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Abstract

This report describes another result in a continuing effort
to extend the various classical integral'transformations to
distributions. Herein, we generalize the K transformation
of order (-4 < f?e/. <4 ). The procedure is to first

G )
construct a testing function space j;“l“ that is closed under

certain Bessel-type differentiation operators and cort ains

the function st I}q(st) (e s > a >0, 0<t <o ),
where K/q is f.he modified Bessel functi.on' of third kind and
6rder/a + The dualf;’,a of&,q consists of those distribu-
tions that can be transformed by our method. .For fe "§“)IQ ’,
the transform F(s) of f is defined by Fls) =<f (t),

Vst K/u (st)> (Re s> a).

For this generalized transformation we establish an
analyticity theorem, two inversion formulas, a uniqueness
theorem, and a continuity theorem., Two applications i;o the
analysis of certain time-varying _electr‘ical networks are

given at the end of the report.
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1. Introduction.

This report describes another result in a continuing -~
effort to extend the various classiéal integral trans-
formations to distributions [{1]-[5]. Here we generalize the

K transforma;ién of order A z< Qe/uéé) ; this trans=
formation for ordinary functions was first investigated by ..
Mei jer [6] and subsequently by Boas [7], [8], and Erdelyi
[91]. ,

Let z an%//x be complex variables. As is customary,
K 4 (z) denotes the modified Bessel function of third
kind and order /& [10; p. 207]. If f(t) is a suitably
restricted function def;ned on 0 < t <oo, then its K trans-
form of order 4 is a function F (s) of the complex
variable s=¢ +iw, defined on some half-plane Re 8 >¢ > O

by

F(s) = 3:0 £(t) V5L K p (st) dt . (1)
One of Meijer's results is the following inversion theorem
for (1) [6; theorem 3], We shall subsequently make use of it
to get an inversion formula for bgr’distributional trans=-

formation., ' | s

Meijer's theorem: Let: F(s) be an analytic function

on the half-plane he s > a 2:00 - For some ggglICOnstant

/43 > a, let the integral

Sw \e (@ fiw)\’ dw :.
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converge. Moreover, assume that F(s) is bounded for

Re szﬂ and that F (¢ +iw) — O as & oo uniformly

for ~e+e<w<eo ., Minally, assume that -3< Re/u"'L o
Then, (1) holds for ke s >/ where f(t) is given by
/34[.“
. -

£(t) =7m | | F(s) vs€ I . (st) ds' (2)
-ﬂ'c«a ' /‘

and I/« (z) is the modified Bessel function of first kind

K

and order. [10; p. 207].

‘Another inversion formuia for the ordinary K trans-

- formation has been developed byv Boas [7]. It is a modi-
fication of the Post-Widder inversion formuia for the
Laplace transformation [11]. Thiks too will be generalized

to certain distributions.

Our procedure for generalizing (1) to distributions
is a combination of the methods used in [1] and [4]. For
each real positive number a and complex parameter/« (o= ’?4/“5"-!11)
we construct a testing function space J§«s« of 1nf1n:.1.tely
differentiable functions @ ( t) on 0 < t <e= which is
closed with respect to certain Bessel-type differentiation
operators and v'vhose elements tend to zero-at least as fast
as e el as t »ae o It turns out that the kernel
function +st K/‘ (st) is in %,q for Re s > a . Moreover,
since K/« (z) = /,‘ (z), our requirement ‘that Re « 2 0

1mposes no restriction on the generality of our results.
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The duval Spacei&:ia of 2i;¢z consists of those distributions
N,toﬁwhich we may apply our generalized K transformation of

order/u o The transform F(s) of fé€ j}«;a_ is simply
defined as the application of f to Vst §/4(s;$)

Fis) = Cele), vBE K. (st)) (Re s>a) . (3)

Among the various properties of this transformation,
which we shall develop, are the inversion formulas mentioned
~above, theo?ems on analyticity, continuity, and uniqueness,

and an Opérational calculus that is uséful when dealing with
distributional differential equations containing certain
Béssel~type differentiation operators. As an application
of this latter result, two types of time-varying electrical

networks are analyzed at the end of this work.

A few words‘about our terminoloéy and notations: By
a smooth function we mean a function that possesses ordinary
derivatives of all orders at all points of its domain. We
shall make considerable use of the following differentiation
operators. |

D=D = d
t Tt

gﬂ
. /ﬂ"‘t - 4{
Ru= t D 7

-

If (¢ 4is a smooth function on 0 < t <=, we shall also



employ the notation: X

@ erﬁ,/g) - (R Q) @ (€)

L2A4 w3 %
@EAI) - Qe (RuQu)™ G
(k = 0, l, 2, ooo)

From the rule for the differentiation of products we see
that Cffn’/(j (t) has the form - .

CQ Chml - ano'tnnff+a,,t'fm”b(g’ranmb"a'

where the Q, , are constants depending on the value ‘of/« .
This type of computation also shows that
~ Z
a Ez;/-*]’-.: D"‘uy + -Lfﬁ:‘ (e
from which it follows that & Dok 0/“]-.: &fzk,-/gj .

