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Preface

Let us comment on how the present report relates to previous studies of random walks

on transfinite networks. This work is a generalization of a prior one (10] that was restricted

to I-networks. In this one, a general theory for random walks on JL-networks, where JLis

any natural number, is achieved. Both [10] and this work generalize still earlier efforts [7],

[8], in which the shorting of nodes of various ranks was not permitted; [10] and the present

work allow such shortings, but this considerably complicates the theory. For instance, the

"chainlike structure" used in [7]and [8]can no longer be employed; instead, the more general

idea of a "finitely structured" transfinite network is introduced.

This report is written to make it independent of [10]. Moreover, it subsumes all the

results of [10]. In addition, the five different rules that were used in [10] for the relative

transition probabilities of transfinite random walks have now been simplified and consoli-

dated into one rule given by Rule 10.1. This achievement requires a fairly long argument.
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RANDOM WALKS ON FINITELY STRUCTURED
TRANSFINITE NETWORKS:II *

A.H.Zemanian

Abstract - A general theory for random walks on transfinite networks is established

herein., In such networks, nodes of higher ranks connect together transfinite networks of

lower ranks. The probabilities for transitions through such nodes are obtained as extensions

of the Nash-Williams rule for random walks on ordinary infinite networks. The analysis is

based on the theory of transfinite electrical networks, but it requires that the transfinite

network have a structure that generalizes local-finiteness for ordinary infinite networks.

The shorting together of nodes of different ranks are allowed; this complicates transitions

through such nodes but provides a considerably more general theory. Other generalizations

achieved herein are Kirchhoff's current law for nodes of any ranks, connections of pure

voltage sources to such nodes, and the maximum principle for their node voltages. Finally,

it is shown that, with respect to any finite set of nodes of any ranks, a transfinite random

walk can be represented by an irreducible reversible Markov chain, whose state space is

that set of nodes.

1 Introduction

This work presents a third version of a theory for random walks on a transfinite network.

The first version [7], [8]did not allow the network to have embraced nodes, that is, two nodes

of different ranks had to be totally disjoint. This is a severe restriction. The second version

[10] removed it but on the other hand did not allow networks of ranks greater than 1. The

present version removes both restrictions. This yields a far more general but considerably

more complicated theory.

*This work was supported by the National Science Foundation under the Grants DMS-9200738 and
MIP-9200748. The author is with the University at Stony Brook, Stony Brook, N.Y. 11794-2350.
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However, our theory still does not encompass arbitrary transfinite networks. A structure

has to be imposed that generalizes the idea of local-finiteness in ordinary networks. That

structure is developed in Sections 3 to 6 and enables a generalized version of Kirchhoff's

current law at nodes of higher ranks, as well as the excitation of the transfinite network by

pure voltage sources appended to such nodes, a matter discussed in Section 7. These results

are needed because our theory uses the nearest-neighbor and Nash-Williams rules [3] for

random walks on ordinary infinite networks as paradigms for our theory of random walks

on transfinite networks. Also needed is a maximum principle for node voltages at nodes of

arbitrary ranks; this is established in Section 8. Deterministic and random transfinite walks

are defined in Sections 9 and 10 respectively. The rest of this work (Sections 11 through 16)

recursively develops the theory for transfinite random walks through an inductive argument

that first shows how a random walker can reach a node of higher rank, then how it can leave

that node, and finally how it can wander among such nodes. These processes are based

upon definitions that continuously extend the nearest-neighbor and Nash-Williams rules. In

prior works several definitions were employed for this purpose. Those definitions are herein

consolidated into a single and, as it turns out, simpler definition (see Rule 10.1 in Section

10), but now more has to be proven to achieve this end. Our final result relates random

walks on transfinite networks to random walks on ordinary networks in the following way.

Given any arbitrarily chosen finite set of nodes in the transfinite network, the probabilities

of transitions among those nodes are describable by an irreducible and reversible Markov

chain, which in turn is representable by a finite network. Thus, the wanderings of a random

walker among the chosen nodes of the transfinite network is mimicked by a random walk

in the finite network.

2 Subsections and Cores

The idea of a transfinite graph was introduced in [5] and [6]. We freely use the definitions

and results appearing therein. We also use some results appearing in subsequent works.

For ready reference we summarize the latter with a word or two of explanation.

Lower Greek letters will denote natural numbers and J.Lwill denote a positive natural
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number. (}~ represents a j.£-graph [5, Section 5.1]:

(}JL= {B,Af"O,... ,N~}

where B is a countable set of branches and, for each f) = 0,..., j.£,N° is a nonvoid set of

f)-nodes. B-nodes and (f) - I)-tips are defined in [5, pages 67-68 and 140-141]. The rank of

an elementary tip is denoted either by -lor by O. A reduction of (}~is defined in [5, pages

71 and 143]; it is analogous to a subgraph. Borrowing the terminology of electrical circuits,

we say that a f)-node nO is shorted to a ~-node n€ or that nO and n€ are shorted if they are

both e~braced by the same node. (How nodes embrace is defined in [5, pages 69 and 141].)

Here f) and ~may be equal or unequal. The same terminology is used for two tips or for a

node and a tip.

A node n is called maximal if there is no other node that embraces all the tips that n

embraces. Thus, a nonmaximal node is a node nl whose embraced tips comprise a proper

subset of the set of embraced tips of another node n2. Hence, the rank of nl is no larger

than the rank of n2. Every node is embraced by a maximal node. A maximal O-node is

called an ordinary O-node. A node may be maximal with respect to a reduction of (}JL but

not maximal with respect to (}JL. Henceforth, the maximality or nonmaximality of a node

is understood to be with respect to (}JL - unless some reduction of (}~is specified.

Let P be a path, t a tip, and n a node, whose ranks may be different. P traverses t if P

embraces a representative of t when t is a nonelementary tip or if P embraces the branch

for t when t is an elementary tip. P is said to meet n if P traverses a tip that is shorted to

n. Similarly, P is said to meet a set of nodes or a reduced graph if P meets a node of that

set or graph. At times, we use reach as a synonym for ::meet."

A node n and a reduced graph (}r are said to be incident if (}r embraces a path that

meets n. A f)-path is called finite if it has only finitely many f)-nodes. Two branches or two

nodes or a branch and a node are called f)-connected if there is a finite B-path that meets

them. (}~is called B-connected if every two of its branches are B-connected. A B-section is a

reduction of (}~induced by a maximal set of branches that are pairwise B-connected. Thus,

a f)-section is also a A-section for every A > f).

It is important to remember that a sequence is a countable, totally ordered set that can
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be bijectively indexed by a set of integers whereby the ordering of the set and the natural

ordering of the integers agree.

An infinite sequence {ml, m2,.. .} of nodes ml is said to approach a tip to if there is a

representative

Po
{

0 p.°-1 0 P O-l 0 P O-l
}= no, 0 , nl, 1 , n2' 2 , . . .

for to such that, for each natural number i, all but finitely many of the ml are shorted in

a one-to-one fashion to nodes embraced by pO lying to the right of nf. Let ta and tb be

two tips (their ranks need not be the same). We say that ta and tb are nondisconnectable if

there is an infinite sequence of nodes that approach both ta and tb.

Henceforth, we let {3denote a natural number such that 0 < {3S J.L.Also, {3- and {3+

will denote arbitrary and unspecified natural numbers such that 0 S ((3-) < {3S ({3+)S J.L.

Two ({3- )-nodes need not have the same rank, but their ranks will be less than {3;similarly,

two ({3+)-nodes need not have the same ranks, but those ranks will be no less than {3.

We also need the idea of a subsection. Subsections partition sections as well as (}J.£itself.

To define it, choose and fix some {3and then partition the branch set B by placing two

branches in the same subset if they are ({3- )-connected by a finite (/3- )-path that does

not meet any ({3+)-node. As is shown in [11, Section 2], this is an equivalence relationship

under Conditions 2.1 given below. A ({3- )-subsection sf- is defined as the reduction of

(}J.£ induced by the branches in one of the partitioning subsets. On the other hand, a (0-)-

subsection is defined, to be single branch. Let n be a node incident to sf-; n is called a

bordering node of sf- if n is embraced by a ({3+)-node and is called an internal node of

sf- otherwise.

Immediate consequences of this definition of a (,8- )-subsection are the following. The

maximum rank a among the ranks of all the internal nodes of S:- satisfies 0 S a < 3,

and the maximum rank of all the traversed tips of S:- is either Q - 1 or a. (The rank

-1 represents the rank 0 of an elementary tip.) A maximal bordering node nJ3+of sf- is

of some rank " where I ~ {3,and n.B+must embrace at least one node of rank 8, where

8 ~ {3,because this is the only way n.B+can be incident to sf-. Thus, if n is a maximal

node incident to a ({3- )-subsection sf-, then n is internal node of sf- if its rank is less
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than {3,and n is a bordering node of sf- if its rank is no less than {3.

We will refer to the maximum rank a among the ranks of all internal nodes of Se- as

the essential rank of Se- and to the rank of the reduced graph induced by all the branches

of sf- as the induced rank of sf-. The essential rank is less than {3and no larger than the

induced rank. It is possible for the induced rank to be any rank from a to p,. We shall also

refer to a ({3- )-subsection Se- as an a-subsection S~ when we wish to display the essential

rank a of that subsection.

As a simple example, consider the I-graph of Figure l(a). It has only one (1-)-

subsection, the I-graph itself. Its essential rank is 0, and its induced rank is 1. Some

more examples illustrating the foregoing ideas are given below and still more are given in

[11, Section 2].

Throughout this work, we always impose the following conditions on the p,-graph (ilL.

Conditions (d), (e), and (f) are understood to hold for every rank {3= 1,.. .,p,.
Conditions 2.1.

(a) (ilL has no infinite O-nodes, no self-loops, and no parallel branches. Moreover, every

branch is incident to at least one ordinary O-node.

(b) (ilL is p,-connected.

(c) If two tips are nondisconnectable, then those tips are shorted.

(d) Every ({3- )-tip of every maximal {3-node has a representative lying in a single ((3-)-

subsection.

(e) Every ({3- )-subsection has only finitely many maximal bordering (3+ )-nodes.

(f) Every {3-node is incident to only finitely many ((3- }-subsections.

Regarding Condition 2.1(d), the rank of the subsection may be equal to or higher than

the rank of the tip.

Regarding Condition 2.1(a), the requirement of no parallel branches is hardly a re-

striction even when electrical parameters are assigned to branches because we can always

combine parallel branches into a single branch by combining their electrical parameters
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appropriately. Similarly, any branch can be split into two series-connected branches with

appropriately adjusted parameters in order to introduce an incident ordinary O-node for each

branch if need be. (This last condition will be needed when we deal with basic currents in

(Ill [5, condition (iv), page ~54].)

We now define the "core" of a (/3- )-subsection S~-. If S~- has exactly one internal

maximal node n, the core of S~- is defined to be n. If S~- has two or more internal maximal

nodes, the core of S~- is the reduction of (Ill induced by all branches in S~- that are not

incident to (.8+ )-nodes.

Lemma 2.2. Let S~- be a (/3- )-subsection. Then, the following hold.

(i) S~- has at least one borderingnode.

(ii) If S~- has exactly one internal maximal node n, then n is an ordinary O-node, and

S~- is a star graph with finitely many branches and with n as its central node.

(iii) If S~- has two or more internal maximal nodes, then its core has at least one branch

and is (.8- )-connected through itself (i.e., through ({3-)-paths that do not meet any

bordering nodes).

(iv) The core of S~- is not void, and S~- has at least one internal node.

(v) If S~- is incident to one of its bordering nodes through a nonelementary tip, then

a representative of that tip lies in the core of S~- and that core has an infinity of

branches and an infinity of internal nodes.

Proof. (i) If {3= fLand if st- coincides with (?\ then each fL-nodeis a bordering node

of st-. Otherwise, there is a branch bI in s~- and a branch b2not in s~-. By Condition

2.1(b), there is a path that connects bI and b2. That path must meet a bordering ({3+)-node

of S~- .

(ii) By Condition 2.1(a), every branch of s~- must be incident to an ordinary O-node.

Since no bordering node can be an ordinary O-node, n must be a O-node, and moreover

every branch of S~- must be incident to n. Since there are no parallel branches and since

all O-nodes are of finite degree (Condition 2.1(a) again), our conclusion follows.
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(iii) If a branch is incident to two internal nodes of Se-, it will lie in the core of sf-.

