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NONUNIFom~ SEMI-IIWINITE GROUNDED GRIDS*

A.H.Zemanian

State University of New York at Stony Brook

Abstract: Semi-infinite resistive grounded grids are

countably infinite electrical networks that arise from the

discretization of the partial differential equation governing

the minority-carrier density in a doped semiconductor. If the

doping varies with depth from the surface of the semiconductor,

the grid's resistances also vary with distance from the inputs

to the grid. This nonuniformity prevents the use of the

characteristic-resistance method for determining currents ~~d

voltages. A computational method for making such a determination

is presented herein. It is based upon the theory of infinite

continued fractions whose entries are positive operators on a

Hilbert space. It is also shown that the solution given by the

method is precisely that solution for which the power dissipated

in the network is finite. Finally, the method is extended to

RLC networks, and this allows the computation of transient

responses in semi-infinite grounded grids of positive-real

impedances.

*This work was supported by the Air Force Office of Scientific

Research under Grant F49620-79-C-0172, AFOSR-8o-0205.
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I. Introduction

The purpose of this work is to examine the behavior of a

certain class of countably infinite electrical networks.

Although individual networks in this class can be highly complex,

its prototype is comparatively simple and results from the

discretization of a certain partial differential equation

relating to semiconductor behavior. Therefore, to motivate our

work, we first indicate why the prototype is of interest in the

theory of semiconductors.

The partial differential equation that governs the minority-

carrier density 6 in a doped semiconductor is

(1.1) v~ = 6
~D

where ~ is the minority-carrier lifetime and D is the minority-

carrier diffusion constant [9; p. 99]. Ordinarily, the doping

concentration, and therefore ~ as well, varies with distance

from the surface through which the impurities were introduced.

(There are of course lateral variations along the surface where

the p-n junctions appear, but these variations disappear j~st

below that section.) Because of this, no closed-form solution

for (1.1) exists, and computational t.echniques must be used to get

a;n approximate determination of o. However, the standard

techniques, such as difference methods or finite-element methods,

lead to excessively large computer times when the full thickness

of the semiconductor wafer is modelled.

An alternative possibility is to aSSume that one surface

of the wafer is at infinity and then make use of the theory of

semi-infinite transmission lines. This approach was explored
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in [17J in the case where the doping does not vary with position.

It led to the adaptation of the characteristic-resistance method

to semi-infinite grounded grids, the kind of electrical network

that arises from the discretization of (1.1). In fact, if the

spatial variations for (1.1) are in only two dimensions, we get

a square grid of resistances, all having the same value, and

also branches connecting the nodes of the grid to a common ground;

the resistances of the latter branches represent the quantity

'"tD. This is illustrated in Figure 1, where a and the c, denoteK

conductances. For constant doping, the c, are all the same;
. K

otherwise, they vary. The hk are current sources representing

the electrical excitation of the semiconductor at its surface.

In the case of three spatial dimensions, we get the same

configuration except that we now have a cubic grid.

This is the motivation for the problem attacked in this

work. We wish to determine the currents and voltages in a

semi-infinite grounded grid where the grid IS resistances are

allowed to vary with distance from its input section. We even

allow resistances to vary in a certain restricted fashion for

spatial displacements that remain equidistant from the input

section. Our analysis is irnrnediately extendable to far Hiore

complicated grids than the prototypical square or cubic gr>ids

mentioned above. Herein, we allow this generality.

The basis of our computational method is the theory of

infinite continued fractions whose elements are positive operators

on a Hilbert space. Those operators represent the admittances

and impedances of <I)-portsconsisting of sections of the grid
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lying parallel to the input section. The --ports are connected

together to make a semi-infinite ladder whose input impedance

is the aforementioned continued fraction. Our analysis of the

ladder network yields that unique set of voltages and currents

for which the total power dissipated in the network is finite.

By using the theory of Laurent operators, we also obtain a

computational procedure for calculating the currents and voltages in

the original grid.

All of this is extendable to grounded grids whose branches

We end this paper by indicating
grids

how the transient responses of such impedance Acan be computed.

The solution we now obtain is characterized by a finite-power

are positive-real impedances.

condition applied this time to points on the real positive axis

of the complex-frequency domain.

Before proceeding, let us explain some of the notation we

will be using. If H is a Hilbert space, [H; H] denotes the

Banach space of bo~~ded linear operators that map H into H.

By an"operator" we will always mean a member of [H; H] for some

~~. The symbol 1 is used to denote either the number one, or

a function whose range is the singleton [11, or the identity

operator in [H; HJ. Which meaning that symbol has in a particular

case will either be stated or will be clear from the context in

which it is used. If A is an operator, W(A) denotes the numerical

range of A:

W(A) =
f (Ax, x): x E H, Uxll = 11

where (~, ~) is the inner product of the elements ~ and p in H.

---
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. Tne s~abol (~, ~) will also be used to denote an open interval

between the real numbers ~ and ~; once again, which meaning

(~, ~) has in particular cases will be either clear or specified.

The symbols [~, ~), [~, ~), and (~, ~] denote closed and semiclosed

intervals with the endpoints ~ ~~d p.

II. Semi-infinite Grounded Grids

The type of grounded grid we shall examine ~ indicated

symbolically in Figure 2. he have a sequence of infinite networks,

which for ~~e sake of illustration we indicate as being contained

in a sequence of hypothetical boxes. We number those boxes by

k == 1, 3, 5, ... . We have shown only three nodes in each box,

but it is ~~derstood that each box contains an infinity of them.

Th~ following is a~~umed.

Rule I. Every node is connected to a ground node through

a positive conductance whose value ck is the same for all the

nodes in a particular box. The ck can vary from box to box, that

?-s, as k varies.

The nodes of a given box are connected together by conductances,

which we have not shown in Figure 1 so as not to clutter up the

diagram. We assume that the graph of these interconnections

within each box is isomorphic (in a graph-theoretical sense) to

a uniform structure Sk' which we specify in Rule II. S, need.K

not be the same for every box. Let n be a positive integer

(possibly greater than three) and let Rn denote real Euclidean

n-space. The lattice points of Rn are the n-tuples P == (Pl' ... , Pn)

where each p. is an integer.J.