When dealing with multivalued functions f(z) of the
complex variable z it will always be understood that we are
restricting  f(z) to its principal branch, and z is

required to satisfy ..1r<a«g zew .

The notation f(t) for a singular distribution f
‘merely indicates that the testing functions on which f is
defined have t as their independent varia‘ple. <f,w>
denotés the numbér assigned to some elenie_mt ¢¢ in a certain
testing funcﬁion space by a distribu’ciop f in the dual

space.

‘I is the open interval (0, ow ). D denotes the
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space of smooth functions whose supports are compact sub=

sets of I. We assign to D the topology that makes its

dual D} the space of SChwirtz distributions on 1

[12; Vol. I, p. 65]. 5'1— and 81, are respectively the
space of smooth functions on I and ﬁhe space of distributions
having compact supports with respect to I. These spaces haye

their customary topologies [12; Vol. I, pp. 88-90].

2. The Testihg Function Space J§q,q .

Throughout this work, a will denote a real positive

‘ I
number and/‘* a complex number satisfying O< &,u.é =z .
Let h{(t) be a fixed smooth function on 0 < t < o~ guch
that_ h(t)§ -1 for 0< t <we , "h(€) =log t for 0<t <3 ,
and h (t) = =1 for 1 <t <e2, We define the testing func-
tion space 'A;d,“ as the space of all complex-valued smooth
fuhetions @ (t) on O < t <ee for which all of the

following quantities 3’ CQ) (n= 0, 1, 2, +oe) exist.

Y7 ey = AP (%€ 472 ¢ Lk, 3 ((_)l (OﬁR?«—E',/I"'%)

2.4 T 0ctcoo

Q"% g BAAT 1y
(zk @ =55 V"‘Un(f) I

(o)

.
7 gy -

e
2 R4 o<{;<oo ‘

at ¢ -/*"";.m Czkﬂ,/kj (()‘ (O < Ke/qf ‘i)

‘—(k‘ 0, 1, 2, ouo)
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Noté that the case where e O is a special one; it will

require an independent analysis at a number of points in the

following development. Also, the precise‘ behavior of

h‘(t,) on 3’ < t < 1 will not affect oﬁr results; throughout

- discussion it is understood that h (t) is a fixed, though

unspecified, function on :% <t<1,

j;«,a is a linear space over the field of complex

* numbers. We assign to it the topology generated by using all

a’f"“ . (n= 0, 1, 2, «es) as seminorms, Hence,-é/qla_ is
a Hansdorff locally convex topological linear space that

satisfies the first countability axiom.

An equivalent topology is generated in %,4 by the -

following set of norms.

’ (QM/A, a(a)tmw/‘ b//“’va-

0L Nnim n. CCE) (In’== O, 1, 2, nco)

These seminorms are in concordance [13; p. 5]. Indeed, let

r &
{(,gy)];g{ be a Cauchy sequence with respect to both f:

" and ‘/4.1,;.[&4 . For definiténess assume that p < q. If

'/;Q(ny)’?o as ¥ =»o= , then obviously‘ ;:,4(@) >0 o
Conversely, assume that'(ﬂ::'a(ce),)?o as yvoo ; we wish to
show th};t ‘p;"(ay)éo . From the fact that pf’“(@)ao
it .follows that %?O_QO;; is the identically zero function
and that the convergence of {&p} is uniform on every com-

pact subs‘et Il of (0,00 ). Moreover, an inductive argument

o mcy TR IS SO

-

. - ot
s - - DRI : - b

IR AN L Y. |

et

S e < i -

e TS s ¢

ke A




——re s

‘ e A e _ane, e g

T
o

based upon (4) shows that XD"%}M converges uniformly on

each {1 for every n= 1, ..., q. Hence, we may interchange
‘_differentiation with the limiting process to conclude that

ﬁ:;n,,,(,hnay" ])"MM &y =0 uniformly on each £ for every

n= 0, 1, +e., Qs From (L) and the fact that{(n,,} is a Cauchy
. sequence with respect tof}“ﬂ- we now infer that ﬂ"‘*.y_,,., f} ,EQ”): 0.

The i‘gct that the f:’a are all in cohcordance implies

that j/(,,rp. is a countably normed space [13; p. 6].

We now list some properties of the space 5’50,4.

(1) For Re s>a, V&€ K (st)€f a. Indeed, v3T K (st)
is analytic for Re s>0 and 0 < t <~< und hance smooth on
0<t < <e? ., Also, from the series expansion of V8t 'K« (st)
(10; p. 207] and the asymptotic behavior of 'V’-STK/Q, (st) - H “'ﬂ“,‘i
as t ><° [14; p. 22{]‘ is is clear that the quantities ‘ ‘ 2 |
a;/a,a, [(vsT K« (st)] exist for all n=0, 1, 2, ..., (In
fact, the seminorms Jf’a were devised to provide precisely

this property.)