Now, suppose that the core has no branch. Then, every branch of sf- must be incident to

a bordering node (as well as to an internal ordinary O-node). This implies that all branches

of sf- must be incident to a single internal node of sf-, for otherwise at least two such

branches would not be in the same (f3- )-subsection. Thus, Se- has only one internal node,

in contradiction to the hypothesis. Consequently, the core of sf- has at least one branch.

Furthermore, suppose two branches of the core are not (f3- )-connected through the core.

Then, they can be connected only by paths that meet (f3+)-nodes and therefore must lie in

different (;3- )-subsections - another contradiction.

(iv) Suppose the core of Se- is void. By (ii) and (iii), this is equivalent to supposing

that Se- has no internal node. Then, every branch of Se- must be incident through both of

its elementary tips to bordering (;3+)-nodes. This violates the second sentence of Condition

2.1(a).

(v) The rank ;3is no less than 1. Since Se- is incident to a bordering (;3+)-node through

a nonelementary tip, that tip will have a representative lying entirely in Se- (Condition

2.1(d)). Since sf- has only finitely many maximal bordering nodes (Condition 2.1(e)), that

representative embraces a representative lying entirely within the core of sf-. This implies

that the core has in infinity of branches and an infinity of maximal internal nodes. "
We need a certain property of paths, which is a consequence of Condition 2.1(d). To

state it, we should recall some definitions. A path embraces a tip if it embraces a node

that embraces that tip. A path traverses a tip if the path embraces a representative of that

tip. A tip that is embraced by a path need not be traversed by that path, and conversely.

The essential rank of a path is the smallest rank that is larger than the rank of every tip

embraced and traversed by the path.

Moreover, if a path of essential rank 0:is finite, then it embraces every tip it traverses, it

traverses at least one and at most finitely many (0:-1)- tips. and all the other tips it traverses

are of ranks lower than 0:-1. In general, the a-nodes that embrace those (a - l)-tips need

not be maximal nodes of (]IJ..

Lemma 2.3. Let pa be a finite path of essential rank a. Let () be the largest rank
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among all the ranks of the maximal nodes that pa meets. (Thus, a ::; 8.) Then, pa meets

only finitely many maximal 8-nodes.

Proof. The conclusion is obvious if a = O. So, let a > O. Suppose pa meets an infinity

of maximal 8-nodes. Then, exactly two cases arise. Either pa traverses an (a - l)-tip

none of whose representatives lie in a single (8- )-subsection, or everyone of the finitely

many (a - 1)-tips traversed by pa has a representative lying in a single (8- )-subsection.

In the first case, Condition 2.1(d) is violated. In the second case, we can remove those

finitely many representatives to find a finite path QA of essential rank>' (>' < a) such that

QA is embraced by pa and QA meets an infinity of maximal 8-nodes. We can repeat this

argument for QA - and continue repeating it if need be to find a sequence of paths whose

essential ranks decrease and which possess the same properties as QA. The process must

stop before the decreasing sequence of ranks reaches 0, for no finite O-path can meet an

infinity of 8-nodes. Thus, we will eventually find a tip traversed by pa, none of whose

representatives lie in a single (8- )-subsection - in violation of Condition 2.1( d). ..

3 Isolating Sets and Cuts

Let 9r be any reduced graph of {P', and let N1, N2, and N3 be three sets of nodes in 9r.

The nodes of these sets need not be maximal, and their ranks need not be the same - even

within a single set. N3 is said to separate N1 and N2 in 9r if every path in 9r that meets

N1 and N2 also meets a node of N3. This definition allows nodes of N3 to embrace nodes

of ';\'1 and/or N2, and conversely. For instance, if n~ is embraced by n~, then n~ separates

n~ from all other nodes, and n~ does the same for n~. Similarly, two reductions of 9r are

said to be separated by N3 in 9r if N3 separates their node sets. Finally, N3 will separate a

reduction of 9r from a node no of 9r if it separates the node set of the reduction from {no}.

In the following, (3denotes a given natural number with 0 < .13::; fl, as before. Also, n,6+

will be a maximal node whose rank is no less than (3, and st will be a ((3- )-subsection

incident to n,6+. Thus, n,6+ is a bordering node of sf-.

If sf- is incident to n.6+ through one or more nonelementary tips (that is, if the core

of sf- is incident to n.6+), we let V denote a nonvoid finite set of ordinary O-nodes in the
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core of sf-; none of these O-nodes will be bordering nodes of sf-. If, in addition, sf- is

incident to n.B+also through one or more elementary tips (that is, if a branch of sf- is

incident to n.B+), then n/3+will embrace a O-node nO,and we set W = V U {nO}; otherwise,

we set W = V. On the other hand, if sf- is incident to n/3+only through elementary tips,

we set W = {nO} and make V void. In every case, W is not void.

Furthermore, when the core of sf- is incident to n/3+, that is, when V is not void, we

let A be the reduction of sf- induced by all branches in the core of sf- satisfying the

following: Either the branch is incident to two nodes of V or the branch is connected to

n/3+ by a path in the core of sf- that does not meet V. On the other hand, if V is void,

we take A to be void as well.

If V is not void, neither is the branch set of A. Indeed, n/3+will be incident to sf-

through a tip having a representative lying in the core of sf-, and that representative can

meet V only finitely often; hence, A will have an infinity of branches. The complement

.A = Sf-\A of A in sf- is the reduction of sf- induced by all the branches of sf- not in

A. Thus,withinthe coreof sf-, V separates.A from A and also from n/3+.

Two nodes (of any ranks) are said to be O-adjacent if they are not shorted but are

incident to the same branch. This is the usual idea of "adjacency." We shall generalize it

later on.

Now, let 1) denote the set of all nodes of sf- that are O-adjacent to n/3+. V will be void

if W = V and will be nonvoid if W =V U {nO}. In the latter case, 1) will be a finite set of

ordinary O-nodes according to Condition 2.1(a). Let X = V UV. Thus, X = V if W = V,

and X = 1) if W = {nO}.

Definition 3.1. An isolating set in a subsection. W is called an isolating set for n/3+

in S;- if the following three conditions are satisfied whenever the finite set V of ordinary

O-nodes is nonvoid (so that st- is incident to n/3+ through at least one nonelementary tip

- and possibly through elementary tips as well.)

(a) Within the core of st-, V separates A from all the (,8+)-nodes incident to that core

other than n/3+- as well as from all the nodes of the core that are O-adjacentto

(,8+)-nodes (including n/3+). Moreover, no node of V is O-adjacent to n/3+(thus,

9



V n 1) = 0).

(b) For every node nOof V there is a path in A that meets nO and ni3+bnt does not meet

V\{nO}.

(c) Every node of V is incident to a branch in .A.

On the other hand, if V is void (so that W = {nO},ni3+is incident to sf- only through

one or more elementary tips embraced by nO,and A is void), we call W the trivial isolating

set for ni3+ in sf-.
Under these conditions (whether or not V is void), X will be called the conjoining set

for n3+ in sf- correspondingto W, the reduced graph A willbe called the arm in sf- for

V or for W, and V will be called the base of A or the base of W. .
Note that V and X are both finite sets of ordinary O-nodes; so too is W except for the

O-node embraced by ni3+if such exists - that one will not be ordinary.

It follows from Definition 3.1 that, within sf-, the isolating set W separates ni3+from

every other (,8+ )-node that is incident to sf-, and so too does X. Moreover, if ni3+ is

incident to the core of sf- (Le., if V is not void), then within that core V separates ni3+

from V as well as from every other (,8+ )-node that is incident to that core.

Figure 1 illustrates these ideas. Part (a) shows a I-graph consisting of a two-way-infinite

ladder along with an extra branch booAll the O-tips on the extreme left (and extreme right)

are shorted through the I-node nt (respectively, nn. Furthermore, bo is incident to nt

through the embraced O-node n~; it is also incident to the ordinary O-node n~. The entire

graph is a (1- )-subsection. Its core is the ladder without booW = {n~,ng,ng} is an isolating

set for nL and X = {ng, ng, n~} is the corresponding conjoining set. The corresponding

base is V = {ng, ng}, and the arm A for W is induced by all ladder branches to the left

and between ng and ng. On the other hand, {ng, ng} is not an isolating set for the I-node

n~ because of the presence of boo Were bo incident to n~ instead of n~, {ng, ng} would be

an isolating set for n~, but then {n~, ng, ng} would not be an isolating set for nt because

Definition 3.1(a) would be violated.

Part (b) of Figure 1 is a 2-graph consisting of a ladder of ladders, an extra ladder L,
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and three additional branches bo, b1, and b2. The entire graph is a (2- )-subsection with

two maximal bordering 2-nodes nf and n~. The essential rank of the (2- )-subsection is

1. In each of three ladders, we have selected a pair of ordinary O-nodes as in part (a).

This yields the isolating se~ W = {n~,ng, . . ., nn for nf. In this case, V = {ng,..., nn;

moreover, A is induced by all branches to the left and between the nodes of V (but not

b1 and b2). The conjoining set X corresponding to W is {ng,. . ., n~, n~o}' The core of the

(2- )-subsection is induced by all the branches except b1. This 2-graph has an infinity of

(1- )-subsections. bI and b2 together induce one ofthem. Each of the other (1- )-subsections

consists of a single ladder, except for the two ladders connected by bo; those two ladders

along with bo comprise a single (1- )-subsection. The essential ranks of the (1- )-subsections

are all O. Note that every (1- )-subsection has only finitely many bordering nodes. Were

branches like bo connected to all adjacent ladders, the ladder of ladders would become a

single (1- )-subsection, but then that (1- )-subsection would have an infinity of bordering

I-nodes - in violation of Condition 2.1(e). It may also be worth noting that the conjoining

set X = {ng,. .., n~,n~o}for nf happens to be an isolating set for the other 2-node n~.

Lemma 3.2. Let V be a nonvoid base of an isolating set in a (3- )-subsection, and let

A be its arm. Then, every branch b in A is ((3- )-connected within A to a node of V.

Proof. A is not void because V is not void. b and V both reside in the core of sf-.

By Lemma 2.2(iii), there is a finite ((3- )-path p!3- in that core that connects a node of b

to a node of V. Moreover, within that core, V separates A from its complement A. Hence,

a tracing of p!3- from a node of b to the first node of V that p3- meets yields a finite

((3- )-path within A. eft

Definition 3.1 focuses on a ((3- )-subsection and considers a bordering node nf3+ in an

ancillary way. We now shift our attention to a maximal (3-node n3 and treat its incident

((3- )-subsections in an ancillary fashion. Such a node must be incident to at least one

((3- )-subsection with a core having an infinity of branches and an infinity of internal nodes;

this fact follows from Lemma 2.2(v) because that node will have at least one (13- I)-tip

t!3-I and because Condition 2.1(d) insures that a representative of t3-1 will lie in a ((3-1)-

subsection. If each of the ((3- )-subsections incident to n!3has an isolating set for n!3,we
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can consider n/3 as being "isolated" by the union of those isolating sets. For subsequent

purposes, we want that union to be finite; this is the reason for imposing Condition 2.1(f).

Definition 3.3. An isolating set for a node. Given a maximal ,8-node n/3, a set W of 0-

nodes is called an isolating set for n/3if W = Uf:l Wk, where,for each k, Wk is an isolating

set for n/3in a (,8- )-subsection Sr.; incident to n/3and where the Sr.; (k = 1,..., K) are

all the (,8- )-subsections incident to n/3. With Vk denoting the base for Wk and with Ak

denoting the corresponding arm, we call V = Uf:l Vk the base of W and call A = Uf=lAk

the arm for W or the arm for V. We also refer to A as an arm for n/3. Finally, with

Xk denoting the conjoining set in Sr.; corresponding to Wk, we call X = Uf=l Xk the

conjoining set for n(3 corresponding to W. .
Thus, every isolating set for a maximal ,8-node n/3 separates nJ from all the other

maximal (,8+ )-nodes in (}JL.

Note that the Vk are disjoint from each other because each Vk is a set of internal ordinary

O-nodes of sf; and because the sf;; meet only at bordering nodes. V = Uf=l Vk is a finite, I

set of ordinary O-nodes within the cores of the Sr.;. However, V cannot be void - in

contrast to any single Vk - because the core of at least one of the sf; will be incident to

n/3 (Lemma 2.2(v)). Furthermore, W = V U {nO} if n/3 embraces a O-node nO; otherwise

W = V. Finally, with 1) denoting the set of all the 0-nodes that are O-adjacent to n(3, we

have X = V U 1); 1) may be void, but, if it is not void, all its O-nodes are ordinary.