Rule II. The nodes of each Sk occur at all the lattice
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points p of Rn; n is the same for every S, .K
We number the nodes

by their lattice numbers p. The degrees of the nodes of a

particular Sk ~e finite and all the same, but those degrees

can vary as k varies. Every branch of Sk is a positive conductance.

Moreover, in a given Sk' ~ node p is connected to node q through

~ branch Qf conductance a, then every node j is connected to

node j+q-p through a branch with the same conductance a.

TI~us,when n = 1 and Sk is connected, Sk is simply a series

connection of conductances a that extends to infinity in both

directions. When n = 2, an infinity of possibilities arises.

One of them is shown in Figure J, wherein aI' a2' and aJ denote

conductance values. Still more variety in possible configurations

for the Sk arise as n increases beyond 2. Rule II implies that

all the branches of S, can be partitioned into a finite numberK

of classes such that two branches are in the S8"1leclass if and

only if they are parallel, that is, if and only if the difference

between the incident-node nillubersof one branch is equal to or

the negative of the difference in the incident-node nurabersof

the other branch. We denote these classes of branches in Sk

by rk~, where ~ = 1, ... , jk. The single conductance value

for all the branches in a given rk~ is denoted by ~~.

Referrir~ to Figure 2, we impose still another condition.

Rule III. The nodes of box k are connected to the nodes

of box k+2 in the following fashion. A node of box k is adjacent

to a node of box k+2 if and only if the nodes have the same- v

lattice number. Moreover, the branches connecting two ~cnsecutive

boxes are all purely resistive and have the same resistance value,

but that value is allowed to change as k changes.. -~----- Furthermore,
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current generators are connected from ground to t~e nodesof the

first box; these current ge~ators are not in gere~al the same.

Note that, under the~~ee rules, Figure 1 is a special case

of Fiigure 2.

III. Existence and Uniqueness of Solutions

We wish to examine the solution cf the countably i~~inite

electrical networks satisfying the above three rules. By a

solution we mean a set of branch currents and branch voltages

that satisfy Kirchhoff's node and loop laws andOhm's law. However,

such networks have in general on infinity of solutions [14].

This is because power can be injected into the net~"'orkfrom

infinity. On the other hand, practical considerations (i.e.,

there is really no such thing as an infinite network - tr.e iciea

is simply a mathematical convenience) dictate that the "natural"

solutions are those that obtain their power only from.the sources

within the network. But, a particular ir~inite network may even

have an infinity of natural solutions; see [15J. In this

section, we shall impose conditions on our network that insure

the existence of one and only one natural solution.

For a subsequent purpose, we shall allow our branch conductances

to be operators on a certain Hilbert space. In particular, let

E be any real Hilbert space.r

space of vectors

1
2(H ) will denote the real Hilbert- r

x =
[xl' x 2 ' x 3' ... ] T

where every element xm is a member of Hr' the superscript T

denotes matrix transpose, and
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IIxif

1

r~111Xm1l2r<
<CD .=

'1'he inner oroduct of two rr:embersa and b of 12(H ) is
. - r

(x, y) ==

<CD

~ (x , y ).L- m m
m==l

Here, !lxmlland (Xm' Ym) are of course the norm and inner product

in H .r

Another set of condi tions we will employ are the follo-vIing.

Conditions A. The currents and voltages of the network

are members of H .r Each branch is a parallel connection of a-

~ossibl y zero) current source h € Hr and a conductance g which

is a positive invertible operator mapping Hr into Hr.
There are

no other current sources and no voltage sources. (Actually,

voltage sources can be incorporated by making a Thevenin-to-Norton

transformation. ) The numerical ranges of all the conductance
-~-----

operators are uniformly contained in a fixed compact subinterval of

the open half-axis (0, <CD). The current sources (with any appropriate

indexing) comprise a vector in 12(Hr).

In [17; Theorem 2.2J we proved the following tceorem. It

was established by modifying the circle of ideas concerning

infinite electrical networks first introduced by Flanders [3].

Theorem 3.1. Let N be a corillectedinfinite electrical

network which is locally finite except possibly for one ground

pode ; the ground node may be of ir~inite degree. As s "U.'1le N

satisfies Conditions A.- Then, there exist a unique vector

v 12(Hr) of branch voltages and a unique vector i
12(H ) of- r

branch currents such that Kirchhoff's node and loop laws and

Ohrl'S law are satisfied.
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(When the ground node has ini'inite degree, it is Lot

required to satisfy KirchhoffTs node law, that law beir~ an

assertion only about nodes of finite degree [12; p. 275J.)

This theorem may be applied to any network satisfying

Rules I through III, where now H is the real line, so long asr

the current-source values at the left-hand side of Figure 2 are

quadratically summable and all conductance values are co~tained

in a compact subinterval of the open half-axis (0, ~).

IV. =-pcrts and Laurent Operators

The network in any box of Figure 2 can be viewed as a

grounded ~-port, where the two terminals of each port are the

ground node and one of the nodes within the box. In order to

make use of Theorem 3.1., we shall restrict the voltage and current

vectors of these ~-p orts to HilbertTs coordi~ate SDace 1
2

=
~ - r

12(Rl) but will alter the indexing of the components of any

vector in 12 to cOD~orm with Rule II. Let Nn denote the set- r

of lattice points in Rn; that is, each member of Nn is an ordered

n-tuple P = (PI' ... , Pn) whose entries are integers. A me~ber

of 12r will nOH be an n-dirr:ensionalarray [aD: P E Nil}of real
..

numbers a such that
P

- 2
La p

pENn

Thus, the inner product of two members a = fa \ and b = Eb 1p p

< co.

in 12 is the n-tuple ir~inite series- r

(a, b) = ) a b .
L- p p
p~Nn
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A bounded linear mapping F of 1r< into 12 has a matrix-like
-c:r - r

representation,but it should be borne in mind tnat its matrix

[F ], where p, q e Nn, is a 2n-dimensionalarray of real numbers.p,q

Thus, if Y = Fx, where y = (Yl' ... , y ) E 12 and x =
n - r

(x" ... , x ) E 12 ' then- n - r

Yp
= L Fp,qxq.

qe1fl

Of course, not all 2n-dimensional arrays of real numbers will

represent bounded linear mappings of 12 into 12 [5; p. 126] ,- r - r
but those we encounter below will do so.