(ii) Let 0 < a < b, Then,#«,gagﬁ,q and the topology of
J/\/u,b is:. stronger than the topology induced on it by ‘6«,4 . ;
This follows immediately from the inequality &) 7“¢ (o) £ x7 9 te)
for G’ef ,b . |

(iii) Dy ¢ I'{/q ,a, and the topology of Dy is stronger than




n8¢
that induced on it by %“ .

| (iv) jju,a, is an everywhere dense sﬁbspace of gf ;
and the topology of j;"a is stronger than that induced on it
b.‘y EI . Indeed, we obviously have that J;;:C'I‘;q,a c 5;; o
Since Dﬁ is everywheré dense in 5_;- , the same may bé said
of ﬁ,d + .Moreover, an inductive argument based upon (4)
shows ﬁhat every neighborhood of O inducéd on %'q by the
topologyvcontains a neighborhood of O in theﬁ;qtopology.

(v) g> ¢ 41 i a continuous linear mapping of «’gu,a

| A
‘into}/\/u,a. For 3":’0(@ B‘/“j)zX zq(ce) (n=0, 1, 2, ...) if

N+

e ,;'K/k"& E

(vi) &,'a is a sequentially complete space. 1o see this,
we again exﬁploy an ihductive’ argument based upon (L) to
first con.clude -that‘, if {CQ'),] y:’o converges in \K//u,a ,
'theri,’ for each n, {bh &, };O:, Converges uniformly on every
compact subset of I. Hence, thére exists a smooth function
¢ on I such that .@»%by'bncgp({)sb'.‘a(f)at every point of I.
Since a’{j'"(u,) <B where Biis_independent of Y , it follows
Cthat y/4t(e) < B. That is @ e K, Ay

e e 3RS T
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3. The Distribution Space %i«.

,
The dual space -%/u,a of ﬁ,a. consists of all continuous

linear functionals on % ,& « Ve shall employ only the weak
topology of %f& « Under the customary definitions of equality,
addition, and multiplication by a complex number,A//ﬁ)a is a
linear space over the complex-number field. SincejV/ 2 is a
sequentially completé couttalyr normed space,j//a’,q is also
sequentially complete [13; p. 13, theorem 16]. Other properties i}
of %id are the following: ' gl

(i) Let 0 < a<b. The restriction of fé.ﬁ)u,’a to.}/l/u, b
) .
is in %,b . Also, convergence in vﬁ/a implies convergence

4

in _/Al/f$ . These statements are consequences of note (ii) ~

in the preceding section. : i

(ii) The restriction of fé%q to ﬁr is in DJ}: , and
. 3 o :‘,::;j
p convergence in J/(«,a implies convergence in .DIJ o - This follows .

from note (iii) in the preceding section.

>

(iii)g’; is a subspace of‘ﬁfa . The weak topology of CGI _ 18
is stronger than the topqlogy induced oanf 4by//{{’a . These g
statements follow readily‘from note (iv) in the preceding sec-
"tion. Note that, because Jgu,a. is éverywhere dense in fz , |
the continuous functional f € ng vanishes on E;; whenever it 3
vanishes on //J/(«,a. Hence, we can identify é’ with a sﬁbspace

of-ﬁ/«ia.

(iv) For each féj(},a. , there exist a nonnegative integer e 3
r and a positive constant C such that, for all qu’Su,a,_k{a’) ‘Cﬂ* | (Cp) ki
The proof of this is identical to that of theorem 3.3-1 of [15]. r

L]
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. . (v) Let a be a positive number and f .a locally
int egrable function on I with the following property: If
M # 0, then 2™ {/‘”*,C(t) is absaulutely 1ntegrable on
0<t <e® ; if A = 0, then € /t"/’[t) :[(f) is absolut.ely
integrable on 0 < t <eo . Corresponding to the function f,
we define on A, ,& a regular distribution, which we also

denote by' f, through the equation

<‘£,C€}=y;of[é)u(t)dé (ue )

That the distribution f is truly in .f):',’q follows from the

inequalitys

5% (o=t g2t LAY 4 (u0) g
[<F, &> & o (@ S° o™ ¢ | 7 : :

Y% [Tl e h@FEldt (e=0)

(iv) e define the s'elf-adjoint Opérator R/u Q/u on.é(;u’,a
by . . . ‘ !
5y el | 2,4 s
(.f_’ l/:‘ Ce>=4'[l(€ o D (fe gala , < ngu,a).
It readily follows from note (v) of the preceding égction
that £ -» £ %1 is a continuous linear mapping of ’a into

/“71‘1 . Also, note that fE"y“?u £ [217“—7,

Let us g'ivé an ex’ample of the distributional operation

.R/uQ/a by computing R/« Q/'fﬁ' K/a (t) where O <Re/u <-— .