Our isolating sets have been so defined that maximal nodes are "isolated" not only by

the nodes of those isolating sets but also by certain branches incident to those latter nodes.

These branches may playa role analogous to that played by the branches incident to an

ordinary O-node. For instance, Kirchhoff's current law might be applicable to them, as we

shall see.

Definition 3.4. A cut in a subsection. Under the notations and conditions of Definition

3.1, let C be the set of all branches in A that are incident to W. Then. C is called a cut for

n(3+at W in sf-.

C is a finite set because W is finite and every O-node is of finite degree. For example,

in Figure l(a), C = {bo,b},b2} is a cut for nl at W = {n~,ng,nn. That same set C is also
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a cut for n~ at W', where W' = V' = {n~, ng}. With regard to Figure 1(b), let C be b1

along with the six branches incident to ng through n~ and lying to the right of those nodes.

Then, C is a cut for the 2-node ni at W = {n~,ng, . . ., nn. On the other hand, b1 along

with the branches incident ,to ng through n~ and lying to the left of those nodes comprise

a cut for the other 2-node n~ at the isolating set {ng,..., n~, n~o} for n~.

Definition 3.5. A cut for a node. Under the notations and conditions of Definition 3.3,

let Ck be the cut for the ,8-node n{3at Wk in Sr.; for each k = 1,..., K. Then, C = Uf=l Ck

is ca.lled a cut for n{3at W.

Not€ that C resides in A = Uf=l Ak = Uf=l(Sr.; \Ak)'

There is another result we sha.ll need - the extension of Konig's lemma to transfinite

graphs. This has already been established in a prior work [11] for a jl-graph. To apply it,

we need the following definition. Two nodes (of not necessarily the same rank) are said to

be ,8-adjacent if they are not shorted and if they are incident to the same (,8- )-subsection.

Here now is the extension of Konig's lemma.

Lemma 3.6. Let glL satisfy Conditions 2.1 and also the following two conditions:

(a) Every jl-node is jl-adjacent to only finitely many jl-nodes.

(b) There are infinitely many jl-nodes.

Then, for each jl-node n~, there is at least one one-ended jl-path starting at nb'

4 Contractions

For the moment, let us consider once again just a single([3- )-subsectionsf-. Let n{3+be

a maximal bordering (,8+)-node for sf-.

Definition 4.1. A contraction in a subsection.

Case 1: First, assume that n{3+is incident to sf- through one or more nonelementary

tips (and possibly through elementary tips as well). A contraction to n{3+ in sf- is a se-

quence {Wp}~l of isolating sets Wp for n{3+in sf- (Definition 3.1) satisfying the following

two conditions, wherein Ap is the arm for Wp and Vp is its base.

13



(a) Given any branch b, there is a p such that b is not in Aq for all q ~ p. Moreover, for

q > p, Aq c Ap and Vq n Vp = 0.

(b) There is a finite set {pf- }k=l of one-ended (j3- )-paths in the core of Se- such that

pf- meets n.B+and also meets exactly one node of Vp for every p. Moreover, every

node of Vp is met by at least one of the pf-.

The pf- are called the contraction paths for {Wp}~l'

Case 2: On the other hand, if n.B+is incident to sf- only through elementary tips, set

Wp = {nO} for every p, where nO is the O-node that contains those elementary tips. Then,

{Wp}~l is called the trivial contraction to n.B+in Se-. This ends Definition 4.1. eft

In Case 1, the ranks of the pf- need not all be the same. Furthermore, with cardY

denoting the cardinality of a set Y, we have 0 < cardVps; m and 0 < cardWp s; m + 1

for every p. Of course, cardVp s; cardWp. Thus, in saying that there is a contraction to

n.B+in Se-, we are in fact imposing more structure upon Se-. Note also that the part of

a contraction path between Vp and n.B+will lie entirely within Ap, for other wise Vp would

not separate n.B+from Ap = Se-\A.

In Case 2, Vp = 0 for allp, and there are no contraction paths and no arms corresponding

to the trivial contraction {Wp}~l'

Lemma 4.2. In Case 1 of Definition 4.1, every node no that is totally disjoint from

n.B+ will not be incident to Aq for all sufficiently large q. .

Proof. The conclusion is obviously true if no is not incident to Se-; so, assume it is

incident to Se-. If no is a O-node, it is incident to a branch that will be excluded from Aq

for all sufficiently large q; hence, no will be too. So, let the rank of no be larger than O.

Suppose no is incident to Aqi for infinitely many qj (i = 0,1,2,...) with qo< ql < q2<

. . " Since Aqi C Aq whenever qj > q, no is incident to Aq for all q ~ 1. Therefore, any

path in Al that meets no must meet Vq for all sufficiently large q. In particular, within

Al there is a one-ended 6-path pS (6 > 0), which meets every Vq (q ~ 1) and whose6-tip

tS is shorted to no. Thus, pS meets a contraction path in Al infinitely often: that is, tS

is nondisconnectable from the tip to of that contraction path. By Condition 2.1(c), tS and

to are shorted. Since to is embraced by n.B+,no and n.B+cannot be totally disjoint. Our
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supposition is false. ..

Definition 4.3. Let n!3be a maximal ,8-node and let Sf.; (k = 1,..., K) be its incident

(,8- )-subsections. Assume that there is a contraction {Wk,p}~l to n!3 in each Sf.;. Set

Wp = Uf=lWk,p for each p. Under these conditions, {Wp}~l is called a contraction to n!3.

A contraction path for {Wp}~l is simply a contraction path for {Wk,p}~l in one of the

S !3-
b,k'

Here again, cardVp and cardWp are uniformly bounded with respect to p, and cardVp

::; cardWp. Also, for q > p, we have again Aq CAp and Vqn Vp = 0.

As a.nexample, wecan construct a contraction to the I-node ni in Figure l(a) by choos-

ing an infinite sequenceof O-nodepairs, such as the base {ng,ng}, that shift progressively

leftwards. Each such base along with the embraced O-node n~ comprise one of the isolating

sets in the contraction to n}. The corresponding contraction paths lie along the upper and

lower horizontal parts of the ladder.

An example of a contraction to the 2-node n~ in Figure l(b) can be obtained by shifting

the base {ng,.. ., nn progressively leftwards and appending n~ to each such base to get a

sequence of isolating sets for n~. Now, we have six contraction paths lying along the three

upper parts and three lower parts of the horizontal ladders and the ladder L.

5 Finitely Structured p-Graphs

Definition 5.1. Locally finitely structured j.L-graphs.A j.L-graphg~ is called locally finitely

structured if g~ satisfies Conditions 2.1 and if there is a contraction to n!3for every maximal

,8-node n!3of every rank ,8 > O.

Lemma 5.2. Let (il-' be a locally finitely structured j.L-graph.Then, for every rank,8 > 0,

every maximal ,8-node nr3 in (ill is ,8-adjacent to only finitely many maximal (,8+ )-nodes.

Proof. This follows directly from Conditions 2.1(e) and (f). ..

Definition 5.3. Finitely structured j.L-graphs.A j.L-graph(ill is called finitely structured

if it is locally finitely structured and has only finitely many fl-nodes.

Lemma 5.4. Assume gll is finitely structured. Then, gll has only finitely many (j.L-)-

subsections.
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Proof. g~ has only finitely many J-L-nodes,all of which are perforce maximal. Moreover,

every J-L-nodeis incident to only finitely many (J-L-)-subsections (Condition 2.1( f)). Further-

more, every (p,- )-subsection is incident to at least one J-L-nodesince g~ is J-L-connected.Our

conclusion follows. "
Given an arm A for a maximal ,6-node, we say that a one-ended a-path pa (a < ,6)

eventually lies in A if pa contains a one-ended a-path that lies entirely in A.

Lem ma 5.5. Let g~ be locally finitely structured. For every rank ,6 (0 < ,6 S J-L) and for

every maximal ,6-node n!3in g~, choose an arm A for n!3. Then, everyone-ended a-path pa

(0 S a -< J-L)will eventually lie in the arm for the maximal node n!3 (a < ,6) that embraces

the a-tip of pa.

Proof. Let V be the base of A. pa cannot pass infinitely often into and out of A

because each such passage must be through a different node of V and V has only finitely

many nodes. Since n!3embraces the a-tip of pa, pa must eventually lie in A. "
Given two reduced graphs 1t and M of g~, 1t\M denotes the reduced graph induced

by all the branches in 1t that are not in M.

Lemma 5.6. Let gJ.l.be locally finitely structured. Let {Wp}~l be a contraction to the

maximal ,6-node n!3 (,6 > 0) and let {Ap}~l be the corresponding sequence of arms. Then}

for any q > p the reduced graph Ap \Aq has at most finitely many nodes of rank ,6 - 1 and

no node of higher rank.

Proof. Let Vp be the base of Ap and let Sc denote the union of the cores of all the

(,6- )-subsections to which n!3 is incident. Now, all the nodes of Vp, of Vq, and of Ap\Aq

are interior nodes of Sc and hence have ranks no larger than 3 - 1. Also, Vp U Vq separates

Ap \Aq from all (,6+ )-nodes, and all the nodes of Vp U Vq are ordinary O-nodes. It follows

that no (,6+ )-node is incident to Ap \Aq.

l\OW,suppose that Ap \Aq has an infinity of (,6-l)-nodes. Each one has to be maximal.

Ap \Aq can have only finitely many components because each branch of Ap \Aq is (3-)-

connected to a node of Vp U Vq according to Lemma 3.2 and because Vp U Vq is a finite

set. Thus, one of these components, say, M has an infinity of (,6 - l)-nodes. Moreover,

M is (,6 - 1)-connected since it is (,6- )-connected. Since gJ.l.is locally finitely structured,
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by Lemma 5.2, every ({3- 1)-node in M is ({3- I)-adjacent to only finitely many ({3- 1)-

nodes. Thus, the hypothesis of Lemma 3.6 is fulfilled when gll is replaced by Ap \Aq and

fl is replaced by {3- 1. Consequently, M contains at least one one-ended ({3- I)-path.

Hence, M and thereby Ap\Aq has a ({3- 1)-tip. Since Ap\Aq is a reduction of a fl-graph

where fl ~ {3,Ap \Aq must have a {3-node. This contradicts our prior conclusion that no

({3+)-node is incident to Ap \Aq. Thus, our supposition is wrong, and Ap \Aq has at most

finitely many ({3- I)-nodes and no node of higher rank. .
6 Finitely Structured J-l-Networks

An electrical fl-network NIL is a fl-graph gIL whose branches consist of electrical parameters

[5, Section 1.4]. In this work Nil will not have any reactive elements. Reductions of Nil are

reductions of gIL with the same assignment of electrical parameters to branches. Networks

and reduced networks will be denoted by boldface capital letters - in contrast to the

calligraphic capital letters used for graphs. Thus, if A is an arm in the graph gJ1.,then A

will denote A with the given assignment of electrical parameters to its branches. All the

terminology and definitions used for graphs are carried over to networks. Thus, we may

speak of subsections, cuts, contractions, and so on for the network Nil.

In this work NIL will be sourceless; this means that every branch bj of NJ1.consists only

of a resistance rj, whose value is a real positive number measured in ohms. The reciprocal

gj = rjl is the branch's conductance.

A path in NIL is called perceptible if the sum of all the resistances in the path is finite.

Definition 6.1. Finitely Structured fl-Networks. A fl-network NIL is called finitely

structured if the graph of Nil is finitely structured (Definition 5.3) and if, for every {3with

0 < (3 :s; fl and for every maximal (3-node n/3 in NIL, there is a contraction {Wp}~l to n/3

all of whose contraction paths are perceptible.

It is assumed henceforth that NIL is sourceless and finitely structured. Also, when the

contraction paths for the contraction {Wp}~l are all perceptible, the contraction itself will

be called perceptible. We will always choose our contractions to be perceptible.

A source branch is a branch consisting of a voltage or current source and possibly a
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resistance as well. If that resistance is absent, the branch is called a pure source [5, Section

1.4]. NIL has no source branch. However, we will at times append source branches to NIL,

but the resulting network will be denoted by N~ - or by N~ if all appended branches are

pure voltage sources.