Now consider the kth box of Figure 2. As an ~-port, it has

a linear conductance operator whose matrix representation can

be determined by making a nodal analysis. gk has the structure

of a Laurent matrix [11; that is, upon letting (gk)P a denote, .

the p, q entry of the matrix representation for gk' we have for

every p, q, m € l~

(4.1)

(gk)P,q

=
(gk)P+m,q-rm

This is an immediate consequence of Rules I and II.

Moreover, gk truly is a bounded mapDing of 12 into l~ .. - r -c:r

Indeed, for x = rXql E !2r' we may write the following, where

every summation is understood to be over Nn.

IIgkxH2
= 2-lz

p q (gk)P,qXq{2

By virtue of Rule II, for each fixed p one finds only a finite

number, say, V of nonzero (gk) as q traverses Nn.
p,q More ove r ,
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in view of (4.1), the same values appear whatever be p; those

values merely shift their indices as p ch~~ges. Let M be a bound

on those values. By applying Schwarz's inequality to the inner

summation of the last expression and taking into account all the

zero values of (gl) , we get1Cp,q

IIgkxrf2
s .- 2

M21.12L I xmIm
=

M2J)21lxl/ 2.

This verifies our assertion.

A Laurent operator is a member of [12r; !2rl that satisfies

(4.1) . We have proven that gk is a Laurent operator.

Moreover, we can show that each gk is positive and invertiole

by examining its numerical range. For any x E 1~ ,-~r

(4.2) (gkx, x)
=
L [2- (gK)P,qXq]xpD a

... -

By using the aforementionedproperties of (g.) , it is not!Cp,q

difficult to see that the right-hand side converges absolutely

and therefore can be rearranged. According to Rule I, the branch

connecting node p to ground has conductance ck > O. It theref ore

introduces the term ckX~ into the summation in (4.2). Now,

consider any branch that is not incident to the ground node.

Assume that it connects node p to node q and that its conductance

is a > O. That branch introduces the following terms into the

summation (4.2).

2 2ax - 2axx +- ax
p p q q

= 2
a (x - x )

p q
~ O.

Now, we can partition all the branches that are not incident
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to ground (that is, all the branches in Ski into a finite

classes rk~, where ~ = 1, 2, ... , jk' as was

in Section II. The branches of any class all have the

number of

explained

same conductance, say, ak~.

the following expression.

Thus, (4.2) can be rearranged into

(4.3) (gkx, x)
= Ck ) x2

p p
..;.

jk '"'> 2~ a ~ (x - x )~ k~ bcr Pb qb
!J; k~

where Pb and qb are the indices of the nodes incident to the

branch b in class rk . By Rules I and IV, Ck > 0 and ~ > o.
~ K~

Hence,

(gkx, x) :;;:
ckllxll 2.

This proves that gk is positive and invertible.

Actually, the branches corillectingtwo consecutive boxes

also comprise an --port. We take the two nodes of each such branch

as one of the ports of the w-port, and we number those ports in

the same way as the nodes to which they connect. According to

Rule III, all those branches have the same positive resistance bk

(k is now even). Therefore, the ~-port has the resistance

operator rk = bkl, where 1 is the identity operator on ~2r;

that is, the element (rk ) , where p, q E Nn, of rk 's matrix
p,q

representation is
bk for p=q

(rk)p,q
=

0 for p:pq

Thus, each rk is a positive invertible Laurent operator too.
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v. A Ladder Ne~work of Operators

Because of the grounded nature of the gk --ports (k odd)

and the disconnected form of the rk --ports (k even), we can

connect them into the infinite ladder network of Figure 4 without

violating the port conditions. We shall analyze the network of

Figure 2 by a two-step procedure consistir~ of an analysis of

Figure 4, in which the individual --port currents and --port

voltages are vectors in 12 ' followed by a determination of- r

the interior branch currents and voltages of each --port to get

the branch currents and voltages of Figure 2. To do so, we

shall impose two further assumptions on Figure 2.

Rule IV. (i) The vector h of current-source values h ,P

P E ~, at the input of Figure 2 is a member of l~ .-~r

(ii) There exist two real numbers ~ and 'y with 0 < ~ < y < -

such that the conductances-to-ground ck satisfy ~ ~ ck ~ y for

all odd k, the conductancesak of the branches inside each box
~ ~
that are not incident to the ground node satisfy

jk

~ ak~~=l
~y

for all odd k, and the resistances bk of the branches between

the boxes satisfy ~ S bk $ y for all even k.

We now show that Rule IV(ii) insures that the numerical

ranges of all the operators gk and rk are uniformly bounded

according to

W(gk)
c [~, ~l, k odd

(5.1)

W(rk)
c [~, ~1, k even

where 0 < ~ < ~ < -. Since in this case we will also have
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W(r~l) C [~-1, ~-1], the assertion in Condition A concerning

the numerical ranges will be satisfied.

Since

we have

C5.2) (gkx, x)
<- ckJlxll2

...

jk
.L
~=l

~ 2 2
a L-- (2x -+ 2x ).
k~ bEl' Pb qb

k~

But, by Rule II, all the node voltages are traversed by x
Pb

and by x as b traverses rk. Therefore, the right-hand side
qb ~

of (5.2) is equal to

ckllxll2
+

j

4!ixl! 2 1:
~=l

ak~

So, our assert~n for the gk follows when we set ~ = ck and

~ = 5y and then invoke Rule IV(ii).

Since gk is a strictly positive operator, this result on

its numerical range also implies [4; p. 62J 1 [6; p. 145] that for

all k

(5.3) i/gkil
<- 13 , II -111gk

~ -1
~ .

The aame conclusions for the rk follow immediately from

Rule IV(ii) since rk = bkl,where now 1 denotes the identity

operator on 12 .
- r

Now, refer to Figure 4 again. The next thing we want to
...

show is that the driving-point impedances ~, where k is odd,
...

and the driving-point admittances Yk' where k is even, exist and

are positive invertible Laurent operators on 12 .- r For n > k,

we let z~ and y~ be the corresponding driving-point impedances

For the gk we can argue from (4.3) as follows.

(x - x )2 < 2x2
2

- ...
2xq ,Pb qb Pb b
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and admittances when the ladder network is terminated at its nth

element. That is, we set

f.
J

=

[

gj ,

r. ,J

j = 1, 3, 5, ...

j = 2, 4, 6, ...

and

(5.4) fn
k

=

[
z: .

