally, the method is extended to
RLC networks, and this allows the computation of transient

responses in semli-infinite grounded grids of positive-real

impedances.,

*This work was supported by the Air Force Office of Scientific

Research under Grant FL9620-79-C-0172, AFOSR=80~0205,



I, Introduction

The purpose of this work is to examine the behavior of a
certaiﬁ class of countably infinite electrical networks.
Although individual networks in this class can be highly complex,
its prototype is comparatively simple and results from the
discretization of a certain partial differential equation
relating to semiconductor behavior, Therefore, to motivate our
work, we first indicate why the prototype is of interest in the
theory of semiconductors.

The partial differential equation that governs the minority-

carrier density & in a doped semiconductor is

o]
3 P v S

where T is the minority-carrier lifetime and D is the minority=
carrier diffusion constant [9; pe. 99]« Ordinarily, the doping'
concentration, and therefore T as well, varies Wwith distance
from the surface through which the impurities wsre introduced,
(There are of course lateral variations along the surface where
the p=-n junctions appear, but these variations disappear just
below that section.) Because of this, no closed-form solution
for (1.1) exists, and computational techniques must be used to get
an approximate determination of &. However, the standard
techniques, such as difference methods or finite=-element methods,
lead to excessively large computer times when the full thickness
of the semiconductor wafer 1s modelled.

An alternative possibility is to assume that one surface
of the wafer is at infinity and then make use of the theory of

semi-infinite transmission lines., This approach was explored



in [17] in the case where the doping does not vary with position.
It led to the adaptation of the characteristic=-resistance method
to semi-infinite grounded grids, the kind of electrical network
that arises from the discretization of (l1.1). In fact, if the
spatial variations for (l.l) are in only two dimensions, we get
a square grid of resistances, all having the same value, and
also branches connecting the nodes of the grid to a common ground;
the resistances of the latter branches represent the quantity
tD. This is 1ilustrated Im Figure 1, where a and the Cy denote
conductances. For constant doping, the c, are all the same;
otherwise ,they vary. The hk are current sources representing
he electrical excitation of the semiconductor at its surface,
In the case of three spatial dimensions, we get the same
configuration except that we now have a cubic grid.

This 1s the motivation for the problem attacked in this
work. We wish to determine the currents and voltages in a

semi~-infinite grounded grid where the grid's resistances are

allowed to vary with distance from its input sectiocn. We even

allow resistances to vary in a certain restricted fashicn for

cl

spatial displacements that remain equidistant from the inpu
section., Our analysis is immediately extendable to far more
complicated grids than the prototypical square or cubic gricds
mentioned above. Herein, we allow this generality.

The basis of our computational method is the theory of
infinite continued fractions whose elements are positive operators
on a Hilbert space. Those operators represent the admittances

. =

and impedances of «=ports consisting of sections of the grid
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lying parallel to the input section. The ==ports are connected
together to make a semi-infinite ladder whose input impedance
is the aforementioned continued fraction. Our analysis of the
ladder network yields that unique set of voltages and currents
for which the total power dissipated in the network is finite.
By using the theory of Laurent operators, we also cobtain a
computational procedure for calculating the currents and voltages in
the original grid.

All of this is extendable to grounded grids whose branches
are positive-real impedances. We end this paper by indicating

grids

how the transient resovonses of such impedance Acan be computed,
The solution we now obtain is characterized by a finite-power
condition applied this time to points on the real positive axis
of the complex-frequency domain,

Before proceeding, let us explain some of the notation we
will be using. If H is a Hilbert space, [H; H] denotes the

T ]

Banach space of bounded linear operators that map H into H,

By an"operator" we will always mean a member of [H; H] for some

H, The symbol 1 is used to denote either the number one, or

a function whose range is the singleton {l%, or the identity
operator in [H; Hl. Which meaning that symbol has in a particular
case will either be stated or will be clear from the context in

which it is used. If A is an operator, W(A) denotes the numerical

range of As

W(A) {(Ax, x): x € H, |xil = 12

where (£, B) is the inner product of the elements « and B in H,
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The symbol («£, B) will also be used to denote an open interval

=

between the real numbers «£ and §; once again, which mean

(=

ng
(«, B) has in particular cases will be either clear or specified.,
The symbols [«, B}, [«, B), and (<, P] denote closed and semiclosed

intervals with the endpoints « and 8.

II. Semi-infinite Grounded Grids

The type of grounded grid we shall examine is indicated
symbolically in Figure 2. Wwe have a sequence of infinite networks,
which for the sake of illustration we indicate as being contained
in a sequence of hypothetical boxes. We number those boxes by
k=1, 3, 5, ees o We have shown only three ncdes in each box,
but it is understood that each box contains an infinity of them.
The following is assumed.

Rule I, Ikvery node is connected to a ground node through

a positive conductance whose value 1 is the same for all the

nodes in a particular box. The ¢, can vary from box to box, that

isI as k varies,

The nodes of a given box are connected together by conductances,

which we have not shown in Figure 1 so as not to clutter up the
diagram. We assume that the graph of these interconnections
within each box is isomorphic (in a graph=-theoretical sense) to
a uniform structure Sk’ which we sSpecify in Rule II. Sk need

not be the same for every box. Let n be a positive integer

I

(possibly greater than three) and let R~ denote real Euclidean

n=-space. The lattice points of R are the n-tuples p = (Dl, s%s 3 P

<

n

where each p, is an integer.

i

Rule ITI, The nodes of each Sk occur at all the lattice
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- n 3 ; . & 5 ,
points p of R"; n is the same for every S, . We number the nodes
——_——— T ———

by their lattice numbers p. The degrees of the nodes of a

particular Sk are finite and all the same, but those degrees

can vary as k varies, Kvery branch of Sk is a positive conductance.