(Note that VE"K/q (‘b)éj\’/,”,L for every a 0.) For Ceej(
Ry QpvT K, e )5 I K@), R, G ee)

M N [pe7 DEATE wco]ae
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Integrating by parts we get

4
f/“’/?‘ce) et el R -,(f)bé/“@(") d¢

The upper limit term is clearly equal to zero. The lower limit
term exists by virtue of the fact that both of the above
integrals exist as their lower limits appreach zero through

positive’values. lie denote this lower limit term by

A= /w ¢ (é)b{/"- o) le’;m f"?“*'b {/wé Ce (€)

{0+

It is readily- seen that A defines a distribution fj in %’a..

Integrating by parts again, we get

N ORI A MORIORL

Once again the upper limit term is zero. The lower limit term

. . . _J‘_
B, VT K () ale) < B 4T g 0,

which exists for the same reasom as above, defines a distribu-
 tion fp in X.’,m Thus, in the sense of distributional differ-

entiation we have shown that

R Gu VT K (8) - (P T K. (),

L. The Distributional K Transfoma‘cion.

Let f Dbe a member off&‘ for Some/ﬁ and a.' In view of

_note (i) of Sec. 3, there exists some real number 170 de-

' 9
pending upon f such that fe §u,.a for all a»¢p ~and !%J(/f,a

¥ |




for 0< a <Ztr . lote (i) of Sec. 2 allows us to define the
>/4‘ order K transform of f as

F (s) =Re £ =<f(t), v&T K/«(st)> (kes >0p )  (5)

This distrihupional transformation will be denoﬁed by E/u .

Also, we shall call (%) an R et transform and shall say

that - £ is 3/A4 -transferable with a region (or half-plane)
of definition Re s > %p . The number ¢y will be called

the abscissa of definition.

As a simple example, we compute the R4 transform of the

distribution f_ defined at the end of the preceding section.

B

Our distributiona%/u -order K transformation contains
the ordinary transformation as a special case whenever f
is a function that satisfies the requirements of note (v)
in Sec. 3 for all a >%% . In this case (5) takes on the -
form of (1). | '

We now digress for a moment to establish some inequalities

that we shall need.

Lemma 1: Let/a,p_e_such that/‘;‘OandOSRe/«ﬁ‘l;’_ .
Then, for any a > O,

) 'ﬁv\eaf(st)ﬂ K/u(ﬁ)\ g‘A/( (R, sza, o<t (9
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and

12 ) Gt ([ £ B (14]) (Repzbra, O2t2e) ()

where A and B . are constants wi o
raere Pl e th respect to s gnd t

Proof: From the power series expansion of K m (2)
[10; p. 207], the asymptotic behavior of %/A( (z) as
z2->a0o - [1lh; pe. 24), and the fact that K 4 (z) is analytic
everywhere except at z=0 and z=c>o’, it follows that

.’}'?_/f* K« @))46/« (Re 7 >0)

and .
12 7K ﬂ(a]z;ﬂ G =1) (Rez>0)

where 9//“ andA%//k are constagt; with respect to z. Hence,

given any T>0,

le® (:d:)’MK/«.(s{-)tAC e (Rep2o0, oz.écf) (8)

and

e K 604 T () (o (e oct). 0

Moreover, the asymptotic behavior of %/M (z) as 2z —>wo shows
that - 1 ’
_a)4 - -
e‘l&(/,fc)"‘ K/_((f‘l?): \/% e(“ A (,at)’“ 2 Dw(utlﬂ (10)

(& wdad Re p)O)
Expressions (8) and (10) establish (6) The asymptotic behavior

of K A« (z) as z > also shows that
- 1
e ** (40 a K- (0 = Ft (Q/){gai) [1%6;“)] (11)

('&*94‘9 ) R€P>O>
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Expressions (9) and (11) establish (7). Q. E. D,

Lemma 2: For any a > 0,

' at -
'e hK(:)(ﬁQ < Aa (Re/ za, o<-&4w> (12)

and

teo.“tfk K, (p8) |< By (416D (Rep» bra,0cke0) (13

where Ay and Bo are constants with respect to s and t.

Proof: The power series expansions [10; p. 207], the
asymptotic behavior [14; p. 24], and the analyticity of
K, (2z) and Kj (z) show that

\Kk(al‘) C. (Rﬂ'z >0) |

and

\ZK.( (7‘)‘ <Eo(.‘\“l |21) (@e z2>0)

where Co and Eo are constants with réSpect to z. Moreovér,
it follows from the definition of h(t) that
| 'y U,ot\) |
| \ h(t) ‘ <6
Consequently, for any given T > O,
eo® K,,(L'c)\ . e* Ko (48 W(i,M) 8
\ W) Vo W) h(&) <G, et 1)

(Rc/’ Za, ot <e=).

- (Re ) 2 a, o<be™)

i
v

e



T‘ n

and
i \e pt K_ (p8) | < €% g, (rip) (o) (15)
| (Re w50, 02teT)

Furthermore, by the asymptotic behavior of Ko (z) as z2 - ,

e K, () (a-p)t
L (2 L )T (eom R

Expressions (1l4) and (16) imply (12). Also, the asymptotic

behavior of K_; (z) as z oo ylelds

e® e K, (pt) = o A e(““’”(;of)’ll f'*“l#’.“” (17)
| (t »ue, Kep>0)

Expressions (15) and (17) imply (13). Q. E, D.