Yk '

Then, for n < ro, f~ is given by the finite continued fraction

C5.5 ) fn
k

= 1-

i'k
.;.

1

fk+l
-+

.. .
-+

1
fn

The inverse of a positive, invertible, Laurent o~erator and the

sum of two such operators are again positive, invertible, and

Laurent. Therefore, every f~ also has these properties.

Now, Laurent operators commute [1]. This fact coupled with

the fact that the numerical ranges of all the g. and r. are allJ J
contained in the interval [~, p], where ~ > 0, allows us to

invoke a theorem of Fair [2] to conclude that, as n~~, (5.5)

co~verges in the uniform operator topology.
CD

Its fk is the driving-
CD ~

point impedance zk or the driving-point admittance Yk depending

on whether -k is odd or even.

For n > k-+2

f + 1k n
fk+l i'k+2

Since W(fk) and W(fk+l) are both contained in [~, pl, where

0 < ~ < P < -, and since f~+2 is a positive operator,we may

fnk
:is

1

invoke the spectral mapping theorem to write the following set

k = 1, 3, 5, ... , n > k

k = 2, 4, 6, ... n > k
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inclusions, where the right-hand sides denote ~losed or half-closed

intervals.

W(fk+l + f~+2)
c [.<, w)

w (fk+l ~ f~2 )
c (0, :]

Since, for every x E ~2r' (f~X, x) ~ (f~X, x) as n'-""a>, we can

conclude that

[
1 1 ' ~

J
'

p .,.-.<

In fact, we have established most of

(5.6)
GO

W (fk) C
0 < .<< P < ...

Theorem 5.1. Assume Rules I through IV for the grounded

grid of Figure 2. Then, the driving-point impedances and
GO

admittances fk of the corresponding ladder network of operators

shown in Figure 4 exist as the limits under the uniform operator

topology of the infinite continued fractions

(5.7 )
CD

fk
= .J:.

fk
+

1

fk+l
,.+

.J:.

fk+2

...

...

~fk are all positive, invertible,Laurent operatorswhose

pumerical ranges are uniformly bounded according to (5.6).

Pro of . There is only one thing left to prove; namely,
-

each fk is a Laurent operator. An operator in [~2r; ~2rJ is

Laurent if and only if it comrauteswith the shifting operator

s , for every q E Nn [1; Theorem 21.q
s is defined as follows:

q

( 1) [.<, p + ]W f, -+ c

K fk+l"" f,.2

W(f ) C
[:: ,:]
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Let x e 12 and for pENn let x be the pth element of x. Then,- r p
where Y ; x . Since each fk

n is a
p p-q

we have under the uniform operator topology

by definition, s x ; y,q

Laurent operator,

that as n -+ -

... n
Sqfk ~ sqfk

; "n .pOD

I kS q ---7'- .L.kS q .

This completes the proof.

VI. The Solution of the Ladder Network

ASStillle that the current source h of Figure 4 is a member

of l~ . ii~enO-ItJaPDl v Kirchhoff' rs laws and Oh.m Is laH to cieterr:J.ine
- ~r - ~ v

the 12 -valued currents and vol tai2:es iL :8'i o::7Fre 4-.- r u.

-r:1 ' ,~I T~' ,. ff ' - 1 l . -' .+-'
J:' 01" K ; U, c.., 4, a 88 , .l\_lrC~l.:.l.O' .s node a-Vl app l8'("l \:;0 vDe

,,~..:J ~ Q O f' p-~ 0" ]-" e LL! v-i Q lds~_UU.Q '-' -'-u l ,oJ -'-'

ik+2
;

ik gk+1Vk+l.

<XI .

3y O~~'s law, vk+l ; zk+llk. Therefore,

(6.1) ik+2
;

ekik

where

(6.2) 8k
; 1

""

gk+lzk+l

Here, 1 denotes the identity operdtor on 12r.

For k ; 1, 3, 5, ... , Kirchhoff's loop law applied to the

meshes of Figure 4 and Ohm's law yield

and thus

Vk+2
;

vk
-

rk+lik+l

OD

ik+l
;

Yk+lvk
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(6.3) vk+2
= e V

kk

where

(6.4) 8k
= 1

.."

rk+l Yk+l

Given h E !2r in Figure 4, these equations allow us to

determine every voltage and every current in that ladder netvlOrk

recursively. In particular, for k = 2, 4, 6, ...

(6.5 ) ik
=

8k-28k-4 ... 80h

and, for k = 3,5, 7, ...

(6.6) vk
=

8k-28k-4 ... 8lvl ' vI
=

GO
,

zln.

Our next objective is to establish several properties of
- - I

the operator 8k. By Theorem 5.1, zk+-l (k even) and Yk+l \k odd)

are Laurent operators. So too are gk+l (k even) and rk+l (k odd).

Furthermore, the composition and Slli~of two Laurent operators

are also Laurent operators. Hence, 8k is a Laurent operator

for every k.

La r1'1.'Ila 6 . 1 . If A, B € [H; EJ, where H is a Hilbert space,
i

and if A is postive and commutes with B, then their n~'Ilerical
1\

ranges satisfy W(AB) C W(A)A(B).
1..

Proof. The square root A2 commutes with every operator that

commutes with A.. Therefore,

(ABx, x) =
I I
2" 2"

(BA x, A x) E W(B) IIAtx II2
=

W(B) (Ax, x).

Our le~ now follows immediately.

we now examine some numerical ranges. Let k = 0, 2, 4, ... .

According to (5.6) and (5.1),
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r a> )W\ Yk+2. c. [, ..J..-'-If). , : 1 '

W(gk+1) c:. [.,(, l3J .
Therefore,

-1 )W(gk+l
c:. [ 1, 1

1i3 .,(.

Since we are dealing with positive Laurent operators and Laurent

operators commute, we can invoke Le~~a 6.1.

[
.,(

""'-1 ) C - 2'
W(Yk+-2gk+l P +- .,(p

~~J

It can be seen from Figure 4 that

z
k+l

= 00 -1
(gk+l ..;. Yk+2)

= -1 a> -1 -1
gk+l(l + Yk+2gk~1) .(6.7 )

-

Therefore,
GI>

gk+-lzk+l
=

g> -1 )-1(1 +- Yk+2gk+-1 .

So,

GO )W(gkiF1zk+l
c:

[
1 -1

(
- .,(

)

-1

](1 +- .,(2) , 1..;. p +- .,(l32 - -

The last closed interval is contained in the open interval (0, 1).