Moreover, in a given Sk’ if node p is connected to node g through

a branch of conductance a, then every node j 1s connected to

node j+g=p through a branch with the same conductance a,

Thus, when n = 1 and Sk is connected, Sk is simply a series
connection of conductances a that extends to infinity in both
directions., When n = 2, an infinity of possibilities arises,
One of them is shown in Figure 3, wherein 815 855
conductance values., Still more variety in possible configurations

and a3 denote

for the Sk arise as n increases beyond 2. Rule II implies that
all the branches of SK caﬁ be partitioned into a finite number
of classes such that two branches are in the same class if and
only if they are parallel, that is, if and only if the difference
between the incident-node numbers of one branch is equal to or
the negative of the difference in the incident-node numbers of

the other branch. We denote these classes of branches in S

£

by Pk4’ where g = 1, eee jk. The single conductance value
v

for all the branches in a given ', is denoted by & .

£ -
Heferring to FPigure 2, we impose still another condition.

Rule III. The nocdes of box k are comnnected to the nodes

of box k+2 in the following fashicn, A node of box k is adjacent

tc a node of box k+2 if and only if the nocdes have the same

lattice number. Moreover, the branches connecting two scnsecutive

boxes are all purely resistive and have the same resistance value,

fut that value is allowed to change as k changes., Furthermore,
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current generators are connected from ground to the nodes of the

first box; these current veq;ators are not in gereral the sam

jm

Note that, under the three rules, Figure 1 is a special case
of Figure 2,

III. LExistence and Unigueness of Solutions

=

We wish to examine the solution cf the countably infinite
electrical networks satisfying the above three rules. By a

sclution we mean a set of branch currents and Dranc“ voltage

that satisfy Kirchhoff's node anca loop laws andOhm's law, However,

such networks have in general on infinity of soluticns [14].
This is because pcwer can be inrnjected into the netwecrk from
infinity. On the other hand, practical consideraticns (i.e.,
there is really no such thing as an infinite network - the idea

is simply a mathematical convenience) dictate that the "natural

solutions are those that cbtain their power

nly from the scurces

O

within the network., DBut, a particular infinite network may even

have an infinity of natural solutions; see [15]. In this

section, we shall impose conditions on our network that insure

the existence of one and only cne natural solution.

For a subsequent purpose, we shall allcw our branch conductances

to be operators on a certain Hilbert space, In particular, let

I

E be anv real Hilbert space., 1 nr) will denote the real Hilbert

r ¥ c ,2(
space of vectors
b = [xl, Xa, KB, -o.]L

where every element X, is a member of Hr’ the superscript T

denotes matrix transpose, and
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Here, lIx_ || and (x y_ ) are of course the norm and inner product
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Another set of conditions we will employ are the following.

Conditions A. The currents and voltages of the network

are members of r* Each branch is a paresllel connection of a

(possibly zero) current source n € I_ and & conductgnce g which

_

is a positive invertible operator mapping H_ into H_« There are

no other current sources and no voltage sources. (Actually,

voltage sources can be incocrporated by making a Thevenin-to~Norton

transformation.) The numerical ranges of all the conductance

operators are uniformly contained in a fixed compact subinterval of

the open half=-axis (0, =), The current scurces (with any apo

27
e}
=
e

indexing) comprise a vector in 1 (ﬁr .

[17; Theorem 2.2] we proved the follcwing theorem. It

4=,

was established by modifying the circle of ldeas concerning

-

infinite electrical networks first introduced by Flanders [3].

Theorem 3.l Let N be a connected infinite electrical

network which is locally finite except possibly for one ground

. oo

Lode he ground node may be of infinite degree. Assume N

b o
fop )

[

satisfies Conditions A. Then, there exist a unique vector

|

v ;d(HrJ of branch voltages and & unigue vector i ;Z(H“) of

branch currents such that Kirchhoif's node and lcop laws anc

Ohr's law are satisfied,
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This theorem may be applied to any network satisfying
Rules I through III, where now H_ 1s the real line, sco long as

the current-source values at the left-hand side of Figure 2 are

el

uvadratically summable and all conductance values are contained

(2

n a compact subinterval of the open half=-axis (0, =),

IVe ==pcrts and Laurent Operators
The network in any box cof Figure 2 can be viewed as a
grounded «=port, where the two terminals of each port are the

ground node and one of the nodes within the tox. In order to

make use of Thecrem 3.l., we shall restrict the vocltage and current

vectors of these «=ports to Hilbert's coordinate space 1 =

1 . , , . B
;E(R ) but will alter the indexing of the components cf any
o a a T o

o conform with Rule II. Let N dencte the set
T n e il 3 i o N .
olnts in R7; that is, each member of N 1s an orde

n-tuple p = (p1, ses pp} whose entries are integers. A menber
of Lo will now be an n-dimensional array {aﬁ: D € N“} of real

-

numbers a_ such that

H

£3
|

Thus, the inner product of two members a = {ap} and b = {b_}

= £

in 1, 1is the n-tuple Infinite seriles

ed
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A bounded linear mapping F of ;Er into EZr has a matrix-like
representation, but it should be borne in mind that its matrix
[Fp cj’ where p, q € Nn, is a 2n-dimensional array of real numbers.
L e
Thus, if y = Fx, where y = (Jys eeo yn) €1, andx =

(X-}, L ] xp) e __3:21_" then

o T 2o Fo,aq®
qeN"

0f course, not all 2n=dimensional arrays of real numbers will
represent bounded linear mappings of 1, into 1, [S; p. 1261,
but those we encounter below will do so.