Theorem 1: Let F (s) = R/« f for Re s >z, Ihen,
F (s) is an analytic funcfion for Re s >¢7 and

Ac

- O K GDY (B> o). 8

Proof: Let s be an arbitrary but fixed .point in the
region of definition. Choose the real positive numbers

a, b, r, and ry such that ’2 <a<b =Re s-r; <Re s-r < Re s,

( Finally, let 4 s be a nonzero complex increment such that

| A,a,'] < r and consider the expression '

| Flatap) - 0) _Lp@ = : |
Y <(),A’L (fi)} - (19)

LR,y @)
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where

b, ()= Vp rart Kulpteapt) - fut Wﬁf)»ﬁ’; /7% Kp (48).

The series expansion and asymptotic behavior of K/u. (st)

shows that _ d

is in K/u , a so that (18) and (19) have a sense.

Now, assume that}/u # 0 and let C denote the circle with

center at s and radius equal to ry. Since

o [>4)
(4 21{ ‘r"\
[ vsT IF/“ (st)] s st K/‘ (st) . (20)
and since we may interchange our differentiations with respect

to s and t, \[ZP@){'/&?[({-) can be written as a closed integral
on C as follows [16; pp. 120-121].

v (QA/U-]); : j) 524 \/ET (3’6)
A/J me e (3“/:»)2 (3”/" A/d,)

Let A/u be a bound on eat(\ﬁt)/«& 6t) for 0 < t <e= and

all » € C  (see lemma 1). Then, ‘setting/q it in Ly
we may write L’ ; l ‘ M
ot 4 - L\p 2kl < A» 7 Acr= d%
le® ®) j(gf,) (5—;3@)}
: | £ 14 ] Ay ¥, (IM-H')" L“/‘Reiﬂ{rfr/)_
| : f1% (r-v)

f I‘hn.s proves that b//u) (\U )~>O as ’AP""O

Using the fact that

[Jﬁ— (ﬂt)] D, - v &M (p{) (2)

S
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we can show in & similar fashion that

!—eat L 245 &I"A?p [2k+t, pul ( £ |apl (5ﬂ r, ‘(IFJ +r,)1k*‘£*/““ e//*dff/p

12 (r-r)

where B/.,( is a bound on € t(Sf)”“ﬁ.-,(%)for 0< t <o
and all 3 € (C (see lemma 1). Thus,
X.’l&-}'{ (y/ )90 as lapl o,

Altogether, ¢hﬁ/_ converges to zero in K/A , a as fd/&/€>0
Consequently, (19) implies (18) when # 0. The proof for
the case where//k = 0 is the same as the abov@ except for
some minor modifications and the use df lemma 2 in place of

lemma 1.

In the next proof we shall have need of the following

useful ope ration-transform formula.

Lemma 3: If F(s) =Re f for Re s >“%¢ , then
R o £ =Re f
k = 1, 2, 3, evee

=2k (s) for Re s>0% and

Proof: This is an immediate consequence of note (iv) -

of Sec. 3 and equation (20),

We now derive a characterization of the R/a transforms

in terms of their growth as s-»ee.

Theorem 2: A necessary and sufficient condition for a

function F {s) to be a R/a transform is that there be a half-

plane Re slz,'b > o on which F {s) is analytic and bounded
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according to

|F ()] < B (lst) (22)

3

where Py ([ s/ ) is a polynomial in s} .

As we shall see in the following proof, b can be any
real point in the half-plane of définition. However, P, (1s\ )

will depend in gemeral on the choice of b,

Proqf: Necessity: Assume that F (s) = @/t f for
Re s'>-r¥’.AATheorem 1 states that F (s) is analytic for
ie s >¢f . Choose two real numbers .a and b such that
©f <a<b. By note (i) of Sec. 2, V&' Ki (st)e &L, o
for Re s > b. Also, by note (iv) of Sec. 3, there exists a
constant C and an integer r‘ such that
1Pt C o/:::k ¥ et K (ut)], | :

Moreover, if Re s > O, we can use (20) and (21) to write

s |
6l ™Rt ey [ KGO oD
sk [/;Fg&(ff)jé ‘ o<t

th*% V'a,
L2 ey (e G0 (o

o ¢teao VEGQ‘

and

Y (K (0T 2 1pl 7 el o N8 ).

océw

The inequality (22) now follows from lemmas 1 and 2.