So, in view of (6.2),

W( 8k ) c: [
1 - (°1 +- .,( 2 )

-1 ,
p, ... .,(B, 1 - (1 ~ ~2r 1

(6.8)

= [ -~ ? . =-] .

This shows that 8k is a positive, invertible, strictly contractive

operator with
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(6.9)- 118k!\
<-

1

1 -+ ",,2

For k . 1, 3, 5, ... I (6.7) is replaced by

...

Yk+l
= ... -1

(rk+l + zk+2)

We can now apply the same argument to (6.4) to obtain (6.8) and

(6.9) once again. This establishes

'7r Theorem 6.1. Under Rules I through rv_and for every k = 0, 1, 2,

... , 8k is a positive, invertible, Laurent oper~tor in [~2r; ~2rJ

satisfying (6.9).

Note that, by Rule IV(ii), "I..is independent of k.

We can now show that the solution given by (6.5) and (6.6)

is precisely the one dictated by Theorem 3.1. LYldeed, let the

H of that theorem be 12 .r - r Since there is only one current source,

the vector of current sources is a member of 1~(1 2 ). We have
-c:.- r

already noted in Section V that W{g,) c:: ["I.., 131 and.K

-1
[

-1 -l
J

.

W(r. ) c. p ,,,1.. . by the analysis in the second a..11.dthirdK

paragraphs of this section, the solution given by (6.5) and (6.6)

satisfies Kirc~hoff's laws and Ohm's law. The rest of the

hypothesis of Theorem 3.1 is clearly satisfiedexcept perhaps

for the requirements that the vector of all branch voltages and

the vector of all branch currents be members of ~2(;h2r);

we now verify.

this

Summing over all odd k and using (6.6), we get for the

vertical branches of Figure 4

2. IlVkU2
= , 2 .

11

2 I 1
2 '

j 1
2

!lvlU -+ 118lvl ... /838lvl! + I 858381vlI +...
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,

I 2 -1
By (6.9), ~a! ~ K.::: (1 + ~) < 1 for every odd k..K Therefore,

L IIvkl/2
<- (1 + K2 + K4 ... K6 + ...) ilv11/2

(1 - K2) -lllv 1J!2 < -.:::

For the horizontal branches of Figure 4, we have vk = rkik'

where now k is even. Summing over all such k and using (5.1)

and (6.5), we get.

2iJvkl/2
.2

::: I \irkikl/
<- 132L iI ikl/2

:::
(lIhll2 + il8cP1I2 + 118280hl12 + 11848280h1/2... ".)132

( 2 4 6 )
2

r
2

1 + K + K + K + ... ~ IhU

(1 - K2)-1132Uhll~< <X>.

<-
:::

So truly, the vector of all branch voltages is a member of 1 2 (1 2 ).- - r

~uite the same argument shows that the vector of all branch

currents is also a member of 1~(1 2 ).-~ - r Thus, we have

Theorem 6.2. Under Rules I through IV, the solution for

the network of Figure 4.1 given by (6.5) and (6.6) is the

unique (finite power) solution dictated by Theorem 3.1.

As was promised at the beginning of Section 5, we now have

a two-step procedure for determining the solution for the grid

of Figure 2. Wefirst determine the solution for the operator

network of Figure 4 and then determine the interior branch currents

of each --port to get the currents in the branches of Figure 2.

However, there is one more thing we should verify; namely, the

solution for the grid of Figure 2 given by this two-step procedure

is the same as the solution specified by 'rheorem 3 when that
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theorem is applied directly to the grid of Fisure 2 with Hr now

being the real line. This can be established in a completely

straightforward way, The details of the argument are spelled

out in [18; Section 5J.

VII. A Computational Procedure

So far, we have established the existence and uniqueness

of the solution in 12 (i.e., the finite-power solution) for- r

the network of Figure 2. However, the question remains how one

might compute the numerical values of the voltages and currents

in the network, given the current sources h. of Figure 2.J

For this purpose, we use Equation (6.6) to compute all the node

voltages, from which all the currents in the grid can be deter~ined.

The first step is to determine vl e ~2r' and this is facilitated

by the isomorphism between ~2r and its corresponding space of

Fourier series. Let's quickly survey that isomorphism and its

effect on Laurent operators [1].

Let S denote the ~~it circle and Sn the Cartesian product

of n replicates of S. L2(Sn) is as usual the Hilbert space of

(equivalence classes of) quadratically integrable functions f

on Sn with the norm

IlfII =

[-2
S I f (w) 12 dW

]

~

Sn

W = (wI' ... , W ), 0 ~ W. < 2~n J

Let J denote the transformationthat assigns to each x = [x : p E ~}P
f 12 the function
- r

x(W) = L x ei(p,w)
peNn p
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where (p, w) = Plwl + ... + Pnwn. A standard result is that

:tis a (toDolo gical linear) isomorphism from 12 onto L~(Sn)
... - r ~

such that ilxIl = tlx/l.

Let z E [!2r; !2r1 and let z be the mapping of L2(Sn) into
n '::r A J -:t-l IIA

/

'

L2(S) inducedbYJ; that is, z = z"r . Then, HzlI= ~zl. It

is a fact that z is a Laurent operator (that is, z E [~2r ; *2r]

and satisfies (4.1)) if and only if 1 is a multiplication.

More specifically,

(7 .1 ) ('Zx }(w) = z(w)x(w)

where

(7.2 ) z(w) = 2-
qer

_° I

Zo e :L~q,w),q .

Here, the subscript 0 denotes the origin in ~~ and Zo is the
.;)'1

O,q entry of t~e matrix representation(z 1 of z.p,q

The mapping z~z. of [!2r; *2rl into [L2(Sn)j L2(Snn is

linear, continuous,and norm preserving; that is, 1Iz.1i = ii"zil.