Now ccnsider the kth box of Figure 2. As an «=port, it has
a linear conductance operator whose matrix representaticn can
be determined by making a nodal analysis, gy has the structure
of a Laurent matrix (1]; that is, upon letting (gk)o,o denote

the p, q entry of the matrix representation for g, s We have for

every p, q, m € N©

““1)_ @ lo,q = Brlpim,qem

This is an immediate consequence of Rules I and II,

Moreover truly i1s a bounded mapping of 1 irite L.

s &y d . =2r = =2r*®

Indeed, for x = {xq} € lEP’ we may write the following, where
. " Il

every summation is understocd to be over N,

: - S 2
gzl = % Zq (8)5 g%

By virtue of Rule II, for each fixed p one finds only a finite

number, say, v of nonzero (gk)n a as g traverses N, Moreover,
d-,



8

in view of (Lel), the same values appear whatever be p; those
values merely shift their indices as p changes. Let M be a2 bound
on those values, By applying Schwarz'!s inequality to the inner

summation of the last expression and taking into account all the

zero values of (gk)n o2 We get
g Bt

Hgkxﬂz s n22 > ]xm12 = M%2x)°.
m

This verifies our assertion.

A Laurent operator is a member of [;Er; ler] that satisfies
(Lel)e We have proven that gy is a Laurent operator,

Moreover, we can show that each 8y is positive and inverticle

by examining its numerical range. For any x € izr,

(4e2) (gk?{, X) = Z [Z \o,}o ﬁxﬁjx.,
° 3 £'P,4 ¢ 3

By using the aforementioned properties of (gk)D 49 it is not
2+

difficult to see that the right-hand side converges absolutely
and therefore can be rearranged., According to Rule I, the branch

connecting ncde p to ground has conductance c

. . . 2 ia . . .
introduces the term ckxp into the summation in (L

consider any branch that is not incident to the ground node,

> 0, It therefore

[ ]
\¥]
ol

Now,

Assume that it connects node p to node q and that its conductance
is a > 0, That branch introduces the following terms into the
summation (Le2)e

2 2 2
- + a = a - = 0.
axp 2axpxq xq (xp xq)

Now, we can partition all the branches that are not incident
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to ground (that is, all the branches in SK} into a finite
number of classes ka’ where £ = 1, 2, eee jk’ as was
explained in Section II. The branches of any class all have the

same conductance, say, a Thus, (Le2) can be rearranged into

kp'

the following expression.

'S
(higd) (g, Xs x) = ckz xg + > a Z_ (x. -=x_ )°
S

where Py and q,, are the indices of the nodes incident toc the
branch b in class r;u. By Rules I and IV, Cy > C and a > Ce
dence, =
(g s ) Z cixl%,

This proves that 8y is positive and invertible,

Actually, the branches ceocnnecting two consecutlive poxes
also comprise an =-port, We take the two ncdes cf each such branch
as one of the ports of the ==port, and we number those ports in
the same way as the nodes to which they connect. according tc
Rule III, all those branches have the same positive resistance bk

(k is now even)., Therefore, the «=pcrt has the resistance
3 et

operator r, = b,l, where 1 is the identity operator on 1, ;
s k k = -l
s g% . n .
that is, the element (r, ) s Where p, g € N, of r,'s matri
L P B k
revresentation 1s ; -
- b for p=qg
k ~
I’i =
( k)p:q
0 for p#a

Thus, each r, is a positive invertible Laurent operator tco.

k
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Ve A Ladder Network of Operators

Because of the grounded nature of the 8y ==ports (k odd)
and the disconnected form of the T =-ports (k evenj, we can
connect them into the infinite ladder network of Figure L without
viclating the port conditicns. We shall analyze the network of
Figure 2 by a two=step procedure consisting of an analysis of
Figure L, in which the individual «-port currents and =-port
voltages are vectors in }Zr’ followed by a determination of
the interior branch currents and voltages of each ==port to get
the branch currents and voltages of IFigure 2, To do sc, we
shall impose two further assumptions on Figure 2,

Rule IV, (i) The vector h of current-source values h_,

p € Nn, at the input of Figure 2 is a member of 1.

(ii) There exist two real numbers « and vy with 0 < s« < y < =

such that the conductances-to-ground c, satisfy < = cy = v for

all odd k, the conductances akp of the branches inside esch box

that are not incident tc the ground node satisfy

Iy
> a sy

for all odd k, and the resistances b, of the branches between

k
the boxes satisfy « S bk S v for all even k.

We now show that Rule IV(ii) insures that the numerical
ranges of all the operators 8y and r, are uniformly bounced

according to
W(Ek) s ["‘, B], k odd
(541)

W(rk) c [«, g1, k even

where 0 < £ < B < =, Since in this case we will also have
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W(rgl) Cifgﬂl, 4-1], the assertion in Condition A concerning

the numerical ranges will be satisfied,

For the g, we can argue from (Le3) as follows, Since

we have

Jx
~ y < 2 = 2 »-2
(5e2) (g%, x) S c =™ =+ i' o Ei;_ (Exp1 * exg -
u=1 bElku b b

But, by Rule II, all the node voltages are traversed by x
&l
i

and by xq as b traverses ka' Therefore, the right-hand side

b
of (5e2) is ecual to
L
ckibcﬂ‘2 + b,iixilz i a.
=1

So, our assertion far the &y follows when we set « = ¢, and

k
8 = 5y and then invoke Rule IV(ii),
Since 8y is a strictly positive operator, this result on

its numerical range also implies [L; p. 62},[6; pe 145] that for

(543) lg s 8, legtl s <

The same conclusions for the r follow immediately from
Rule IV(ii) since r, = b, l,where now 1 denotes the identity
operator on ;2r.