£
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Sufficiency: Let m be an even integer such that

m-2 is no less than the degree of P, ( Vsl ). Then, s ™ F(s) 

b
satisfies the hypothesis of Meijer's theorem, which wus

stated in the introduction. Consequently, for Re 8 > ¢ > b,

- ' _
s™™ F(s) = 5: g (t) x/Es’ﬁ‘K/u (st) dt . (23)
where
) CH;»G
glt) fI}/“'c s~ F(s) = ;" ¢.¢::-mF(S) /5 L. (st) ds

(24)

From [10; p. 207] and [1L; p. 86, eqn. (5) ], we see that

e~Ct Vgt ;,K(st

is a continuous bounded function of (s,t) for all s on the
line s= c+iw (-~eo0< w< oo ) and for 0 & t <@, “Hence, the .,

Ct, in (24) converges uniformly

integral when multiplied by e~
for 0 < t <o=, and e~®t g(t) is continuous and bounded for

0 < < . By note (v) of Sec. 3, gl(t) is a cont inuous
function in-%gfui for d>c. Hence, (23) is a particular
d;stributional %/q transform whose region of definition
contains the half-plane Re s > d. From lemma 3 we get

F(s) = L g&"""':J for at least Re s > d. This completes the

proof.
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The preceding proof has established the following in-

version formula:

Corollary 2a: Let F(s) = %/u f for Re 5>F?’ and

let m be an even integer such that m=2 is no less than the

degree of P, (Is ID, where Pb is a polynomial as specified
in theorem 2. Then, £ = (Ru Q) ) m/2 [Ru 8™ F(s)] where

the transformation /qu is defined in (2&) and C is any

real number greater than b.

It may be worth emphasizing that the @ifferentiation

in R/“ Q/A_ are the distributional operations defined in

note (vi) of Sec. 3.
We are now prepared to state a uniqueness theorem.

Theorem 3: If F(s) = %/u f for Re s > 07 » if
G(s) = %/i g for Re s >fﬁ} , and if F(s) = G(s) on some

half-plane Re s > b > max (r? )07} ), then f=g in the

sense of equality in .&3/5 .

Proof: Choose ¢ > b. Then, by the inversion formula (25),

fg-@®u0)™ [Rey A [FG)-6(a)1] =0

Qe Eo Do

N e R
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As an example of the use of formula (25), consider the
function £ (s) =+v8 (Re s > 0)., By theorem 2, this is a

Ve
Ro transform. To compute the corresponding member fé Xo,«

(for any a > 0), choose m = 4. Then, by [17; p. 127, eqn, (1)1,

%(t)“’z /;7/;*4652" _
‘ (0<t < e= ),

To compute the distributional differentiations in (ROQO)2 g,

choose an arbitrary b é‘j(o,a « Through some integratiéns

by parts and the use of the order conditions on (¢ (t) as

t —> O+ and t —> o= that are implicit in the seminorms

X/q’ , we obtain

<R,0)" P ww) = J7 5(6) (R, Q.)* ¢ @ dt
o 0 S [, eyt

£ 50+

= L ce (t) o
€>ot 7 dgt <A @)

The last equality can be used as the defining expression

7 ,

for L‘C— X, a ¢ A direct computation readily shows that
’

R, f =« vs' (Re s > 0).

The sequential completeness of g‘f o . and note (i)
. 4
of Sec. 2 immediately yield the following continuity theorem.

Theorem 4: If {ﬂ];o converges in &{a for some
=

e e e e .
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o8
a0 and if R/u £, = F, (g), then R« lim,  , fz F(s)
exists for at least Re s > a, and F,, (s)-> F(s) point-

wise on the half-plane Ke s > a,

We conclude this sectioh with a generalization of
Boas' extension to the ordinary K transformation [7] of
_the Post-Widder inversion formula for the Laplace transforma=-
tion [11; p. 288]. The similarity of the following result
with theorem 3 of [3] may be noted.

Theorem 5: Let f be a %/w'~transformable distribution

whose support is contained in the interval T < t <ee= (T>0),

Let F (s) = %/q £ (Re s >¢7 ). Then, in the sense of con-
vergence in "QI’ ,

. Ay
ﬁ(f)’f:; .\/_?(M) (;My ’ E”/“j( (26)

It is understood here that the distributional differentiations
in F[iﬁ/“j are with respect to the argument of F,
Proof: Let {{ be a member of‘da. with its support con-
talined in the closed interval [A,B] where 0 < A< B <=,
By haking the change-of'variéble a = Zk/t, we may write

[15; pe. 30]
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- &\ 2 kel &
(NE G G T R 2Ry a @y
Lk i Ay
LEPTET 0y E “;,,, @(22) (1)

CFe), @4 ()

where

" __‘,' 24 4 [a4 ]
&y (w) = VEN (:’Au)/ [« @ (55)] =7 G5

The differentiations in the right-hand side of (28) are with
respect to u. %(u) is a member of &C and its support is
contained in the closed interval [2k/B, 2k/A]. Also, F(u)
is a smooth function on Cp<u<es , So, for all suffi-
ciently large k,‘ the right-hand side of (27) has a sense

and is equal to

\<9 (W) , <fx) , vi® Ke () (29)
Z e

Now, we shall show that we may interchange the order of
the "inner products™ in (29). Let A (x) be a smooth function
on 0 < x < oo that is identically equal to 1 on a neighborhood
of the support of - f and is identically equal to O on
0 < x < x. for some x,. Then, letting 1 (u) denote the

1
function that equals l-everywhere, we may equate (29) to

LW, <e’”~’°7[(7c)) S, (A (&%) GH)&?& (omc))> (30)
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Since as x > a0

(o-- 24
eo—%ml{/u(ua%):-O(e »‘*14))

it follows that, for all k such that zk > ¢ B,
-© 4 X 7 K (qx) '
Ja(u) (¥ e” 28 A V(31)
is a testing function of rapid descent on the (u,x) plane
[15; Sec. 4.2]. It is understood here that (31) is extended

to nonpositive values of u and x as the zero function.