Als 0 ,

(7.3 ) jjzii = ess sup Iz(w)l.

ftoreover, if z is positive and invertible, then ess inf z(w) > 0

and z-l corresponds to multiplication by [z(w)]-l. Finally,

the numerical range of Z is the closed interval between the

essential supremum and the essential infimum of z(w).
GO

These results imply that zl' which exists as a Laurent operator

according to Theorem 5.1, corresponds to multiplication by the

function

(7.4)
""CD

zl{w)
=

1

gl(wl

1-
..,.b2 +

1
,..,-
g3(w)

+

1

b4

...
+

where for k odd gk(w). is the multiplication corresponding to gk
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and for k even bk. is the multiplication corresponding to

rk ; °kl. By virtue of Rule II, each gk(w) is a finite Fourier

series and hence a continuous function. Also, the range of gk(W)

is contained in [~, ~] where ~ > o.

The function in L2(Sn) corresponding to vI = Z~h for a given

h = fhp: p E Nn~ c ~2r is

(7.5) VI(W)
= ~- ~

zl(W)h(~)

where

(7.6) h(w) ; L
pEr

h ei(p,w)
p .

Thus, the node voltages (vl)P for the nodes on the first box of

Figure 2 are

(7.7)
(vl)P

=
1

(2X)n
S
Sn

Vl(W) e-i(p,w) dw .

"...,

The next step is the computation of the functions e. (w). - K

for k odd by means of the following analogue to (6.4):

(7.8)
iW

ek(w)
; 1

rk+l(w)Y~+l(w)

Here, rk+l(w) = bk+l' and

(7.9)
""DO

Yk+l(W)
= 1

bk+l
+

1
b
k+3 +

1

gk+4 (wl

...
+

1
"" --r----

gk+2I.w)
+

The analogue to Equation (6.6) then yields

(7.10 ) Vk(W)
;

8k-2(W)8k-4(W) ... 81(w)vl(w)

Finally, the node voltages in the kth box of Figure 2 are given by
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(7.11 )
(Vk)p

= 1

(211:)n
S
3n

v (w ) e-i(p,w) dwk .

In practical computationswe must either determine the

continued fraction (7.4) in closed form, usually an unlikely

prospect, or truncate it by an open-circuit or short-circuit

operator admittance and estimate the resulting error, or, in the

case where the grid approaches a uniform grid as k~~, perhaps

truncate it with the characteristic operator admittance of the

uniform grid [17].

Let's consider how that truncation error might be estimated

when the grid is terminated by an open-circuit or short-circuit

operator after the nth section. In fact, let us approximate
...,-

)zl (w by

(7012) zf(w)
= 1

gl(W)
+

1
b~

Co
+ ... +

1

fn(CD)

where f (CD) = b for n even and f (w) = g (w) for n odd.n n n n Now,

a property of convergent infinite continued fractions with positive

terms is that its limit lies betHeen any two consecutive truncations:
""

)

n-l
)

n
Thus, zl(w liesbetweenzi (wand zl(CD). Hence,

(7 .13 )
I z~ (w) - z~(w))

<- IZ~-l(W) - Z~(CD)I.

Also, by virtue of Rule II, every gk(w) and therefore every
Nn

( )
0 t' ~ to

zl w ~s a con lnuous ~unc lone

This allows us to bound the error generated by truncating

(7.4) as follows. Let v~ E ~2r be the approximation of vl E ~2r
N"""

)

,..,n

resulting from the replacement of zl (w by zl (:0). Then, let~:;:LDg

(x) denote the pth component of the vecotr x E 12 and using
p - r

(7.12), we may write
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!(Vl)P - (V~)p\

1
< -
- (2j{)n

S I"~ (",) - z~("')1I h(",) I d'"
3n

(? .14)

<-
\

~n-l ~n

\

\ N !
sup Zl (w) - zl(w) sup I h(w)\w . w

1

J
3n

dw

( 2jL )n

<- sup IZ~-l(w)- z~(w)1~ Ih I.w \ p

Here,2: ih i denotes the sum over all the nonzero !h ! , theseP p

usually being finite in number in practical ca86S. Because of

(7.3) and the fact that (5.7) converges in the lli~iform operator

topology, given the hp with 1:!hpl convergent, we can make the

right-hand side of (7.14) as small as we wish by choosing n large

enough. That is, (7.14) can be used to control the error

generated by truncating (7.4). However, this is a conservative

approach; the bound (7.14) will be in general much larger than

the actual error.

Bounds on the error generated in the computation of the
"" .

(vk)P by the continued-fraction expressions for the Yk+l(w)

can be estimated in exactly the same way, but now an error

appears for each factor 8k(w) as well as for Vl(w) = Z~(w)h(w)

in (7.10). Finally, when our nonuniform grid approaches a

uniform one as k --',>CID, we will generate less error by terminating

in the characteristic operator i~~ittance of the uniform grid [17] I

and so our aforementioned bounds on the error will still be valid.

Of course, other errors are generated by the numerical integrations

of (7.7) and (7.11); these can be estimated by standard methods.
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VIII. A.."lExample

We illustrate our computational procedure with an example.

We assign values to the parameters in the grid of }'igure 1 as

follows:

h.
J

= r:

for j =: 0

for j 1= 0

a =: 1

c2m+l
=: 1 -;. e-rrl for m =: 0, 1, 2, ...

Consequently, the various functions of w generated by the isomorphism

J are

h(W) =: 1

r2m(w)

g2m+l (w)

= 1 for m =:1, 2, J, ...

= J + e-rrl- 2 cos w for m =: 0, 1, 2, ...

To compute approximately the driving-point impedance z~(w), we

use the fact that our grid approaches a uniform grid as m --7-.

So, we may replace the ladder network beyond node 2.IJi...l,where

M is chosen sufficiently large, by its characteristic impedance

zo(cu). The latter can be determined by the method given in [17J;

it is

Zo(w)
=

j

~{- J + 2 cos w -;.[(J - 2 cos w) 2 + 4(J - 2 cos w)J2} .

Then, for sufficiently large M, we have to a high order of accuracy

1 1 1 1
z"'(w) -;:; - - ...

1 gl(w) + 1 + gJ(w) ...1 ...

1 1
.

+ g2M-l(w) + 1 + zO(w)

Similarly, for k odd and k « 2M + 1,
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,.,CD

Y .:"0'- - .""k+l "" '"
( )

'"
( ) ( )

""

( )

..

1 + gk+-2 w +- 1 +- gk+4 w +- +-g2M-l w +- 1 +- Zo W

1 1 1 1 1 1

We now use (7.8), (7.10), and (7.11) to compute the node voltages

for the nonuniform grid in the vicinity of the single current

source hO = 1.