Lemma 6.2. Between every two nodes (of any ranks) in NIL there is a perceptible path

that terminates at those two nodes.

Proof. Let na and nb be the two nodes. By the J.L-connectednessof NIL, there is a finite

path pc<of essential rank a (0 :Sa S J.L)that terminates at na and nb. Thus, a - 1 is the

largest, rank for all the tips traversed by pc<. If a = 0, that path has only finitely many

branches, and our conclusion follows. So, consider the case where a ~ 1.

Let ()be the maximum rank among all the ranks of the maximal nodes that pc<meets. By

Lemma 2.3, pc<will meet only finitely many maximal ()-nodes. We can choose an isolating

set for each of those ()-nodes such that their corresponding arms are pairwise totally disjoint

and such that neither na and nor nb is incident to an arm except when na or nb is embraced

by a ()-node. Let nO denote one of the maximal ()-nodes that pc<meets. Also, let A be

the corresponding chosen arm, and V its base. Orient pc< from na to nb. Then, there will

either be a first node nl E V that pc< will meet before meeting nO, or a last node n2 E V

that pc<will meet after leaving nO, or both. In each case, replace that part of pc<between

nl and nO or between nO and n2 by a perceptible path in A that terminates at nl and nO

or terminates at nO and n2. This can be done because of Definition 6.1.

Do this for all of the finitely many ()-nodes that pc<meets. Let P; be the finite a-path

resulting from the said replacements. Upon deleting the substituted a-paths from P;, we

are left with finitely many finite paths. For each of them, the ma..xirnumrank ()' among the

ranks of all the maximal nodes that path meets is less than () (i.e., (J':S:()-1). We can treat

each one of those paths in the same way to obtain finitely many 5ubstituted perceptible

paths, whose deletions leave finitely many finite paths. For each of those, the maximum rank

()II as described above is still lower (i.e., ()II:S () - 2) Continuing this process, we are finally

left with finitely many finite O-paths, which are perforce perceptible. Upon connecting

together all of those O-paths and the finitely many substituted paths in accordance with the
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tracing from na to nb, we obtain a perceptible path that terminates a.t those two nodes. "-

We have already defined in Section 2 what is meant by saying that two nodes are

"shorted." We now wish to extend this idea, for, while manipulating networks, we will

at times combine two or more maximal nodes by shorting them. This is accomplished

by creating a new node that embraces all the tips of all ranks that are embraced by the

said nodes. With regard to the elementary tips, something more is done to complete the

shorting: If any branch becomes a self-loop, it is eliminated. Also, if parallel resistors arise,

they are combined by adding conductances. Finally, if a branch arises that is not incident

to an ordinary O-node, that branch is replaced by two branches in series by introducing

another ordinary O-node; this may be needed to maintain the second sentence of Condition

2.1(a).

An important and easily checked consequence of Definition 6.1 is

Lemma 6.3. Let us short finitely many nodes (of any ranks) of the finitely structured

J.L-networkNil. Then, the resulting network is also a finitely structuru/ fl.-network.

7 Excitations by Pure Sources

The fundamental theory for voltage-current regimes in transfinite networks [5, Chapters

3 and 5], [6] takes pure voltage sources into account by transferring them into resistive

branches. That transference can be accomplished only when one node of the voltage source

is an ordinary O-node. For our purposes, we need a fundamental theory that encompasses

pure voltage sources without transferring them. In particular, we wish to append a pure

voltage source to Nil possibly at two nodes of ranks higher than O. Consequently, our next

objective is to generalize the fundamental theory accordingly. In doing so, we shall also

generalize Kirchhoff's current law to make it applicable to a cut that isolates an a-node.

Index the branches of the sourceless fl.-network Nil by j = 1.2. :3,. '" Let bo be a

source branch and append it to any two nodes of Nil, whatever be their ranks. Denote the

resulting augmented network by N~. At this time, no restriction is placed on the kind of

source branch bo may be; it may be either a pure voltage source, or a pure current source,

or a source with a resistance. The current vector for N~ is denoted by i = (io, iI, i2,. . .),
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where ij is the current in branch bj, j = 0,1,2, We wish to construct a Hilbert space

Ka of permissible branch-current vectors for N~, which is like the space K [5, page 154] but

without the branch bo contributing a term to the inner product for Ka.

As the first step toward that objective, we consider Kirchhoff's current law applied to

a cut C in N~ that isolates one of the maximal nodes nO' (0 ::; a ::; J.L)in N~. If nCt is an

ordinary O-node (Le., a = 0), we let C denote the set of all branches incident to nO<and we

orient C toward nCt. If however nCtis of higher rank (Le., 0 < a ::; J.L),we let C be a cut that

isolates nCt from all other (a+ )-nodes (Definition 3.5) and we orient C toward the isolating

set W at which C exists - effectively toward nCtagain. In both cases, C is a finite set. If

the source branch bo is incident to nCt,then bo E C. Kirchhoff's current law for C asserts

that

2: xij = 0
C

where ij is the current in branch bj, the summation is over the indices of the branches in C,

(1)

and the plus (minus) sign is used if the orientations of C and branch bj agree (respectively,

disagree). We have yet to establish whether (1) holds.

The next step is to construct a Hilbert space Ka of current vectors i = (io, i}, i2, . . .) in

N~ for which the total power dissipation L~l iJrj within NIL is finite and also for which

(1) holds whatever be the choice of C. Let Ia be the set of all current vectors i for N~

such that L~l iJrj < 00. (In contrast to the constructions in [5, pages 74 and 154], Ia

cannot now be identified as an inner product space; for instance, the nonzero vector i for

which io = 1 and ij = 0,j = 1,2,3,..., has zero power dissipation within NIL.) Next, let

K~ denote the span of all basic currents [5, page 154] in Ia..

Lemma 7.1. Kirchhoff's current law (1) holds at erErY cut C u'henever i E K~.

Proof. Since there are only finitely many branches in C, any a-loop (0 ::; a ::; J.L)can

embrace branches of C at most finitely often. Moreover, each a-loop current contributes

additive terms to the left-hand side of (1) an even number of times. positively for half of

those times and negatively for the other half. Hence, its total contribution to the left-hand

side of (1) is O.

The same is true for any basic current i. Indeed, a basic current is an a-basic current
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for some a with 0 ::; a ::; p. Moreover, a O-basic current is simply a O-loop current. On the

other hand, for a > 0, an a-basic current i is a countable sum i = I: im of a-loop currents

such that only finitely many of the im meet any given O-node (with two other conditions

imposed as well) [5, page 154]. This implies that only finitely many of the im pass through

C because every branch of C is incident to an ordinary O-node and therefore can carry only

finitely many of the im and because C is a finite set. Since each im contributes 0 to the

left-hand side of (1), i does too.

We can now conclude that the same is true for every member of K~. ...

We'now define an inner product for K~ by

00

(i,s) = 2:ijsjrj
j=l

(2)

where i, s E K~. Even though (2) does not contain io and So, it is nonetheless positive-

definite. Indeed, (i, i) ~ 0 obviously. Moreover, if (i, i) = I:~1 iJrj = 0, then ij = 0 for

all j > O. Now, choose a cut C that isolates one of the two nodes to which bo is incident.

Thus, bo is a member of C, and by (1) we have

io = - 2: ij
C\{bo}

(3)

where the summation is over the indices for the branches in C other than boo By (3), if

ij = 0 for all j > 0, then io = 0 too. Therefore, i = O. Whence, the positive-definitenessof

(i, s). The other inner-product axioms are also fulfilled.

Let Ka denote the completion of K~ under the norm Ilill = (i, i)t. Convergenceunder

that norm obviously implies branchwise convergence for every j > O. Since C\ {bo} is a

finite set, (3) implies branchwise convergence for j = 0 too. Thus, the members of Ka can

be identified through branchwise convergence as current vectors in N~. 11oreover, it follows

in a standard way [4, pages 263 and 350] that Ka is a Hilbert space with an inner product

given by (2).

The branchwise convergence coupled with the finiteness of the set C allows us to extend

Lemma 7.1 immediately:

Lemma 7.2. Kirchhoff's current law (1) holds at every cut C whenever i E Ka.
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Let I be the subset of Ia consisting of all i E Ia for which io = O. With (2) as the inner

product, I is a Hilbert space. Let K be the corresponding subset of Ka. In fact, K is a linear

subspace of Ka. Now, augment NJ.Lwith an appended branch boconsisting of a pure current

source ho to obtain the augmented network N~. This is permissible according to [5, pages

98 and 156] because there is a perceptible path between any two nodes of NJ.L(Lemma 6.2).

Moreover, we can transfer ho to within NJ.Lalong a perceptible path P to obtain a unique

current vector (i~, i~,.. .) in the resulting network in accordance with [5, Theorem 3.5-2].

(That is, in the resulting network the branch bohas been eliminated by removing it after the

said transference is made.) We are now free to append the component i~ = 0 to that current

vector and will obtain thereby if = (0,i~,i~,...) E K. Upon restoring bo and transferring

the current source back to bo, we obtain the corresponding current vector i for N~ as the

superposition of if and a loop current of value ho flowingaround the loop P U{bo}. Hence,

i is a member of Ka and therefore satisfies Kirchhoff's current law according to Lemma 7.2.

It is a fact that i is independent of the choice of the perceptible path P in NJ.Lby which i

was constructed [5, pages 98 and 156]. In this way, a pure current source in bo generates a

unique current vector i E Ka in accordance with [5, Theorem 3..5-2].

We have yet to establish that a pure voltage source can be connected to any two nodes

of NJ.L.This would not be possible if NJ.Lacted as a short between those nodes. However,

as was just noted, we are permitted to connect a pure current source between those two

nodes. We shall do so and then will show that NJ.Lacts as a positive resistance between

those nodes. This will justify the application of a pure voltage source to them. Actually,

it is just as easy to show something more general; namely, at J( arbitrarily selected nodes,

Nil behaves as a (I( - I)-port with a nonsingular driving-point resistance matrix.

The voltage-current regime induced by appending finitely many pure current sources to

Nil can be described by a set of node voltages as follows. Choose any node ng of any rank

in Nil and fix it. We call ng ground and assign to it the node voltage Ug= O. Next, choose

any other node no of any rank and select a perceptible path P in Nil terminating at ng and

no (Lemma 6.2). Orient P from no to ng. Then, the node voltage Uoat no is defined to be

Uo = L :f:Vj
p

(4)
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where the summation is over the indices of the branches in P, Vj is the voltage of the branch

bj in P, and the plus (minus) sign is used if the orientations of P and bj agree (respectively,

disagree). The perceptibility of P ensures that (4) converges absolutely whenever it has an

infinity of terms [5, page 83]. Moreover, (4) is independent of the choice of P so long as P

is perceptible; indeed, Condition 2.1(c) allows us to invoke [9, Corollary 8.3], which asserts

that independence.

Arbitrarily select finitely many nodes nI,. . ., nK of any ranks in Nt' and connect pure

current sources between them. Without loss of generality, we can take them to be K - 1

current sources feeding the currents h2"'" hK from nl to n2,..., nK respectively. We

designate nl as the ground node and obtain thereby the respective node voltages u2,..., UK.

In this way, Nt' acts as an internally transfinite and sourceless, resistive (K - I)-port with

nl as the common ground for the variousports. Moreover,h = (h2,.. . ,hK ) is the imposed

port-current vector, u = (U2,"', UK) is the resulting port-voltage vector, and the mapping

Z : h r-+u is the (K - 1) x (K - 1) resistance matrix for this (I( - I)-port. We will now

show that Z is nonsingular. This will imply that any choice of the port-voltage vector u can

be obtained by setting h = Z-l u. This will also imply that any finite set of pure voltage

sources can be appended to any nodes of Nt' to obtain a unique voltage-current regime

throughout Nt'.

Lemma 7.3. Z is symmetric and positive-definite and therefore nonsingular.

Proof. The symmetry of Z follows from the reciprocity principle [5, page 80], which

extends to our present situation of pure current sources. (The latter can be seen by trans-

ferring current sources along perceptible paths in Nt', invoking reciprocity for resistive

branches, and also invoking the absolute convergence of the infinite series that arise in

order to rearrange summations.)

\Ye now prove that Z is positive-definite. Choose any vector h = (h2" .., hK) of current

sources hk applied at the ports. For each nk (k = 2, . . ., K), choosea cut Ck that isolates nk.