Moreover, if a and ¢~ are such that ‘Pewgq’,q and
% >a>0, then e’ *f(x) is a tempered distribution
on =°< x < o= [15; Sec. L.3]. (Here also, we extend
f(x) onto:the nonpositive x axis as the zero distribution.)

To see this, let yj(x) G/,,L’ ’ where/¢ is the space of

testing functions of rapid descent on the x-axis. Consider
-0
e f0a, ¥ (0> = KE) e A w fcer)

Clearly, f— e“’”‘/h" is a continuous linear mapping from
. - .

/X,’c into &’a whenever ¢~ > a, Hence, f — e 7Cf is a

mapping fromik’fainto ;; , the space of tempered distribu-

tions on the x axis.

These  results allow us to invoke corollary 5.3-2a of [15]
and 'interchange the order of inner products in (30) and
therefore in (29). Hence; for all sufficiently large k, (27)

is equal to

{860, A ) e 0D - 62)
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where

Ca® =5, Oxla /& Ko () d« (33)

To complete the proof, we need merely show that as koo,

)(wl)ﬂ& (x)-;)(qc) (e (yin })/._,a for every &> 0, Note that through

some integrations by parts and the change of variable

= ux/2k, we get
2Rl

A . )
(e~ /F G L/ e G

In a moment we shall show that, for every nonnegative integer

n and positive constant a,

W- @] 7 o

e’ [(/z
as k —»oe uniformly on X < x <-o where 0 < X < T. In view
of (L&) this implies that, for every 'n, p™ %ah-Cp ) = 0
as k<o= uniformly on every compact subset of XL x<e=.,
It then follows that, as ke ,/}sz Ao =0 in.l;(q, which

is our desired conclusion.

. To proceed. Because of the smoothness of CQ , We may «

differentiate under the integral sign to get for each n...

2k -
el W | %ﬂ’*”"f'ﬂ?K (1’@7)5‘[””(’9‘3

(.2&)’

We have proved in a previous paper [3] that as k —> —o

284 3
¥ - ol e
CL\P é__)jkjr.j‘ / 1# n /e-g&u}cqf”u ('f)c{,_a € Q (
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uniformly on X < x <29 , Thus, our proof will be complete

when we show that

3,(9- e [T aA) J’” ahent g ady [ 2 ez*m; K@k P#25) g —

Q!

uniformly on X < x <o,

By the asymptotic behavior for K/u [14; p. 241, for < .
a given - >0, there exists a k, > 0 such that for all

k>k andy>X/B -

V- ﬂm—rﬁ Ghpl<e "

" Let Cn be a bound on z" 1(_'2["1/‘] (z) for 0 < z <=o., Then,

for all Kk, and X L x <e=

| EC e% [z M\S'ﬂo 2k g-2hy
13,(Al< “"Sf'rﬁ'?" ‘E (2! %5? Jl’ (35)

Since 244

(2R T ik _-24
0<% f"/(ﬁ e, <

it follows that %4 (<) 2 © uniformly on every compact subset
of X < x<eo as k >—=., Moreover, we have proved in [3]
that the right~hand side of (35) converges uniformly t.o zero

for x > BB/Z as k~»=o, Q. E, D,
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5. An Uperational Calculus.

Let P(x) be any polyncmial and consider the differential

equation

| PR Q) u = g
when g is a }u -transformable distribution and the
differentiations are in the distributional sense in accord-
ance with note (vi) of Sec. 3. We wish to find a solution u
to (36). Applying our R « transformation and lemma 3, |

i\ we obtain k. u =G (s)/P(s®) where G(s) = Ry g for Re s >0 .
Theorem 2 indicates that G(s)/lf' (s*) is truly a R/u transform.
Let o be the largest of the real parts of all the roots
of P(s*). Then, u can be computed by choosing the constants
b and c { ¢c>b> fnax (6 , ¢ g )) and applying the
inversion formula (2l5). By theorem 3 there is no other
distribution in j</"*,6 that sétisfies (36).

The extension of this technique to simultaneous differ-

ential equations of the form (36) is straightforward.

Let us compare our R /u operational calsulus with the 4“
operational calculus discussed in (4], The R/« operationals:
calculus solves the same typ.e of differential equation as
does the / ‘operational calculus. However, the allowable
solutions in the former case may be of exponential growth
as t ->-o whereas they must be at most of slow growth in

the latter éaseg. Hence, so far as the behavior as t o
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is concerend, the ﬁ,/,., transformation extends the f/q
transformation is much the same way us does the Léplace

transformation extend the Fourier transformation.