Now, refer to Figure L again. The next thing we want to
show is that the driving=point impedances z;, where k is odd,
and the driving=-point admittances y;, where k is even, exist and

are positive invertible Laurent operators on EEr' For n > k,

n 1 4 — ;
we let Zk and yi be the corresponding driving=point impedances
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and admittances when the ladder network is terminsted at its nth

element. That is, we set

g 3T oky Dy Fip awe

J
. =
‘] -
rj s J =2, U4y 6, eeo
and
n - ~
Zk, k"'l,},b,n-., n>=%k
(Sth) fﬁ =

1}

n
i o k 2, by 65 eee 3 n >k

Then, for n < oy, fi is given by the finite ccntinued fraction

1 1 1
(5e5) £ = A =  eee =
k Ty ¥ Ty ° * oLy

'_..b

The inverse of a positive, invertible, Laurent operator and the

sum of two such operators are again positive, invertible, and

n
k

Now, Laurent operators commute [1]l. This fact coupled with

Laurent. Therefore, every .. also has these properties,

the fact that the numerical ranges of all the dj and rj are all

=
contained in the interval [«, B], where « > 0, allows us to

invoke a theorem of Fair [2] to conclude that, as n—>=, (5,5)
converges in the uniform operator topology. Its f; is the driving-
point impedance z; or the driving=-point admittance y; depending

on whether k is odd or even.

For n > k+2

Il
K P
L
Y

n

* D2

Since W(fk) and W(f 1) are both contained in [«, B], where

K+

£ g n , G i
0 < £« < B <=, and since fk+2 is a positive operator,we may

invoke the spectral mapping theorem to write the following set



inclusions, where the right-hand sides denote closed or half-closed

intervals,

el ¥ Tew2) < [ =)

Qs o - o
Since, for every x € 1, ., ¢ g x)-—*(ka, X) as n—> =, we can

conclude that

(546) W(f)c[-——_,—-], 0O< << PB<=
k B*%{' «

In fact, we have established most of

-

Theorem 5.1. Assume Rules I through IV fcr the grounded

grid of Pigure 2., Then, the driving=-polnt impedances and

o . o :
admittances fk of the corresponding ladder netwerk of operators

shown in Figure L exist as the limits under the uniform operator

topology of the infinite continued fractions

I
o -
L]

[ ]
L ]

) ® 1
(Do?) i - L :
k D * Tuga T Ik

Hy

-+

@« -
The f, are all positive, invertible, Laurent operators whose

-— kK

P

numerical ranges are uniformly bounded according to (Sl

Proof, There is only one thing left to prove; namely,
each f. is a Laurent operator. An operator in [ln ¢ L.} 1a

k 5 & er
Laurent if and only if it commutes with the shifting operator

sq, for every q € N¥ [1; Theorem 2]. sq is defined as follows:



Let x € 1,

by definition, sqx = y, where y? =X

” and for p € N* let xp be the pth element of x. Then,
. Since each £ is a
rp=q
Laurent operator, we have under the uniform operator topology

that as n — =
= n =1 =
s f. ~ 8 7*f = lks — .8 .

gk qQ k

This completes the proof.

Assume that the current source h of PFigure L4 1s a member

O
Hy
]
[\

the 1 r"valued currents and voltages in Figure L.

ncdes of Figure L yields
B v M 0 B ™ e
Kz k k+1 k+l
e o - im
3y Ohm's law, v 1 = 2 11, Therefore,
I . s 5
(6e1) Lsp = Sklk
where
{ ~ o

Here, 1 denotes the identity operator on lzr'
For ¥k = 1, 3, 5, eee s Kirchhoff's loop law applied to th

meshes of Figure L and Ohm's law yield

1

Ver2 = Ve T Tk+ltk+l

o

Tevl T Tie1Vk

and thus

. We now apply Kirchhoff's laws and Ohm's law to determine
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(643) Vs = B0,
where
(6eL4) % T 1 7 Tkalkw
Given h € ;ZP in Figure li, these equations allow us to

determine every voltage and every current in that ladder network

recursively. In particular, for k = 2, L, 6, ess

and, fork=3, 5, ?, )
£ = = . = %
(6.6) Vi 8 -5 el > 8,vy » V4 z{he
Our next objective is to establish several properties of

the operator & . By Theorem 5.1, (k even) and Yiest {k odd)

Z,
k+1

are Laurent operators. So too are g . (k even) and (k 0dd)e

e
k+1

Furthermore, the composition and sum of two Laurent operators
are also Laurent operators. Hence, Sk is a Laurent operator

for every k.

Lemma 6.1, IFf A, B € [H; Hl, wnere H is a Hilbert space,

1 . . .. . — .
and if A is postive and commutes with B, then their numerical
=\

ranges satisfy W(AB) < W(A)A(B).

i
Proof. The square root A”> commutes with every operator that

commutes with Ae. Therefore,

(ABx, x) = (BA’x, A'x) € W{B)il&ix”2 = W(B)(Ax, x).

Our lemma now follows immediatelye.

We now examine some numerical ranges. Let kK = 0, 2, L, eee o

According to (5.6) and (5.1),
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Since we are dealing with positive Laurent operators and Laurent

operators commute, we can invoke Lemma 6.1,

ot [ 2]
4 (¥, 408 sty 5
k+2°k+1 g + 432 3 A2

It can be seen from Figure L that

i = - 2 7 TR =L o =L oa=]
T 21 - B T Tee2d T T o8 Tl e
lherefore,

o _ o -l "l

) - 1 =) : £ -1
Weeatma) © [Lv20) 5 (1 B+ 432} |

A
The last closed interval is contained in the open interval (0, 1).

S0, in view of (6.2),

< -] ; 1l \=1
d\sk) c [1 - (l + m) R -.l - (l - :E) I
(6e83)

:f i ]
T llwmatpept? el 1T

This shows that Sk is a pecsitive, invertible, strictly contractive

operatcr with



(649): o 5 ——
k 1 + 42

Fop e w 1. 3, 5, ane p (5e7) is replsced by

e -1
(rk+1 o Zk+2J

We can now apply the same argument to (6.4) to obtain (6.3) and

(649) once again., This establishes

T Theorem 6.1, Under Rules I through IV and for every k = 0, 1, 2,

ese 3 Gk is a positive, invertible, Laurent oper=tor in [;Zr; ézr]

satisfying (6e9)e

Note that, by Rule IV(ii), « is independent of k.