Thus. the source branch bk for hk is a member of Ck, but the other source branches are not

in Ck. Hence, Ck = DkU{bk}, where Dk is the set of branches in Ck that lie within Nt'. As

was noted in the paragraph after Lemma 7.2, the current regime induced when hk is acting
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alone satisfies Kirchhoff's current law at Ck. Moreover, the same is true at Ck when any

other appended current sources is acting alone. Consequently, by superposition, Kirchhoff's

current law is satisfied at Ck when all the current sources are acting simultaneously. We

can conclude that in the latter case the net current flowing through Dk away from nk is hk.

Therefore, there is at least one branch of Dk that carries a current of absolute value no less

than Ihkl/dk, where dk = cardDk' Let'rmin,k be the least resistance among the branches

of Dk. Hence, the power dissipated in all the resistances of Dk is no less than bkh~, where

bk = rmin,kdJ;2 > O. Hence, with a cut chosen for each of the nodes n2,"" nK, we see

that the power dissipated in all those cuts is no less than Ef"=2bkhr The last expression

is positive if h ¥' O.

Now. let (.,.) be the inner product for (K - 1)-dimensional Euclidean space. Tellegen's

equation holds for transfinite networks even when pure current sources are present. A

consequence is that the power (u, h) = (Zh, h) supplied by the sources to Nil is equal to

the power dissipated in all the resistances in Nil. Thus, (Zh, h) 2::Ef"=2 bkh~,which proves

that Z is positive-definite. ..

Finally, we come to the result we seek. Remember that the source branch bo can be

connected to any two nodes of Nil to obtain the augmented network N~.

Theorem 7.4. Let bo be a pure voltage source eo. Then, there is a unique i E Ka such

that
00

eoso = L: rjijsj
j=l

(5)

for every s E Ka.

Proof. To prove this theorem, we will insert a resistance p > 0 in series with the

voltage source eo within the branch bo to obtain the unique current vector iP = Ug.ii, i~,. . .)

dictated by [5, Theorem 3.3-5],and then we will take p ---> 0 to obtain (5) in the limit.

With p inserted as stated, [5, Theorem 3.3-5] asserts that

00

.p ~.p
eoso = plOSO + ~ rjzjsj.

j=l
(6)

By virtue of Lemma 7.3, NtL appears as a positive driving-point resistance z between the
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two nodes to which the source branch bo is connected. Hence,

.p .p
eo - pZo = zZo' (7)

With A being another positive value for the resistance inserted into bo, we have that

'P'A eo eo
Zo-to= O

p+z A+Z
(8)

as p, A- 0+ independently. From (6) and (7), we obtain
00
'" (

'p 'A
) (

"A 'P
) (

'p 'A
)L rj Zj - Zj Sj = AZO - pzo So = z Zo- Zo So.

j=l
(9)

Note now that both iP and iA are members of Ka. (For instance, iP can be obtained by

using ig as a pure current source in bo in accordance with the paragraph following Lemma

7.2 again.) Also, recall that the norm lIill for any i E Ka is given by lIill2 = 2:};1 rjiJ.

Consequently, we may set Sj = ij - iJ in (9) and then invoke (8) to get

00

IW-iAW = Lrj(ij-iJ)2 = z(ig-iS)2 - 0
j=l

as p, A- 0+ independently. Hence, {iP: p > O}is a Cauchy directed function in Ka and

therefore convergesin Ka to an i E Ka. Since the inner product of Ka is bicontinuous, we

may pass to the limit in (6) to obtain (5).

i is uniquely determined by (5) because the right-hand side of (5) is the inner product

(i, s) determined for an s E Ka by the left-hand side. .
Henceforth, we take it that the voltage-current regime in NtL excited by a single pure

voltage source eo appended to any two nodes of NtL is dictated by Theorem 7.4. We may

alter NIL by shorting a finite set of maximal nodes to obtain one terminal for co and by

shorting another disjoint, finite set of maximal nodes to obtain the other terminal for eo;

this is permissible according to Lemma 6.3. That possibly altered network with eo appended

will be denoted by N~. Furthermore, the voltage-current regime corresponding to finitely

many pure voltage sources appended to the linear network NIL is determined from Theorem

7.4 by superposition. Finally, when we speak of node voltages in N~, it is understood that

some ground node has been selected.
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We have already used the following fact [5, page 83] regarding (4), but, since we wish

to use it again, let us state it explicitly.

Lemma 7.5. Let P be a perceptible path with an infinity of branches. Then, the sum

of its branch voltages converges absolutely.

8 A Maximum Principle for Node Voltages in a /-l-Network

Let NO be an ordinary, locally finite, infinite network whose branches are purely resistive

(Le., all sources are at infinity), and let NO carry a current that satisfies Kirchhoff's current

law at every node, Kirchhoff's voltage law around every O-loop(that is, around every finite

loop), and Ohm's law. Upon choosing any node of NO as ground and setting its voltage

at 0, we obtain unique node voltages throughout NO. The maximum principle for those

node voltages asserts that either they are all equal to 0 or there is no maximum value and

no minimum value among them. If NO were to be embedded as a O-subsection in a larger,

finitely structured jl-network NtL (J.l~ 1), this principle would assert that the maximum

and minimum node voltages for that subsection would have to occur at bordering nodes of

NO. The objective of this section is to extend this principle to subsections of higher ranks

in NtL.

Again let s~- be a (/3- )-subsection of the finitely structured J.l-network NtL with an

assigned ground node at 0 V. s~- will be called sourceless if none of its internal nodes is

incident to a source branch. (However, we allow bordering nodes of s~- to be so incident.)

Since s~- has only finitely many bordering (/3+)-nodes, we can let Umax(and Umin) be

the largest (respectively, least) node voltage at those bordering (/3+ )-nodes. Consider the

following. Part (a) is a transfinite generalization of the maximum principle.

Properties 8.1. For all /3 = 1,. . ., J.l, the following hold.

(a) There are exactly two possibilities for all the node voltages of any sourceless (3 - )-

subsection sf- of NtL.

(al) All those node voltages (for both internal and bordering nodes of Sf-) have the

same value.
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(a2) S~- has at least two incident (;3+ )-nodes with differing node voltages, and the

internal node voltages of s~- are strictly less than Umaxand strictly larger than

Umin.

(b) Let pa (a < ;3) be anyone-ended a-path in S~- and let ta be its a-tip. (pa need

not be perceptible.) Let {ml, m2,"'} be any sequence of nodes embraced by pa that

approaches ta. Then, the node voltages at the m[ converge to the node voltage of the

(a + 1)-node that embraces ta.

We ,will show that Properties 8.1 always hold. We start with a lemma.

Lemma 8.2. Assume that Properties 8.1(a) hold. Let n/3 be a maximal ;3-node (;3 > 0),

whose incident (;3- )-subsections are all sourceless. Assume also that at least one of those

incident (;3- )-subsections satisfies (a2). If the voltage u/3at n/3 is no less than all the node

voltages at the (;3+ )-nodes that are ;3-adjacent to n/3, then Kirchhoff's current law (1) is

violated at some cut C for n/3.

Proof. So far as Kirchhoff's current law is concerned, the (;3- )-subsections incident

to n!3 that satisfy (a1) can be ignored because all their branch currents are O. So, let us

consider only those (;3- )-subsections incident to n/3 that satisfy (a2). In their union U

choose a perceptible contraction {Wp}~1 to n/3. If n/3is O-adjacent to one or more internal

nodes of U, then the voltages at those internal nodes are strictly less than the voltage u/3

at n/3. Thus, the current leaving n/3 through the branches incident to n/3will be positive.

Let Vp be the base of Wp' Since we may be dealing with only some of the (;3- )-subsections

incident to n/3, it is possible for Vp to be void. In that case, n/3must be a-adjacent to internal

nodes of U, and the positive currents leaving n/3 through the corresponding branches shmvs

that Kirchhoff's current law is violated at n/3.

So assume that Vp is nonvoid. Therefore, it is nonvoid for every p and we have cardVp :S

m, where m is finite and independent of p. Let Ap be the arm for Vpand set Mp = Ap \Ap+l'

All the nodes of Mp are core nodes and none of them are a-adjacent to n/3. Moreover, for

p> 1, Vp separates Mp-I and Mp. Now, each contraction path for {}\t'P};;1 is perceptible,

and the a-node voltages at the Vp along any contraction path are strictly less than u/3 (see

Property 8.1(a2)) and converge to u!3(see (4) and Lemma 7.5). Since there are only finitely
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many contraction paths and since every node of Vp lies on a contraction path, it follows

that we can choose two natural numbers p and q with p < q such that the largest node

voltage for Vp is less than the least node voltage for Vq.

Set Mp,q =U[:~ Mk. We can generate the same voltage-current regime in Mp,q as it

has in N~ by appending pure voltage sources to Vp U Vq as follows: Let n~,l be a node of

Vp with the largest node voltage Up,l for Vp. Let n~,k be any other node of Vp and let Up,k

be its voltage. Connect a pure voltage source of value Up,l - Up,k 2:a from n~,k to n~,l with

its positive terminal at n~,l' (That source will be a short if Up,l = Up,k') Do this for all n~,k

in Vp. Similarly, connect a pure voltage source from a node n~,l of Vq with the least node

voltage Uq,l for Vqto each of the other nodes of Vqto establish their relative node voltages

at the values they have in N~. Finally, for the same purpose, connect a pure voltage source

ep,q of value Uq,l - Up,l > a from n~,l to n~,l' positive terminal at n~,l' All these appended

voltages are nonnegative, and moreover ep,qis positive.

We shall argue by superposition. Assume that ep,qis acting alone (i.e., all other voltage

sources set equal to zero). Then, Vp (and Vq) is shorted into a single ordinary a-node np

(respectively, nq). The resulting network M~,q has the pure voltage source ep,q connected

between np and nq and is an a-network (a < /3) with finitely many a-subsections.

We are free to assume that np and nq are of rank /3. Indeed, one-ended (/3 - 1)-paths

could be appended to np and nq through their (/3-I)-tips with those paths being otherwise

totally disjoint from each other and from M~,q' Those paths will carry no currents and will

not alter the voltage-current regimes in M~,q' In this way, M~,q can be viewed as a union

of finitely many (/3- )-subsections.

So. by Property 8.I( a2), all nodes of M~,q other than np and nq have node voltages

strictly larger than that at np and strictly less than that at nq' Let C~ be the set of

branches of Mp,q that are incident to Vq. It follows that in M~,q the current in each such

branch is nonzero and directed away from nq'

Next, let the voltage source e connected between n~,k and n~,l act alone. Virtually the

same argument leads to the same conclusion concerning the currents in the branches of C~

so long as e :j; a. If e = 0, those currents are a.
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On the other hand, let e' be the voltage source connected between the nodes n~,l and

nO k of Vq. When e' is acting alone and is not 0, we have positive currents flowing awayq,

from n~,k through the branches of C~ incident to n~,k and positive currents flowing toward

the other nodes of Vq through the remaining branches of C~ as well as toward the nodes

of Vp through the branches of Mp,q incident to Vp. By Kirchhoff's current law applied at

the shorts imposed to make e' act alone (that is, at the nodes of e' with the said shorts in

place), the algebraic sum of the currents in the branches of C'q measured away from Vq is

positive if e' i: 0 and is 0 if e' = O.

BY,5uperposition,the algebraic sum of the currents in C~ is positive. Altogether then,

we can now conclude that, whether or not the bases Vp are void, Kirchhoff's current law

will be violated at some cut C for n(3. ..
We will use an inductive argument to establish Properties 8.1. We could start with the

maximum principle for ordinary infinite networks as described in the first paragraph of this

section. But, we won't. Instead, we will start at an even earlier stage and will thereby

establish that ordinary maximum principle as well. This will be accomplished by taking

each branch to be a more primitive kind of subsection, namely, a (0- )-subsection having no

internal nodes, exactly two (0- )-tips, and two O-nodes as its only bordering nodes. In fact,

we can view each branch as being (0- )-connected to itself but not (0- )-connected to any

other branch. In this way, the branch satisfies the definition of a subsection in a trivial way.

Moreover, all of Properties 8.1 hold for that branch. In particular, part (b) holds vacuously.