On the other hand, the situation concerning the behavior
of the allowable solutions as t-» O+ is somewhat different
as is seen from the following facts. The 4}« transformation
is defined for all real values of the order paraméter/« in
the range —~J£ s/a < oo .. Also, the testing functions for this
case behave as does the function /T J),, (t) when t => 0+
here, J/u is the Bessel function of first kind and order/« .
In contrast to this, the R/« transformation is defined for
those real or .complex values of/« that satisfy ~‘lié Re/« < '{,
(e have used the faft that R/« = R74 to restrict our

+

above analysis to the cases where O f Re/‘ <5 s Moreover,

the testing functions in the present work behave as does

V& K/w (t) when t —> O+,

Finally, let us note that for the /; operational
calculus the solutions of (36) is no longer’ unique in the
distribution space j:]/: when P(x) has roots on the axis
—o= & x < 0. In the present work the solution '_of (36)
is unique in X//Lf,[)'- for every b > max ( '3—)6_3 ) no matter

where the roots of P(x) are,
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6+ Applications to Certain Time-varying Electrical

Networks Under Distributional Bxcitations.

Consider the time-varying electrical network shown in
Fig, 1 for the time interval 0L t <o@ . The symbols a, b,
and ¢ denote real nonzero constants, and//i is a rea; ‘
parameter restricted to the range - £ -‘-‘%'_ . Gerardi [18]
has analyied networks of this type using the ordinary Hankel
transformation in the case where the exciting sources are
described by ordinary functions of time t. The distributional
K transformation that has been developed in this work alldws
one to analyze such networks when the sources are described
by certain distributions. We use the circuit of Fig. 1 to
illustrate the procedure, even though anf network consisting of
inductances and capacitinces, whose time-variations are

~2e+1 -1 4 .
proportional tof-§n and ﬁaﬂ respectively, can be

analyzed in the same way.

Assume the network is initially at rest. Let q; and
d, be the mesh charges; that is, 9, and q, are distributions
such that Dq1 = il and qu = i, where i; and iz-are the
indicated mesh currents. Applying a mesh analysis we obtain

the simultaneous differential equations

v=DLy (t) Doy + 9p = 92
C(t)

o

a3 = 99 + DL, (t) Dq
C(t) 2 2
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Maklng the change of variable,
/f-«
LA PN

and inserting the time variations for Ll (t), Lo(t), and

/u+
t $a

. C(t), we convert these equations into

1478 () = et Dt‘y“'btﬂ"q-kc(u-u@)
‘-‘C(‘*r‘*.\*lo%’abbtzf“*'nfﬁ_ Wy

The a@plication of our distributional 63* transformation
and lemma 3 yieldé the following algebraic equations when-
, . A

ever the source voltage is such that 't/K *  v(t) is an

f?//* -tranéférmable distribution.

G(s) = (as® + ¢) U1 (s) = cUz(s)

X (37)
0 = —cUl (s) + (bs® +c) U, (s)
Here, " A=t (D
U, (p) = w, (t)
Uﬁ—( ) = é‘ Uy (’6>
(Note that the cases where ‘”‘ﬁyAL<<3 can also be transformed
in this way since A) AQ .) Solving (37), we get
T = - E |
,.Ll(S) = bsh + C G(S) (Re S>a'—; )
abs” + c(a+b) s®
U2(s) = L c G(s) (Re s >a; )
abs® + c(a+b)s® : :
Here, 0 and-d“’are no longer then max (0- o=« ) where ¢

denotes the largest of the real parts of the roots of
abs + c(a+b) s%. The application of the inversion formula (25)

~
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yields Uy and uz, which in turn determine ql; 9> i1 and

ipe

As a final application consider the circuit of Fig. 2
for the time interval Oﬁ t <e© . This circuit has been
analyzed for ordinary-function voltages v(t) by Aseltine
[19]. The inductance L and capacitance C have fixed positive
values, but the fesisténce R(t) varies according to R/t
where R is a fixed value restricted to the range 0 < R < 2L,
issume the circuit is initially at rest. 'In ﬁéms of the
change q on the capacitor, the differential equation for

this circuit is

2 R
D= q + D+ _94 = vit)
or ) .
=1 o = 1 2 q v(t)
t Dt ¥4+ Dt T g+ =
- LC L

where 2/4 +1 .=R/L. Hence, we have'zié/uf:al‘, . Using the change

of variable u = ‘c./u_‘_L q, this becomes '
LATE Pt AT g “ZLEQ.' -4 £t ()

if t/'”—;" vit) 'is‘ an R/u. -transformable @istribution, we

may apply @, and lemma 3 to get -
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where
by et

als) =R Tt ¥ ¢

and

U(s) = @/‘ u(t).

In this case o7 1is nogreater than max ( ©5,0

(Ke/,‘)vo‘g)

) ' The

application of the inversion formiila (25) to U(s) yields

u(t) and thereby q(t) and i(t) = Dq(t).
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