For the sake of illustration, we have chosen M = 12 and

have computed the node voltages for the first five rows of nodes

(that is, for the first five boxes) and for the first eight

columns of nodes on either side of thb Oth colUITillwhere hO = 1

appears. The results are displayed in Table 1. Since the node

values have even symmetry around the Oth coluuill,We have indicated

their values only to the right of the Oth col~~. Computer

execution time for these results was 38.5 seconds.



TABLE. 1

N
-.D

Column

1 2 3 --L- 5 6 7

1: .28076 .0'1'717 .02217 .00661 .00203 .0006J.t .00020 .00007 .00002

2: .07199 003413 .01308 .00465 .00161 .00055 .00019 .00006 .00002

Row 3: .02069 .01303 .00621 .00261 .00102 .00038 .00014 .00005 .00002

4: .006J+3 .00474 .00265 .00127 .00056 .00023 .00009 .00004 .00001

5: 000211 .00170 .00107 .00057 .00028 .00012 .00005 .00002 .00001



30

IX. Nonuniform Grids of Positive-real Impedances

We now turn from purely resistive networks to ones that may

contain inductors, capacitors, transformers, and so on. Bv usingv

the results of [13], we can extend our analysis to grids of the

form of Figure 2 where now each branch is a positive-real driving-

point impedance with no coupling between branches. We shall in

fact examine the transient behavior of such networks. The

arguments needed to do this are ~uite similar to those given in

Section 8 of [17]. Therefore, we shall at this point llierely

define the needed concepts and then indicate how the argwaents

in Section 8 of [17J have to be modified to make them suitable

for our present considerations.

Here are some concepts from [13J. C+ denotes the open

right half of the complex plane C:

C+
=

[s E C: Re s > o}

For s E C+,Jts is the closed cone:

~s
=

{z € C: larg zl S larg sl~

where it is understood that the origin is a member ofjl .s

12 denotes the complexification of 12r8
By an "oDerator" we

~ ,

henceforth mean a continuous linear mappi~~ of ~2 into ~2.

P is the set of all analytic operator-valued functions F

on c+ such that, for every s e C+, the numerical range l.J[F(s)]

of F(s) is contained in C+. Thus, if F ~ P$ F(a) is a positive

operator for each a > O. P. is the set of all F € P such that,
1.

for every fixed s E C+, W[F (s)] is bounded away from the origin,

that is, there exists a 6 > 0 depending in general on s such that
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2
Re (F (s )x, x) ~ 611xll f or all x E *2. Thus, f or each s E C+

and F E P., F(s) is an invertible operator. It was shown in~

[13J that, if F € P. and G E P, then F + G E P.; also, ifl. l.

F E P. and if' F-l denotes the function s ~ [F (s)] -1, then~
-1

F ... e P..
~

Next, let Fl' F2' F3' ... E Pi and let Zn(s) be the operator-

valued finite continued fraction

(9.1) z (s)n
= 1

Fl(s)

1

F2(s)

1. .. .
+ + ,. F (3)n

Then, by what has just been stated, Z E P..n ~ The following

theorem is a somewhat simplified version of Theorem 1 and

Corollary la in [13].

Theorem 9.1. Assume the following three conditions:

(i) F, E P. for every i = 1, 2, 3, ... .- .K ~
(ii) Given any compact set::=::<::: C , there exists a constant

6 > 0, depending upon:::::, such that inf Re \-i[F1 (s)] > 6 forK -
k = 1, 2 and s E :::-.

(iii) For each a > 0 and all k = 1, 2, 3, ... , the operators

Fk (a) corr.rmtewith each other and ;tJ[F, (a)] > 61 (a), where the.K K

°k(a) are positive numbers satisfying L~=l 6k(a) = CD.

Then, for every s ~ C+, the sequence ~Zn(s)}~=l ?onverges

in the uniform operator topology, and the convergence is

uniform with respect to s in any compact subset of CT.

the limit function Z = lim.~ Z is a member of P..n~= n ~

Horeover,

Next, we turn to the time domain and define the space L2(R, 12r).

Consider the mappings of the real line R into ~2r which are
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quadratically integrable on R under the 12r norm, and let two

such functions be in the same equivalence class if they differ

on no more than a set of Lebesgue measure zero. L2(R, 12r) is

the real Hilbert space of all such equivalence classes supplied

with the inner product

(a, 0) =
f_: t ~ R; a, b E L2(R, !2r).~ a (t)b (t) dt;

p€~ P P

(See [11; Appendix Gl.)

In [17], we proved

Lemma 8.1. Ass~@e that the vector h is a member of L2(R, 12r)

and that the support of h is bounded on the left. Let H be the

Laplace transform of h, that is, the vector of Laplace transforms

H of the comDonentsh , PENn. Then, for each s E C+ , H(s)P - P

exists and is a member of 12. Also, for each cr> 0, H(cr) is

a member of 12 .- r

These are all the results we need to generalize our

discussion to grids of impedances. To proceed, replace Rules I

through IV with the following, where s E CT.

Rule I'. Same as Rule I except that the conductances ck

are replaced by scalar positive-real admittances Ck(s).

Rule II'. Same as Rule II except that the conductance a,
KIl-

(k odd) for every branch class rkl-Lis replaced by a scalar

positive-real admittance ~ (s).
~ ~kll-

Rule III'... Same as Rule III except that every resistance

bk (k even) connecting box k-l to box k+l is replaced be a

scalar positive-realimpedanceBk(s).
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Rule TV'. (i) In the time-domain, the vector h = ih : PENn Jp

of current sources at the input of Figure 2 is a member of

L2(R~ ~2r)~ and the support of h is bounded on the left.

(ii) There exist two continuous functions ~(a) and y(a)

on the half line R+-= [a E R: a > o} with 0 < ~(a) < y(a) for

every a € R+ such that, for k = 1, 3~ 5, ... , we have

~(a) ~ Ck(a) ~ y(a) and

~
2: ~!J.(a)!J.=l

~ y(a),

and~for every k = 2, 4, 6, ... , we have ~(a) ~ Bk(a) ~ y(a).