We can now show that the solution given by (6.5) and (6.6)
is precisely the one dictated by Theorem 3.l. Indeed, let the
Hr of that theorem be ;2r' Since there 1s only one current source,
the vector of current sources is & member of 1,(1,.)s We have

already noted in Section V that W(g, ) < [«, 8] and

k
W(r;l) = [ﬁ-l, 2], By the analysis in the second and third
paragraphs of this section, the solution given by (6.5) and (646)
satisfies Kirchhoff's laws and Ohm's law, The rest of the
hypothesis of Theorem 3.1 is clearly satisfied except perhaps
for the requirements that the vector of all branch voltages and

the vector of all branch currents be members of 1,(l, ); this

A

wWe now verilye.
Summing over all odd k and using (6.6), we get for the

vertical branches of Figure L

Tiv 2 = vgl® + legv 2 + o8 v l? + llog8ye vyl ® oo



By (649), Hek” S K= (1+ &2)‘1 < 1l for every odd k. Therefore,

P RIS SR S S P

]

-]
(1= k) < -

For the horizontal branches of Figure L, we have Y ® rkik’
where now k is even. Summing over all such k and using (5el)

and (6e45), we get .

fiivkue he Ztlrkikna s ﬁzZ(!ik{za

I

2 4 ~2 5 i o) ';2 fre { fl 2
(k= + legal™ + 18,8.hl"™ + ;;uheaaohu + ee0)8
S (1 + K% + K& - K6 - o--)ﬁzﬂhﬂz

(1 = £2)2p%nie < =,

I

So truly, the vector of all branch voltages is a member of ;2(;2r}‘
Quite the same argument shows that the vector of all branch
currents is also a member of ;2(;2r). Thus, we have

Theorem 6,2, Under Rules I through IV, the solution for

the network of Figure L.l given by (6.5) and (6.6) is the

unique (finite power) solution dictated by Theorem 3.1,

As was promised at the beginning of Section 5, we now have
a two=step procedure for determining the solution for the grid
of Figure 2. We first determine the solution for the operator
network of Figure L and then determine the interior branch currents
of each ==-port to get the currents in the branches of Figure 2,
However, there is one mcre thing we should verify; namely, the
solution for the grid of Figure 2 given by this two-step procedure

is the same as the solution specified by Theorem 3 when that



theorem is applied directly to the grid of Figure 2 with H_, now
L

being the real line. This can be established in a completely
straightforward way, The details of the argument are spelled
out in [18; Section 5]
VII. A Computational Procedure

So far, we have established the existence and unigueness
of the solution in 1, (i.e., the finite-power solution) for
the network of Figure 2, However, the question remains how one
might compute the numerical values of the voltages and currents
in the network, given the current sources hj of Figure 2.
For this purpose, we use Equation (6.6) to compute all the node
voltages, from which all the currents in the grid can be determined.
The first step is to determine v, € l&r’ and this is facilitated
by the isomorphism between ;2r and its corresponding space of
Fourier series, Let'!s quickly survey that isomorphism and its
effect on Laurent operators [1].

Let S dencte the unit circle and s™ the Cartesian product
of n replicates of S, Lg(Sn) is as usual the Hilbert space of
(equivalence classes of ) quadratically integrable funetions f

52 5
on S with the norm

N

; i 5
el = = j~ ]f(m)|2 dw
(2m)” gn
[D=((0.., co.,an,OSUJJ<2ﬁ

Let J denote the transformation that assigns to each x = fxp: e Nn}

= er the function

$0) = Q2 xetles @



where (p, @) = py@ + *ee +p A standard result is that

n“n®
Fis a (topological linear) isomorphism from i onto Lﬁ(Sn)
such that jIxfi = X/ e

Let z € [l2r; er] and let Z be the mapping of L, {(8%) into
L,(S%) induced by F; that is, 2 = F2F 1. Then, lzll = V2. It
is a fact that z is a Laurent operator (that is, z € [;Zr "
and satisfies (Lel)) if and only if Z is a multiplication,

More specifically,

(7+1) (2X)(w) = Z(w)x(w)
whnere
2
(7Te2) Z(w) = D oz, e % 45
0,q
qeN”
Here, the subscript O denotes the origin in N~ and Zg .is the
)i

0,9 entry of the matrix representation [zU q] of 2y
=2

. - - . ; raily . I s
The mapping z+~Z of [1,.; 1,.] into [ngs ); Lo(S )] is

linear, continuous, and norm preserving; that is, llzll = AR

Also,

(743) lzl = ess sup [Z(w)le

Yoreover, if z is positive and invertible, then ess inf Z(w) > O

and z corresponds to multiplication by [E(w)] l. Finally,
the numerical range of 2 is the closed interval between the
essential supremum and the essential infimum of Z(w)e

These results imply that z;, wnich exists as a Laurent operator

according to Theorem 5.1, corresponds to multiplication by the

function
= 1 1 il 1

(701-1-) E {(-0) e e T — see
1 g (w) + b, + gil0) + Lt

where for k odd gk(w)- is the multiplication corresponding to 8y



and for k even bk' is the multiplication corresponding to

B = b, 1. By virtue of Rule II, each g g, (w) is a finite Fourier
series and hence a continuous function., Also, the range of ék\w}
is ccentained in [«, Bl where <« > O,

. ) n . . :
The function in L.(S87) corresponding to v, = Ze h for a ziven
2 o =3 l l =]

i HE o n = 5
h = {hp. p € N%} ¢ 1, 1is
(7:5) vl(w) = thth(w)
where
(746) he) = 2 b el (Pr®)