To proceed. Assume that Properties 8.1 hold for (3replaced by 8 - 1 and for all ranks

lower than (3 - 1 as well. (Thus, if (3 = 1, we have that Properties 8.1 hold for ,8 - 1 = 0,

which means we are dealing with a (0- )-subsection, that is, a branch.) We will prove that

Properties 8.1 also hold for (3.

Clearly, Properties (a1) and (a2) are mutually exclusive for any arbitrarily chosen ((3-1)-

subsection S~-. Assuming (al) does not hold, we prove that (a2) must hold. Let the largest

rank among all the internal nodes of S~- be a. Thus, Q < (3. If a < 3 -1, then S~- is also

a (((3-1)- )-subsection , and therefore (a2) holds by the inductive hypothesis (or trivially if

(3= 1,for then we have a (0- )-subsection, namely, a single branch). So, consider the case
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where a =13 - 1. Some or all of the (a- )-subsections in NI' partition s~-, and Properties

8.1 (with 13replaced by a) hold for each of them - by the inductive hypothesis again. In

fact, (a2) holds for at least one of them since (a1) does not hold for sf-.

Let n~ be any arbitrarily chosen internal a-node of s~-. There will be another node nb,

which is either an internal a-node of s~- or is a bordering (13+)-node of sf-, such that the

voltage at nb differs from the voltage u~ of n~. We can choose an a-path that terminates

at n~ and meets nb and lies in the core of s~- except possibly for a last branch incident

to nb (Lemma 2.2(iii)). Upon tracing along that path starting from n~, we will find an

internal a-node nO'(possibly n~ itself) with the same voltage as n~ but a-adjacent to either

nb or to an internal a-node with a voltage different from u~. Let Su be the union of all the

(a- )-subsections that are incident to those two a-adjacent nodes with differing voltages.

According to Condition 2.1(f) - or Condition 2.1(a) if a- = 0-, Su is a finite union and

has only finitely many incident (a+ )-nodes. By the inductive hypothesis again, (a2) holds

for each member of Suo Let n~+ be an (a+ )-node incident to Su with the largest voltage

U~+ as compared to the other (a+ )-nodes incident to Suo We have u~+ 2': u~. If n~+ is a

bordering node of sf-, then either u~+ > u~ = uO'or u~+ = u~ = uO'. In the latter case,

the internal node nO'will be a-adjacent to another (a+ )-node with a voltage less than uO'.

All this implies that either there is a bordering node of sf- with a voltage larger than u~

or there is an internal a-node nr with ur 2':u~ and with nr incident to an (a- )-subsection

whose internal node voltages are strictly less than ur.

Now, consider the set Nt+ of all the (a+ )-nodes that are a-adjacent to nr. At least

one node of A'lC>+ must have a voltage larger than ur, for otherwise Kirchhoff's current law

would be violated at a cut for nl according to Lemma 8.2 (with 13replaced by a = 13 - 1).

Thus, either we have a bordering node for sf- in Nt+ with a voltage larger than ul or,

failing that, we can select an internal a-node n2 E Nt+ with a voltage u2 no less than the

voltages at all the other a-nodes Q-adjacent to nl and with u2 > ul 2':u~. Note also that

we can connect nl and n2 by an (Q- )-path since they are a-adjacent.

In the case where we have selected n2' we can invoke the inductive hypothesis (a2) and

Lemma 8.2 again to deduce that either there is a bordering node with a voltage larger than
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U2 or there is an internal a-node n3 with the following properties: n3 is a-adjacent to n2

but not to nf; u3 > u2 > uf 2: u~; U3 is the largest voltage for all the a-nodes that are

a-adjacent to n2' Here too, we can connect n2 to n3 by an (a- )-path. This yields an

a- path from nf to n3'

Further repetitions of this argument generate an a-path pa whose a-node voltages are

no less than u~ and strictly increasing when ordered according to a tracing that starts at

nf. Either pa is finite and terminates at a bordering node of sf- with a voltage larger than

u~ or it is one-ended. In the latter case, we know from Lemma 5.5 that pa will eventually

lie in every arbitrarily chosen arm for the bordering (,8+ )-node n/3+(f3 > a) that embraces

the a-tip of pa. However, we cannot yet assert that the a-node voltages of pa converge

to the voltage u/3+of n/3+because pa may not be perceptible. Nor can we use Property

8.1(b) yet because our inductive hypothesis has it that Property 8.1(b) holds for f3 replaced

by f3 - 1, that is, for an a less than f3 - 1. We need that property for a =f3 - 1.

So, as our next step, we show that Property 8.1(b) holds for a = f3 - 1. Choose a

perceptible contraction {Wp}~1 to n/3+and let {Ap}~1 be the corresponding sequence of

arms. By Lemma 5.5, pa eventually lies in AI. Let Mp = Ap\Ap+l' By Definition 4.1,

Mp is not void. We also have that, for p > 1, Vp separates Mp-l and Mp. Moreover, Mp

has only finitely many a-nodes (perhaps, none at all). Indeed, if it had infinitely many, we

could invoke Lemma 3.6 with ILreplaced by a to conclude that Mp has an a-tip and thereby

a f3-node. This would violate the fact that WI separates n/3+from all other (f3+)-nodes.

As in the proof of Lemma 8.2, Mp can be viewed as being a finite union of (f3-)-

subsections in some expanded IL-networkwith the bordering nodes of Mp being (f3+)-nodes

that embrace the nodes of Vp U Vp+!' Indeed, we can append finitely many pure voltage

sources to the nodes of Vp U Vp+! to produce the same voltage-current regime in Mp as it

has as a part of N~. Moreover, we can append finitely many, one-ended (f3 - I)-paths to

the nodes of Vp U Vp+l through their (f3 - I)-tips and v.;iththose paths being otherwise

totally disjoint from each other and from Mp. The appending of those paths will not alter

the voltage-current regime in Mp and will yield a larger, finitely structured IL-network.

Since Mp has only finitely many a-nodes, the argument we have already constructed for
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s~- can be applied to Mp. This will lead to a finite a-path that must terminate at a node

of Vp U Vp+!, and the conclusion is that every a-node voltage for Mp is no larger than the

largest voltage for the nodes of VpUVp+!' By a similar argument "no larger" and "largest"

can be replaced by "no less" and "least".

Now, let umax,p and Umin,p be respectively the largest and least voltage for the nodes of

Vp. There are only finitely many contraction paths for the chosen contraction, each being

perceptible, and every node of Vp lies on a perceptible contraction path. It follows from

Lemma 7.5 and Equation (4) that the voltages at the various Vp along any contraction path

converge to the voltage uJJ+at nJJ+ and that therefore umax,p -+ u{3~ and Umin,p -+ uJJ+ as

p -+ 00.

As a consequence of the last two paragraphs, the a-node voltages along the path pa.

converge to uJJ+. This conclusion extends immediately to the voltages along any sequence

of nodes embraced by Pa.and approaching nJJ+.Indeed, all but finitely many of those nodes

will lie in U~l Mp. If one of those nodes nO is of rank 8 (0 :S 8 < a) and lies in Mp, its

voltage UOwill be no larger (no less) than the largest (respectively, least) bordering voltage

for the (a- )-subsection in which nOresides - according to our inductive hypothesis again.

(In the same way as before, we can view the nodes of VpUVp+l as being a-nodes.) By what

we have shown above, this in turn implies that

min( Umin,p-b Umin,p) :S UO :S max( umax,p-b um::.r.p)'

Our asserted extension follows.

Altogether then, we have established inductively that Property 8.1,b) holds for a = .8-1.

We can now complete our proof of Property 8.1(a2) under the assumption that (al)

does not hold. We now have it that, in the event that pa. is a one-enc.ed a-path, the a-node

voltages along pa. converge to the node voltage ul3+at n3+. Consequently, uJJ+> u~.Since

n~ was arbitrarily chosen as an internal a-node of S~-, it now follows that the voltages

at every internal a-node is strictly less than the maximum voltage ti.,.::xfor the bordering

(.8+ )-nodes of S~-. By the inductive hypothesis, this is also true for every internal node,

whatever be its rank. A similar argument allows us to replace "strictly less" by "strictly

greater" and "maximum voltage umax" by "minimum voltage Umin". Whence Property
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8.1(a2).

The next theorem summarizes what has so far been established. Remember that N~ is

sourceless and finitely structured (Definition 6.1), that N~ is N~ with finitely many pure

voltage sources appended, and that the voltage-current regime is determined by Theorem

7.4 along with superposition if there are more than one pure voltage source.

Theorem 8.3. For any {3= 1,..., f-L,let S~- be a ({3-)-subsection of N~ and let it

be sourceless (i.e., none of its internal nodes is incident to a source branch of N~). Then,

Properties 8.1 hold for it.

Corollary 8.4. Under the hypothesis of Theorem 8.3, assume also that S~- has only

one incident ({3+)-node n.B+. Then, the node voltages for s~- art all the same, namely,

u.B+.

Corollary 8.5. Let N~ now denote N~ with exactly one pure t'oltage source appended

to any two nodes. Let that source's value be 1 V and let the negatit'e terminal of the source

be ground with a node voltage of O. Then, the voltage at every node of N~ is no less than

0 and no larger than 1.

Proof. Let ne and ng be the two maximal nodes to which the 1 V source is appended,

with ng being the ground node. As we have done before, we can append one-ended f-L-paths

to ne and ng through their It-tips in such a fashion that the f-L-pathsare otherwise totally

disjoint from each other and from N~. This yields a larger finitely structured (f-L+ 1)-

network Nr+1. The result of this trick is that N~ becomes a finite union of sourceless

((It + 1)- )-subsections inside Nr+1. Moreover, each such subsection has no more than two

bordering nodes, namely, one or both of the two (f-L + 1) nodes that embrace ne and ng.

We may now apply Theorem 8.3 with f-Lreplaced by f-L+1 and N'" replaced by Nr+1. Our

conclusion then follows from Property 8.1( a) as applied to each of the (( 11+ 1)- )-subsections

that comprise N~. ,.

The next corollarysharpens the last one. Let ne and ng be as stated in the first sentence

of the last proof.

Corollary 8.6. Assume the hypothesis of Corollary 8.5 and let no be another maximal

node of N~ different from ne and ng.
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(i) If there is a path P in N~ that meets no and ng but does not meet ne, then Uo < 1.

(ii) If there is a path P in N~ that meets no and ne but does not meet ng, then Uo> O.

Proof. By means of the trick used in the last proof, we can take ne to be embraced by

a (IL+ I)-node, and similarly for ng. This makes N~ a finite union of sourceless ((IL+ 1)-)-

subsections in a larger (IL+ 1)-network satisfying Corollary 8.5 (with appropriate rewording

- remember that we have now established Corollary 8.5 for any natural number IL). Each

such subsection will have one or both of ne and ng as its only bordering nodes. Moreover,

the path P will lie within one of those subsections.

Under the hypothesis of (i), suppose Uo = 1. Upon tracing P starting at no, we will

meet a node with a voltage less than 1. Two cases arise:

Case 1. We meet an ordinary O-node n~ with a voltage equal to 1 and adjacent to a

O-node with a voltage less than 1. By Kirchhoff's current law, there must be another O-node

in N~ that is O-adjacent to n~ and has a voltage greater than 1. This violates Corollary 8.5.

Case 2. We meet a maximal 8-node nf with 0 < 8 ~ IL+ 1, uf = 1, and nf incident to

a (8 - )-subsection having at least some of its internal or bordering node voltages less than

1. By Property 8.1(a2), at least one of the bordering node voltages of that (8-)-subsection

will be less than 1. By Lemma 8.2, if Kirchhoff's law is to be satisfied at a cut that isolates

nf, there must be another (8+ )-node that is 8-adjacent to nf and has a voltage larger than

1. Again Corollary 8.5 is violated.

These t\VOare the only possible cases. Hence, our supposition is false, and (i) is true.

(ii) is established similarly. ..

9 Transfinite Deterministic Walks

A O-walk vVo is a walk of the conventional sort; it is an alternating sequence of O-nodes n~

and branches bm:

WO = {...,n~,bm,n~+l,bm+l""} (10)

such that the following are satisfied.

(i) For each m, bm is incident to both n~ and n~+1'
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(ii) If the sequence terminates on either side, it terminates at a O-node.

(iii) Other than the terminal nodes, the nodes of (10) are ordinary. (However, the terminal

nodes ma.y be embraced by nodes of higher ranks.)