We now decompose the grid of Figure 2 into o:>-portsas before

to get the ladder network of Figure 4. In the frequency domain,

the gk for k odd and the rk for k even are replaced by

[l2; ~21-valued functions Yk(s) and Zk(S) = Bk(s)l respectively,

where SEC+-. Upon modifying the arguments that established (4.3)

with manipulations suitable for a complex Hilbert space, we

obtain for x ={xp: PENn} E ~2

(9.2)
(Yk (s )x, x)

=
Ck (s) ~ I x \ 2

p p
,...

i
uk ~ r

L A- (s) L- I x -x 1 ~
=1 ukf1. k E: r Pb qb

f1. k f1.

Using this equation and Rules I' through IV', we can argue

in virtually the same way as in [17; Section 8] to establish

that every Yk and ~ is a member of Pi' that Yk(a) and Zk(a) are

Laurent operatorsfor each a ~ R+ ~ that the hypothesis of

Theorem 9.1 is satisfied when Fk(S) = Yk(S) for k even and

Fk(S) = ~(s) for k odd, and that the driving-point impedance

Z~ = limn~oo z~ is also a member of Pi.
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Proceeding still further as in [17; Section 8], we conclude

~ Qk
that the Yk' Zk' Zl' and ~ , where

are all Laplace transforms of [~2r; ~2rl-valued right-sided

distributions whose supports are bounded on the left at the origin.

Next, we gemeralize Orill'Slaw by means of distributional

convolution [11; Section 5.21:

v = r*i , i=g*v

Finally, we conclude with

Theorem 9.2. For the netvlOrkof Figure 2, assume that

Rules I' through IV' hold. Then, there exists one and only one

set of right-sided Laplace-transforreable distributions for the

branch voltages v in the network of Figure 2 such that Kirchhoff's- ill

node and loop laws and (generalized) Ohm's law are satisfied in

the time domain and such that, for at least ore0 > 0 and for Vill

denoting the Laplace transform of vm' we have

(9.3) L. [V (0 )12
ill ill

< w.

In this case, (9.3) holds for all 0 > O.

The branch voltages and branch currents for Figure 2 can

be determined from the components of the 12 -va~d distributions- I'

ik and vk' which are given in turn by (6.5) and (6.6) appropriately

rewritten as distributional convolutions. Alternatively, we can

@k (s)
....=

1 - +1 ( s )Zk+ 1 (s )" k = 0, 2 , 4, ...

§k(s) =
1 - +l(s)Yk+l(s), k = 1, 3, 5, ...,
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work in the frequency domain, in which case (6.5) and (6.6) should be

rewritten as multiplications of Laplace transforms.

x. The Computation of Transient Responses.

By using the method described in Section VII, we can compute

the voltage V(a) at any node or the current 1(a) in any branch

at a finite set of points a = aI' a~, ... , a on the real axis
~ q

in C+. Then, using these values of V(a) or I(a), we can apply

Papoulis' method [7], [8] to compute the corresponding transient

response v(t) or i(t). This requires however that V(s) and 1(s)

tend to zero fast enough as s ~ ~ in C, to ensure that v(t) orT

i(t) be a sufficiently well-behaved function to allow the

convergence of Papoulis' method.

For example, assume that, as s~- in CT, every Ck(s) acts

capacitively,that is, it is aSj~ptotic to a constant times s,

and every ~~(s) and Bk(s) acts resistively, that is, it is

asymptotic to a constant. Then, using the transformation ~

to manipulate the Laurent operators, each Yk(s) or each Zk(s)
~ N

transforms into a function Yk(s, w) or ~(s, w) respectively,
n

where w E S . Moreover,

(lO.l)
~oo

Zl(s, w)

1 1 1 1
= ...

Y1(S' w) + Z2(s, w) + Y3(S' w) + Z4(s, w) +

In this case, as S -?-8> in C+,

where ck and bk are positive constants, and these asymptoticities

(10.2) Yk(s, w)
'"

cks, k = 1, 3, 5, ...

and

(10.3) (s, w) "'-'

ok' k = 2, 4, 6, ...
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are uniform with respect to all w.
~

(In fact, Z(s, w) is

independent of w since ~(s) = Bk(s)l.) It now follows from
_GO -1

(10.1) that Zl(s. w) is asymptotic to (cls) uniformly for

all cu.

Similarly, under:f, ekes) transforms into @k(s, cu).

For k = 0, 2, 4, ... ,

,..

@k(s, cu)
= 1 - "" 'V GO

Yk+l(s, cu)Zk+l(s, cu)

=

""-

Yk+2(s, cu)
"" ""CD

Yk+l(s, cu) + Yk+2(s, w)

'" CD

where Yk+2(S' cu)is asymptotic to a constant uniformly for all cu.

So, by (10.2), @k(s, w) is asymptotic to a constant divided by

s unif oJrTolly for all cu. Similarly, for k = 1, 3, 5, ...,

8k(S, w)
= 1

'" . CD

~+l(s, w)Yk+l(s, w)

=

"'CD

Zk+2(s, w)
... "'GO

~+l(s, w) + Zk+2(s, w)

'VCD ""'''' . -1

where, as with Zl(s, w), Zk+2(s, w) is as~aptotic to (cks)
'"

uniformly for all w. So, by (10.3), @k(s, w) is again

asymptotic to a constant divided by s uniformly for all w.

Now,assume in addition that the Laplace transform H (s)
p

of every current genera,toris of order O(is\-j) where j is an

integer greater than one. Also, assume that only a finite

number of the H (s) are not identically equal to zero.
p
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Set

H(s, w) = Z H (s) ei(p,w)
p p .

Then, for k = 2, 4, 6, ... ,

"-

Ik-2(s, w) = @k-2(s, w) @k-4(s, w) ... §o(s, w) H(S, w)

l -j-k/2is of order o( Is ) uniformly for all w so that every current

flowing between box k-l and box k has continuous derivatives up

to the (j + k/2 - 2)th derivative. (This follows from [10; Lew~a 3.6-J
and differentiation under the integral sign.) Similarly,

,...,

Vl{s, w)
=

""... -

Zl(s, w)H(s, w) ,
k = 1

or

...,

Vk(s, w)
=

--- ""

@k-2(s, w) Bk-4(s, w) ... @l(s, U))z~ ( s, U))H (s, w ) ,

k = 3, 5, 7, ...

is of order o( Is!-j-k/2-1/2) so that every node voltage in

box k has continuous derivatives up to the (j + k/2 - 3/2)th

derivative.

Thus, these transients are quite smooth, and we may apply

Papoulis' method as indicated in the first paragraph of this

section.
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