Thus, the node voltages (vl} for the nodes on the first box of

Figure 2 are

(?.?) (Vl)

o
The next step is the computation of the functions ak(m)

for k odd by means of the following analogue to (Sel4):

I e o '= - ~ 15 Hr‘_-':‘ ;
(Te8) eki&) 1 rk+lxn)3k+l(w)
Here, §k+1(w) = bk+1’ and
1 1 1 1
{719) ?L \ J = S . T \ o e see
k+1 Beuii - F gk+2&u} * Dpes v OBy (@) o

The analogue to Equation (6.6) then yields

(?nlo) .‘}k(Q)) = 51{"2(m)§k-14_{m) see ﬁél(w)vl(m)

Finally, the node voltages in the kth box of Figure 2 are given by



25

i o - iy
) s ¥, (w) e i(p,w) dwe

(7411) (V) =5 J,

w

In practical computations we must either determine the
continued fraction (7.4) in closed form, usually an unlikely
prospect, or truncate it by an open-circuit or short-circuist
operator admittance and estimate the resulting error, or, in the
case where the grid approaches a uniform grid as k-— =, perhaps
truncate it with the characteristic operator admittance of the
uniform grid [17].

Let's consider how that truncation error might be estimated
when the grid is terminated by an open=-circuit or short-circuit

operator after the nth sectione In fact, let us approximate

(@) by
1 & 1
Nn;_, _— e .
(7T012) 21 (w) = g (@) + b, = * % £ _(0)
2 n
where fn(m) = b, for n even and £ (w) = én(w) for n odd., Now,

a property of convergent infinite continued fractions with positive

UJ

terms is that its limit lies between any two consecutive truncations:

~® . ""n-l -
Thus zlka lies between Zl (w) and zl (w)e Hence,

(7.13)  |35(0) - B w)] S [T - ().

Also, by virtue of Rule II, every g

2 (w) is a continuous functions

-

This allows us to bound the error generated by truncating
(Telt) as follows, Let vi € ;2 be the approximation of v, ¢ 1
resulting from the replacement of E;(m) by z- (w). Then, letiing
and using

il
(x)O denote the pth component of the vecotr x € 1

(712), we may write
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o B
(vylp = (73 nl

5 |23 (0) = 25 (w)] [R(e)] aw

23:) gh
(Tadli]
23 -
S sup E% l(w) - E?(w} sup |_(w)i —_— dw
A W n s
(2=:) gh
S sup ]~n-1 w) - E?(w}{ N \ho[.

W

Here, J |h_| denotes the sum over all the nonzeroc |h these

e pl
usually being finite in number in practiecal cases, Decause of
(7Te3) and the fact that (5.7) converges in the uniform cperator
topology, given the hp with Z:]hol convergent, we can make the
rizht-hand side of (7.lL) as small as we wish by choosing n large
enough. That is, (T.ll4) can be used to control the error
generated by Tuncating (T.4). However, this is a conservative
approach; the bound (7.1lL) will be in general much larger than
the actual error.

Bounds on the error generated in the computation of the
(vk)D by the continued-fraction expressions for the ¥, ., (w)
can be estimated in exactly the same way, but now an error
el =By
in (7.10). Finally, when our nonuniform grid approaches a

appears for each factor ek(w) as well as for ¥ w)h(w)
uniform one as k—~>=, we will generate less error by terminating

in the characteristic operator immittance of the uniform grid [17],
and so our aforementioned bounds on the error will still be valid,
Of course, other errors are generated by the numerical integrations

of (7+7) and (T7.11l); these can be estimated by standard methods.



VIII. An Example
We illustrate our computational procedure witn an example,
We assign values to the parameters in the grid of IMigure 1 as

follows:

1 for J =0
h, =
O for j#O
a = 1
oy 1+e © for m=0, I, &, see

Consequently, the various functions of w generated by the isomorprhism

B et

F are

~ = G

Eopey (@) = 3 +e " =2cosw for m=0,1, 2.
3 3 o = g = - 2 Py -] |

To compute approximately the driving=pcint impedance zl(w), we

use the fact that our grid approaches a uniform grid as m —=,

S0, we may replace the ladder network beyond node cZM+*l, where

M is chosen sufficiently large, by its characteristic Impedance

O(w). The latter can be determined by the method given in [17];

(=]

s B -
Eo(w) = %{; 34 2 cos W+ [(3 =2 cos )¢ + L(3 = 2 cos m)]g}.

Then, for sufficiently large M, we have toahigh order of accuracy
8§ h & 1 1 § & 1

E (w) e — — s - N
i § ~ ~ ' ~ : 2
gy(w) +1 + gB(w) + 1 + + Eopay (@) * 1+ 24(w)

Similarly, for k odd and k << 2M + 1,
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= 1 i 1 i3 3 1
}r.|+ i — -—-———-—H — " X . v - = -
: L+ Bl v+ 1+, (0 +  + &y (@) +1+Z(e)

We now use (7+38), (7.10), and (7.11) to compute the node voltages
for the nonuniform grid in the vicinity of the single current

s curce hO = 1.