That the nonterminal nodes of (10) are ordinary implies that WO is restricted to the

interior of a. O-subsection except possibly terminally. Furthermore, since there are no self-

loops, the adjacent O-nodes n~ and n~+1 are different for each m. Except for this, the

elements of WO may repeat.

S°D?-eterminology regarding a O-walk We: We may refer to (10) as a deterministic 0-

walk in order to distinguish it from a random O-walk, which will be discussed in the next

section. WO is called nontrivial if it has at least one branch. We say that WO embraces itself,

all its elements, all elementary tips embraced by its nodes, and all its subsequences that are

O-walks by themselves. WO may either be finite with two terminal nodes, or one-ended with

exactly one terminal node, or endless without any terminal node. When vVo has a terminal

node, we say that WO starts at (stops at) its terminal node on the left (respectively, on the

right). We say that WO leaves a terminal node if it starts at that node. We also say that

WO meets or reaches each of its elements and passes through each of its elements other than

any terminal node. However, a O-walkcannot pass through a .a-node nJ3;it can only reach

n/3 either by terminating at a O-node embraced by n/3 or by proceeding infinitely through

an arm for nJ3.

To be more precise about this last idea of "reaching through an arm," let us choose

a contraction {Wp}~l to a maximal .a-node n/3 and let {Ap}~l be the corresponding

sequence of arms. Also, let us denote one-ended parts of a one-ended or endless O-walk WO

by

W~oo,m = {...,bm-2,n~-1,bm-l,n~}

and

W~,oo= {n~,bm,n~+1,bm+l,...}.

We say that WO starts at or leaves (stops at) n/3if either WO terminates on the left (respec-

tively, on the right) at a O-node embraced by n/3 or, for every natural number q, there is
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an m depending on q such that W~oo,m (respectively, ~,oo) remains within Aq. In both

cases, we also say that WO meets n{3or synonymously reaches n{3.In the latter case, we say

that WO eventually lies in Aq and reaches n{3 through Aq.

This definition of starting and stopping does not depend upon the choice of the con-

traction. Indeed, let {Ap}~l and {A~}~l be two sequences of arms corresponding to two

choices of the contraction. Then, given any q, we can find an r such that A~ C Aq. This

is so because of Definition 4.1(a) and the fact that there are only finitely many branches

incident to the base Vq of Aq. Thus, we can choose r so large that none of those branches

are in A~. But, this implies that all of A~ is in Aq, for otherwise Wq would not separate n{3

from the complement Aq of Aq. Hence, to insure that WO eventually lies in Aq, we need

merely ascertain that it eventually lies in A~ for some sufficiently large r - whence the

asserted independence from the choice of the contraction.

With O-walks in hand, we can define ,8-walks recursively. A ,8-walk W{3 is a (finite,

one-ended, or endless) alternating sequence:

W {3 - { {3 W{3- {3 W {3-
}- ...,nm' m ,nm+l' m+l"" (11)

where, for every m, the following conditions hold:

(i) n~ is a maximal ,8-node - except that, if (11) terminates on the left or on the right,

the terminal element is a node of rank ,8 or less and need not be maximal (that is, the

terminal node may be embraced by a node of any higher rank, perhaps higher than

,8).

(ii) W~- denotes a "nontrivial" o:-walk, where 0 :s;0: < 3.

(iii) Finally, W~- "starts at'" the node on its left and "stops at" the node on its right.

To complete this recursive definition of a ,8-walk, we have to define "starts at," "stops

at," and "nontrivial" for a ,8-walk. This has already been done for a O-walk.

First of all, if W{3 terminates on the left (right), we say that ~V{3starts at or leaves

(respectively, stops at) its terminal node. Next, we define one-ended portions of a one-
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ended or endless ,8-walk Wi1 as follows.

W i1 - { Wi1- i1 W i1- i1
}-oo,m - ..., m-Z' nm-l' m-l' nm

W i1 - { i1 W i1- i1 W f3-
}'m,oo - nm, m' nm+l' m+l""

Choose a contraction {Wp}~l to some maximal ,-node n"', where, > ,8, and let {Ap}~l

be the corresponding sequence of arms. We say that Wf3 starts at (stops at) n'Y if either

Wi1 terminates on the left (respectively, right) at some node embraced by n'Y or, for every

natural number q, there is an m depending on q such that W~oo,m (respectively, W~,oo)

remains within Aq. In the latter case, we say that, for both starting and stopping at n'Y,

Wi1 eventually lies in Aq and reaches n'Y through Aq.

The same argument as that used for O-walks shows that this definition of starting and

stopping does not depend upon the choice of the contraction {Wp}~l'

Wf3 is said to embrace itself, all its elements, all the elements embraced by its elements,

and so forth down to all the elementary tips embraced by its embraced O-nodes. It will

also embrace walks that are subsequences of (11) or subsequences of embraced walks of

lower ranks. Thus, "embrace" has the same meaning for walks as it does for paths and for

transfinite graphs in general. Finally, Wf3 is called nontrivial if it embraces at least one

branch. This completes our recursive definition of a ,8-walk.

Note that a ,8-walk Wf3 is perforce restricted to the interior of a ((,3 + 1)- )-subsection

except possibly terminally. This is because every nonterminal ,8-node n~ in (11) is maximal

and moreover, by our recursive definition, every other node embraced by W,q is also not

embraced by a ((,8 + 1)+ )-node except possibly for the terminal nodes of H,;1.

Some more terminology: We say that 'JtVi1meets or rEachesits embraced elements and

the nodes at which it starts or stops. "Passes through" is also used in place of "meets"

if "starting at" and "stopping at" do not apply. Thus. a j3-walk cannot pass through a

,-node n'Y if, > ,8; it can only start or stop at n'Y. Furthermore. the ,8-walk (11) is said

to perform a one-step ,8-transition from n~ to n~+1' Just as with j-paths [9, Section 4],

a finite ,8-walk Wf3 with the terminal nodes na and nb can be viewed as a three-element

,-walk {na, Wf3,nb} for any, >,8.
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We now define "roving." Note that a .8-walk W.B will embrace walks of various ranks

no larger than.8. An a-walk embraced by W.B is called maximal if it cannot be extended

within (11) into a longer a-walk.

Definition 9.2. We shall say that W.B.8-roves if, for every maximal a-walk (0 ::; a ::; .B)

embraced by W.B, the following conditions hold. (For the following statements, replace .8

by a in (11).)

(i) If n~ and n~+l are nonterminal nodes in (11), then they are different maximal a-nodes.

(ii) If na is a terminal node on the left in (11), then the next node nb in (11) is embraced

by an (a+ )-node (nb itself will do if nb is of rank a), and na and that (a+)- node are

totally disjoint.

(iii) If nc is a terminal node on the right in (11), it is embraced by an ((a + 1)+ )-node,

which is totally disjoint from the node that precedes nc in (11). ..

With regard to (ii), nb can be of rank less than a and the embracing (a+ )-node can be

of rank greater than a only if nb is a terminal node on the right.

An informal way of stating this condition of roving is as follows. For each maximal

a-walk embraced by (11), if the a-walk enters an (a- )-subsection Sr- from a bordering

(a+ )-node, it continues on through Sr- to meet a different (a+ )-node bordering Sb-' Also,

if that maximal a-walk starts at an internal (a- )-node of Sb-' it continues through Sb-

to meet an (a+ )-node bordering Sb-' Finally, the a-walk either continues indefinitely or it

meets an ((a + 1)+ )-node, at which point that a-walk terminates (but then another a-walk

may start at that ((a+ 1)+)-node).

Kote also that a O-walk that either stops at a (1+ )-node or continues without stopping

automatically O-roves; indeed, after leaving a O-node nO, it perforce meets another O-node

before returning to nO.

Note still further that, if a .8-walk .8-roves, its embraced a-walks Q-rove for every a less

than .8; we shall simply say that the .8-walk a-roves for each a less than .8.
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10 Transfinite Random Walks - Outline of the Inductive
Argument

Our objective throughout the rest of this work is to establish a theory for transfinite random

walks that wander among nodes of various ranks in a finitely structured J1.-networkNIL. It

will be convenient at times to speak in terms of a random walker W that performs the

random walk. We assume throughout that W adheres to the nearest-neighbor rule when

leaving an ordinary O-node ng. That rule specifies the probabilities PO,k(k = 1,.. ., K) of

one-step transitions from ng to the O-nodes nZ that are O-adjacent to ng. Specifically, with

gk denoting the conductance of the branch between ng and nZ, we have PO,k= 9k/ L~l 9/

as a definition. This probability can be measured electrically. Let nZ be held at IV and let

all the other n? (l = 1,...,K;l::J k) be held at 0 V. By Kirchhoff'slaws and Ohm's law,

the resulting voltage at ng is equal to PO,k'

Our theory for transfinite random walks will be established inductively. With regard

to random O-walks, we will use a result obtained by Nash-Williams [3, Corollary 4A] in

his study of a random walk on a locally finite O-network under the nearest-neighbor rule.

We can restate his result in a form more suitable for our purposes by noting the following

two facts: (i) The shorting of finitely many O-nodes does not disturb the local-finiteness

property. (ii) By holding his "co-finite" set v at a single voltage, he in effect dealt with a

finite O-network in his Corolla.ry 4A. Thus, we have the following Nash- Williams rule: Let

Ne and Ng be two disjoint sets of nodes in a finite connected O-network NO and let n~ be

another node in NO but not in Ne UNg; then, the probability of Wreaching some node of

Ne before reaching any node of Ng, given that Wstarts at n~, is equal to the voltage at n~

when the nodes of Ne are held at 1 V and the nodes of Ng are held at 0 V. (It happens to

be a certainty that W will eventually reach at least one node of .\'e UNg. We establish a

more general result with Theorem 16.2 below.)

Note that the Nash-Williams rule becomes the nearest-neighbor rule when we set n~ =
ng,Ne = {nV, and Ng = {n?:l = 1,.. .,K;l::J k}.

A first step of generalization, namely, from random O-walks to random I-walks was

made in [10] in the following way. We started with a truncation of a O-subsection S~
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in a 1-networ k N 1. That truncation was along isolating sets in sg, one such set for each

bordering 1-node of sg. The Nash-Williams rule gave relative probabilities ofreaching those

isolating sets for a random walker W starting at some node within the truncation. Then,

by replacing the isolating sets by contractions, we expanded the truncation to fill out sg -

and through a limiting process obtained relative probabilities of transitions to the bordering

1-nodes of s~. Next, through a similar limiting process, we obtained relative probabilities of

transitions from a 1-node n"6to the 1-nodes that are 1-adjacent to n"6.The latter comprise

a generalization to 1-nodes for the nearest-neighbor rule. However, it required that the

admissible 1-walks be restricted to those that 1-rove. Finally, by examining the Markov

chain corresponding to a1-roving random 1-walk, we were able to extend the Nash-Williams

rule to the wanderings of Wthrough a finitely structured 1-network.

We shall inductively extend all this to higher ranks of random roving walks by defining

the probabilities of transitions among nodes of higher ranks in a fashion consistent with

the definitions for the lower ranks. We will show that the defined probabilities arise as

limiting cases of prior generalizations. This however does not eliminate the need for those

definitions because transfinite random walks whose transition probabilities are not such

continuous extensions may be conceivable. In short, we are using the nearest-neighbor rule

coupled with the Nash-Williams rule as the paradigm for our transfinite random walks and

are thereby basing those walks on the theory of transfinite electrical networks.

We will restrict the kinds of walks that the random walker Wis permitted to make by

saying that W roves. This will mean that, whatever walk Wfollows. that walk a-roves for

every a no larger than the rank of the walk. The reason for - and the feasibility of - this

restriction will be explained in Section 13.

It will be convenient to use a certain concise notation for relative probabilities of tran-

sitions. Consider a random walker W roving through NIL. We say that W reaches a nodal

set N if W reaches any node of N. Let Ne and Ng be two disjoint finite sets of maximal

nodes in NIL and let ns be another ma..ximalnode of NIL that is not in Ne UNg. Then,

Prob(sns, rNe, bNg) (12)

will denote the probability that W,having started at no!,will reach Ne before reaching Ng.
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There is a tacit condition regarding (10.1), namely, that Wtruly reaches Ne uNg. This will

always be so whenever we use (10.1) because of the roving of W and the way n8, Ne, and

Ng are chosen.