For the sake of illustration, we have chosen M = 12 and
have computed the node voltages for the first five rows of nodes
(that is, for the first five boxes) and for the first eight
columns of nodes on either side of the QOth column where ho =1
appears. The results are displayed in Table 1. Since the node
values have even symmetry around the Oth column, We have indicated
their values only to the right of the O0th columm. Computer

execution time for these results was 38.5 secondse



TABLEn 1

Column
0 1 2 3 Iy 5 6 i 8
28076  LO7717 .02217 00661 .00203 L0006l 400020 L00007 400002
JO07199 ,03413 ,01308 00465 00161 400055 LO00L9 L,00006 00002
.02069 L01303 ,00621 ,L00261 ,L,00102 L00038 L0001l L00005 ,00002
00643 L0047l  &00265 L00127 L00056 ,L,00023 L00009 L0000L4 400001
200211 L00170 L00107 L00057 00028 ,00012 LO0005 ,L00002 00001

62
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IXe Nonuniform Grids of Positive=-real Impedances
We now turn from purely resistive networks to ones that may
contain inductors, capacitors, transformers, and so on. By using
the results of [13], we can extend our analysis to grids of the
form of Figure 2 where now each branch is a positive-real driving=

point impedance with no coupling between branches. We shall in

fact examine the transient behavior of such networks. The

o}

arguments needed to do this are quite similar to those given in
Section 8 of [1?]. Therefore, we shall at this point merely
define the needed concepts and then indicate how the arguments
in Secticn 8 of [17] have tc be modified to make them suitable
for our present considerations,.

Here are some concepts from [13]. C_ denotes the open

right half of the complex plane C:

C, = f{s € C:Re s >0}

For s € C+,jls is the closed conez

Jz € C: {arg z| S jarg sif,

o !

where it is understocod that the origin is a member ofjls.
1, denotes the complexification of 1,.. By an "operator", we

henceforth mean a continuous linear mapping of ;2 into lz.

P is the set of all analytic operatcr=valued functions F
on C,_ such that, for every s € C_, the numerical range WLF (s)]
of F(s) is contained in C_. Thus, if F € P, F(c) 1s a positive
operatcr for each o > O, Pi is the set of all ' € P such that,

for every fixed s € C_, W[F(s)] is bounded away from the origin,

that is, there exists a 6 > O depending in general cn s sucn that
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C

Re (F(s)x, x) 2 6%l for all x ¢ 1 L

Thus, for each s

m

2.

and F € Pi’ F(s) is an invertible operstor. It was shown in

e

{131 that, I € Pi and G € P, then F + G € P,; also, if
F € I

Pi and if F denctes the function si~[F(s)] l, then
Next, let F,, F,, F3, cee € P, and let Zp{s) be the operator-
valued finite continued fraction

1. 3 3 d

rlksJ + F2(S) - + Fn(SJ

Then, by what has just been stzted, Z_ € P,. The fcllowing
n i
theorem is a somewhat simpliiied version of Theorem 1 and

Corollary la in [13].

Theorem S.le Assume the following three conditions:

Il

(i) F, € P, for every 1

ALJ e i l, 2, 3, ass v

(ii) Given any compact set = &C

& > 0, depending upon —, such that inf Re N[FK[SJ] > & for

k =1, 2 and s € =,

(1i1) For each ¢ > 0 and all k = 1, 2, 3, eee 5 the operators

Fk(cJ comrute with each other and H[Fk{cJ] > ék(o), where the

L=+] N
5k(c) are positive numbers satisfying Z:k—l ék{c) = ),

L [- -]
Then, for every s € Cyos the seguence 5&1{5)}

converges
=l Sslel Eenss

in the uniform operator topology, and the convergence is

uniform with respect to s in any compact subset of C_. Moreover,

the limit function 4 = lim e Zn is =2 member of P..

Next, we turn tc the time domain and defire the space L.(R
s

Consider the mappings of the real line R into ;2” which are



e

quadratically integrable on R under the éar norm, and let twc

n the same equivalence class if they differ

e

such functions be
cn no more than a set of Lebesgue measure zero. LEQR, ;2 ) 1is
the real Hilbert space of all such equivalence classes supplied
with the inner product

-

(a, b) = J = - fd H e T (
e ;E;h aa(u)b (t) dt BEE R 3; b€ I lB; L
peh iy p

(See [11; Appendix Gla)

In [17], we procved

Lerma 8.1, Assume that the vector h is a member of LE(R, l2r)

and that the support of n 1s bounded cn the left, Let H be the

Laplace transform of h, that is, the vector of Laplace transforms

Ly m

2 n > -
Hy of the components hn’ p € N« Then, for sach s € C+, H(s)

exists and is a member of l.,. Also, for each o > C, Hig) is

2 member of 1, .

0o

These are all the results we need to generelize our
discussion to grids of impedances, To proceed, replace Hules I
through IV with the following, where s € C*.

Rule I', Same as Rule I eXxcept that the conductances yx

are replaced by scalar positive-real admittances Ck(s).

Rule II's Same as Rule II except that the conductance &y

(k odd) for every branch class Pkp is replaced by a scalar

positive-real admittance &kp(S}'

Rule III!, Same as Rule I1I except that every resistance

bk (k even) connecting box k=1 to box k+l is replaced be a

scalar positive-real impedance Bk(s).




s

Rule IV'e, (i) In the time-domain, the vector h = {h 1.8 & Nn}

of current sources at the input of Figure 2 is a member cf

s and the support of h is bounded on the left.

Ly(Ry 1)

(ii) There exist two continuous functions «{(c) and vy (o)

on the half line R, = {o € R: 0 > 0} with 0 < «(g) < y(o) for

every ¢ € R_ such that, for k =1, 3, 5, ess , We have

<(c) = C {g) = v(c) and

%
P Aku(c) s v(o),

p=l
and,for every k = 2, L4, 6, eee 4 We have «(c) S Bk(c} 2 Tio )

We now decompose the grid of Figure 2 into «=ports as before

to get the ladder network of Figure L. In the frequency domain,

the 8y for k odd and the r, for k even are replaced by

k
[1,; 1.]-valued functions ¥, (s) and Z (s) = B, (s)1 resgectively,

e T k k k - 4
where s € C*. Upon modifying the arguments that established (L.3)
with manipulations suitable for a complex Hilbert space, we

" . - Il
obtain for x ={x_ : pe€ N'} e 1,
ol

(9e2) (Yk

e s ) = il 2 TR TR b e
e T kel Po 9

Using this equation and Rules I' through IV!, we can argue

in virtually the same way as in [17; Section 8] to establish
v § o 4 T e o 3 \

that every ¥, and Z, 1s e member of P., that _kxo) and Z, (o) are
Laurent operators for each o € R+ s that the hypothesis of
Theorem 9.1 is satisfied when Fk(s) = Yk(s} for k even and
Fk(s) = Zk(s) for k odd, and that the driving=-point impedance
Zl = 1lim

r; R
n—=e %7 18 2lso a member of P;.

™y



Prcceeding still furtkher as in [17; Section 8], we conclude

that the Y, 2., Z;, and 8%, where

8%(s) = 1 -Y . (s8)2 ,(s), k=0,2, L, ...
65(s) = Zkﬂ(S)Y;ﬂ(S), K =1, 35 55 wess

are all Laplace transforms of [1 lar]-valued right-sided

2r’

distributions whose supports are bounded on the left at the or

s

g
|
a]

Next, we gemeralize Chm's law by means of distributional

—

convolution [11; Section 5.2]:

v=r¥xi, 1=gxvVv

Finally, we conclude with

Theorem 9.2 IFor the network of I'igure 2, assume that

Rules I' through IV!' hold., Then, there exists cne and only one

set of right-sided Laplace=transformable distributions for the

- = — " . = =

branch veoltages v in the network of Figure 2 such that Kirchheff!'s
o =) m =

f

node and loop laws and (generalized) Ohm's law are satisfied in

the time domain and such that, for at least orec > 0 and for V

denoting the Laplace transform of Vs We have

S

(943) 2 [v_ei]? < -
m

In this case, (9.3) holds for 2ll ¢ > C,

The branch voltages and branch currents for Figure 2 can

be determined from the ccomponents of the i2r~vah£d distributions

i, and v, which are given in turn by (6.5) and (6.6) appropriately

k
rewritten as distributional convolutions, Alternatively, we can
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work in the frequency domain, in which case (6.5) and (6.6) should be

rewritten as multiplications of Laplace transforms,

Xe The Computation of Transient Responses,

By using the method described in Section VII, we can compute

the voltage V(o) at any node or the current I(oc) i

n any branch

at & finite set of points 0 = 6., 055 e O, cn the real axis
12 =2 |

in C_e Then, using these values of V(o) or I(c),

Wwe can apply

Papoulis' method [7], [8] to compute the corresponding transient

response v(t) or i(t). This requires however that

.
i

V(s) and I(s)

tend to zero fast enough as s — = in C_ to ensure that v(t) or

i(t) be a sufficiently well-behaved function tc allow the

convergence of Papoulis! method,

For example, assume that, as s—> « in C,, every Ck(s} acts

capacltively, that 1s, it is asymptotic to a constant times s,

and every'ﬁk“(s) and B,

(s) acts resistively, that is, it is

asymptotic to a constant. Then, using the transformation ]

to manipulate the Laurent operators, each Yk(s) or each Zk(s}

el ~
transforms into a function Yk(s, w) or Zk(s, w) respectively,

: n "
where w € 3, Mcreover,

4 1 25

(10.1)  Zj(s, ©) = 2 - 2
Yl(s, w) + Ze(s, w) * Y3(s,

In this case, as s— = in C_,

o

(10.2) Y (s, w) ~ ¢es, k=1, 3,5,
and
(1003) VZK{:S: (‘J} i bk k] k = 2, l!?, 63

where Sy and bk are positive constants, and these

*e e

asymptcticities
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are uniform with respect to all ws (In fact, 4(s, w) is

independent of ® since Zk(s) = Bk(s)l.J It now follcws from
(10.1) that i;(S. w) is asymptotic to (cls)-l uniformly for
all We

o~

Similarly, under F, @k(sJ transforms into @k{s, W)e

Fork=0, 2, J.i., esse 3

~

§k(s, w) = 1 = Yk+l(8’ m)2;+l{s, w)

b

¥ (s, w) + X

k1 Tewa(8s @)

where §Z*2(S’ w) is asymptotic to a constant unifermly for all we
Soy by (10«2)5 ék(s, w) is asymptotic to a constant divided by

s uniformly forall w. Similarly, for k =1, 3, 5, eee,

~

@k(s, w) = 1 = Z 108, w)?;+l(s, W)

-~

2 (8, 0) + Z° (s, o)
w - w

Zk-d-l = k+2 52
) ) ~ @0 ~ @ . . ) -l
where, as with Zl(s, ), ak+2(s, w) is asymptotic to (cks)
uniformly for all we So, by (10.3), @k{s, w) is again
asymptotic to a constant divided by s uniformly for all w,

Now,assume in additlion that the Laplace transfornm Ho(s)
; o B § ¥

of every current generator is of order O(is| Y) where j is an
integer greater than one. Also, assume that only a finite

number of the Hp(s) are not identically equal toc zero,



Set

Then, for k = 2, U, 6, eee
fk_g(S, w) = gk_z(S, w) ék-}_s__(s’ @y s éo(s’ ©) H(s, w)
is of order O(fsl-j—k/a) uniformly for all w so that every current
flcowing between box k=1 and box k has continuous derivatives up
to the (j + k/2 = 2)th derivative. (This follows from [10; Lerma 3.6=

and differentiation under the integral sign,) Similarly,

~ an

Vl(s, w) = Zlis, W)

T
w
-

e
-
W

il
|_J

or

L <]

(3, w) ees é fia, w)il

1 {3y WIE {3, @),

k=3: 5: 7.1 LA

is of order O(!si_j-k/dul/d

) so that every node voltage in
box k has continuous derivatives up tc the (j + k/2 = 3/2)th
derivative.

Thus, these transients are quite smcoth, and we may apply

Papoulis' method as indicated in the first paragraph of this

sectione
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