Let us now explain the inductive assumption (Rule 10.1 below) upon which our argu-

ments will be based. As always, we assume that the J.L-networkNtl is sourceless and finitely

structured (Definition 6.1).

With the natural number {3fixed with 0 < {3::s;J.L,consider any ({3- )-subsection S~

of essential rank a; thus, 0 ::s;a < {3. Let n~+ (k = 1,..., K) be the bordering nodes

of Sb'.Choose a perceptible contraction {Wk,Pk}~=I within Sb' for each n~+. We define

F(PI, . . ., PK) as the reduction of Sb' induced by all branches of Sb' that do not reside in

the arms AI'PI"'" AK,PK corresponding to the isolating sets WLPI"'" WK,PK' This is

illustrated in Figure 3. For sufficiently large PI, . . ., PK,the rank of F(PI, . . ., PK) willbe a

(Lemma 4.2). F(pl1" .,PK) may be incident to a bordering node of Sb' through (at most

finitely many) branches, but it will possess only the O-node embraced by that bordering

node - not the bordering node itself.

Furthermore, F(PI,.. ., PK) will be a-connected so long as the arms Ak,Pk are chosen

small enough (Le., the Pk are chosen large enough). Indeed, if this were not so, some

branches of some cuts for the bordering nodes of S~ would not be connected through paths

that do not meet those bordering nodes.

When the Pk are chosen so large that F(pl1 ...,PK) is ofrank a and is a-connected, we

call F(PI, . . . ,PK) a truncation of Sb'.

Kote also that the truncation F(Pl,"', PK) will have only finitely many a-nodes, for

otherwise it would be incident to an (a + 1)-node according to Lemma 3.6; the later pos-

sibility was eliminated by the deletion of the arms Ak,Pk' Altogether then, we have it that

F(Pl, . . . ,PK) is finitely structured as an a-network.

We wish to apply a generalized form of the Nash-Williams rule to a truncation F(Pl' . . ., PK)

of the ({3- )-subsection Sb'. In doing so, we shall say that a nodal set N is held at a \"oltage

u if every node of N is held at u.

Rule 10.1. Let Ne and Ng be two disjoint finite sets of maximal nodes in the truncation
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F(PI, . . ., PK) such that Ne UNg contains Uf=I Wk,Pk for given PI, . . ., PK. Also, let ns be a

maximal node in F(PI, . . .,PK) that is not in Ne U Ng. The probability (12) of W reaching

Ne before reaching Ng, given that Wstarts from ns and f3-roves, is the coltage Vsat ns when

Ne is held at 1 V and Ng is held at 0 V.

Note that the condition that Wf3-rovesinsures that Wreaches NeuNg because Uf=I Wk,Pk

separates ns from the bordering nodes of S;: and because the f3-roving of W insures that

W reaches one of those bordering nodes. Actually, for fixed PI, . . .,PK, the assumption of

f3-roving for W can be weakened to a-roving; this will be established in Section 16. In the

next section we will send the Pk to infinity (Pk -+ (0), in which case ,3-roving will be needed.

Rule 10.1, when restricted to a truncation of a O-section, is exactly the Nash-Williams

rule, which in turn encompasses the nearest-neighbor rule as a special case. The rest of

this paper is aimed at showing that, Rule 10.1 can be extended through a series of limiting

processes to any truncation of any f3-subsection whenever it holds for truncations of (13- )-

subsections. This will inductively extend Rule 10.1 to all truncations of all subsections.

Before leaving this section, let us check the consistency of Rule 10.1 for the following

case. Let ns, Ne, and Ng be as stated, and let M be another finite set of maximal nodes in

F(Pb." ,PK) that separates ns from NeuNg with ns ~ M andMn(.\'euNg) = 0. Assume

that W, after starting from ns, reaches Ne UNg. Then, W must me€t at least one node of

M before reaching Ne U Ng. Let mi (i = 1,...,1) be the nodes of M. By conditional

probabilities, we should have

I

Prob(sns,rNe,bNg) = L Prob(sns,rmi, b(M\{md))Prob(sm;.rNe, bNg).
i=I

(13)

This equation can be established electrically.

Let Us (and um;) be the voltage at ns (respectively, at mi) when .\~ is held at 1 V and

Ng is held at 0 V. Also, let vs(i) be the voltage at ns when mi is held at 1 V and M\{mi}

is held at 0 V. By the superposition principle for electrical networks.

I

Us = L: vs( i)umi'
i=I

(14)

By Rule 10.1, the voltages in (14) correspond to the probabilities in (13). This verifies

(13).
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11 Reaching a Bordering Node

As before, let 51:be any (f3- )-subsection; 0: is its essential rank. We wish to obtain relative

probabilities of transitions from an internal maximal node ns of 51: to the various (,6+)-

nodes n~+ (k = 1,..., K) bordering 51: - and possibly to other internal nodes of 51: as

well. (For an illustration, see Figure 3 again.) Let {Wk,PJJ~=l and F(Pb"', PK) be as

in the preceding section. However, with regard to the nodal sets Ne and Ng of Rule 10.1,

we now impose the additional condition that, for each k, Wk,Pk lies entirely within Ne or

alternatively entirely within Ng - and stays therein as Pk -+ 00.

Let Me be the set obtained by deleting from Ne all nodes of every set Wk,Pk contained

in Ne and adding in their place n~+. Also, construct Mg from Ng in the same way. (All

the Wk,Pk may be in Ne,in which case Mg =Ng; similarly, Me = Ne if all the Wk,Pk are

in Ng.) Also, replace F(Pl, . . ., PK) of Rule 10.1 by 5b' Let Us be the voltage at ns when

Me is held at 1 V and Mg is held at 0 V. Through a formal application of Rule 10.1, we

have Us = Prob(sns,rMe, bMg), a resultwewishto obtain througha limitingprocess.

In the next lemma, we send Pk -+ 00 for every k. It is understood that Ne U Ng is

adjusted accordingly; that is, the nodes of Me U Mg that are not bordering nodes of 5b

are fixed nodes of Ne UNg, and all other nodes of Ne UNg are those of the Wk,Pk; as the Pk

increase, the nodes in the bases Vk,Pkare changed as well.

Furthermore, let us denote the voltage Vs at ns specified in Rule 10.1 by Vs(Pb . . ., PK)

in order to display its dependence upon the Pk.

Lemma 11.1. Vs(Pb...,PK) converges to Us as the Pl,"',PK tend to infinity inde-

pendently.

Proof. For each k = 1,..., J(, let n2,Pk,idenote the ith node in Wk,Pk and let Uk,Pk.i

denote the corresponding node voltage resulting from 1 V at Me and 0 V at Mg. The-

orem 8.5 as applied to 51: implies that 0 ~ Uk,Pk,i ~ 1 for all k and i. By superposition.

Vs(Pl, . . ., PK) - Us is the voltage at ns resulting from the following application of node

voltages for all k and i: n~'Pk,i is held at 1 - Uk,Pk,iif n~+ E Me and n~'Pk,i is held at

-Uk,Pk,i if n~+ E Mg. All other nodes of Me and Mg are held at 0 V.

Now, let Umaxbe the maximum of all the voltages 1- Uk,Pk,iat the nodes n2,Pk,iin the
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Wk,Pk corresponding to all the n2+ E Me, and let Uminbe the minimum of all the voltages

-Uk,Pk,i at the nodes n2,pk,i in the Wk,Pk corresponding to all the n2+ E Mg. We have

Umax ~ 0 and Umin~ O. Moreover, Umaxand Umindepend in general on PI.'" ,PK. Since

F(Pl, . . ., PK) of Rule 10.1is a linear network,Theorem 8.5 as applied to F(Pl, . . ., PK) also

implies that

Umin ~ V,,(Pb" .,PK) - U" ~ Umax.

Recall that, for each fixed k but varying Pk, the cardinalities of the Wk,Pk are uniformly

bounded (in fact, are no larger than m + 1, where m is the number of contraction paths

for the' chosen contraction to n2+). Hence, by Property 8.1(b), which holds in this case

according to Theorem 8.3, we have that Umin-* 0 and Umax-* 0 as the PI." .PK tend to

infinity independently. .
The last lemma immediately yields the following extension of Rule 10.1.

Theorem 11.2. As the Pk -* 00, Rule 10.1 extends continuously from truncations

F(Pl, . . . , PK) of an a-subsection Sb' to all of Sb' and thereby yields the following result: Let

ns be an internal maximal node of Sb' and let Me and Mg befinite disjoint nodal sets with

Me U Mg containing all the maximal bordering nodes of Sb' and with ns rt (Me U Mg).

Then, for a {J-roving W ({J > a), Prob(sns, rMe, bMg) is the voltage at n" when Me is held

at 1 V and M g is held at 0 V.

We take this continuous extension of Rule 10.1 as the definition of the probabilities of

transitions from an internal node of an a-subsection Sb' to the bordering (.8+ )-nodes of Sb'.

The assumption that W{J-rovesinsures that W,having started from any internal node of

Sb', will reach a bordering node of Sb'. Let us relax this assumption somewhat and examine

the probability of Wreaching a bordering node when it only a-roves but does not necessarily

{J-rove. In this case, we shall call an a-subsection Sb' transient if W,after starting from any

arbitrarily chosen internal node ns of Sb', always has a positive probability of reaching some

bordering node of Sb' before returning to n".

Theorem 11.3. Assume that Wa-roves but does not necessarily /3-rove for any /3 > a.

Then, every a-subsection Sb' of NILis transient.

Proof. Let n" be any internal maximal node of Sb' and assume that W starts at n".
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If ns is an ordinary O-node, then, by the nearest-neighbor rule and for each node na that

is O-adjacent to ns, the probability is positive that \l1will reach na in one O-step. If na is

embraced by an «a + 1)+)-node, then the theorem followsimmediately. So, assume the

latter is not the case when ns is a O-node.

On the other hand, if ns is a maximal6-node (1 ~ 6 ~ a), let X be a conjoiningset for

ns' All the nodes of X are ordinary O-nodes. It is a certainty that \l1will reach X before

returning to ns because \l1a-roves and because the rank of ns is no larger than a. Choose

na E X arbitrarily and let all the other nodes of X comprise Ng. There is a.path (possibly

just a single branch) that meets ns and n(1and does not meet Ng. Hence, by Rule 10.1 and

by Corollary 8.6, Probe sns, rna, bNg) is positive.

Now, consider both cases where either ns is an ordinary O-node with X being the set of

nodes adjacent to ns or ns is a maximal 6-node (1 ~ 6 ~ a) with X being a conjoiningset

for ns. In order to show that 51: is transient, we need only show that Prob(sna,rNe, bns)

is positive, where now Ne is the set of bordering nodes of 51:. By Rule 10.1 again - as

extended by Theorem 11.2, the latter can be accomplished by showing that, for some choice

of na EX, the voltage at na is positive when ns is held at 0 V and all the bordering nodes

of 51: are held at 1 V.

Suppose there is no na E X fulfilling the last condition. In view of Theorem 8.5, we

suppose that all the voltages at the nodes of X are O. Hence, the currents in all branches

between ns and X (i.e., in the arm corresponding to X - if such exists - and also in the

branches incident to ns) are O. Let i be the current vector produced in 51: when all the

bordering nodes of 51: are shorted and a pure voltage source eo of value 1 V is connected

from ns to that short to hold ns at 0 V and the short at 1 V. i is determined by Theorem

7.4 as applied to Sb with the appended source. Apply Kirchhoff's current law to ns if ns

is an ordinary O-node or to a cut (Le., use (7.1)) at the isolating set corresponding to X

if the rank of ns is larger than O. We obtain io = 0, where io is the current through eo.

We are free to set s = i in Theorem 7.4. Therefore, So = io = 0, and L rji] = 0, where

the summation is over the branches in Sb' This implies that ij = 0 for all branches bj in

51:. Consequently, there can be no voltage difference between any two nodes of 51: - in
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contradiction to the presence of the 1 V source. ..

The last theorem shows that no difficulty arises in making the further assumption that

'l1 {3-roves- at least so far as a transition from an internal node to a bordering node of a

({3- )-subsection is concerned.

12 Leaving a {3-Node

Having examined probabilities as 'l1 reaches a bordering ({3+)-node, let us now consider

probabilities as 'l1leaves a {3-node n~. Let Ne and Ng be two finite sets of maximal ({3-)-

nodes such that Ne n Ng = 0, Ne UNg separates n~ from all other ({3+)-nodes, and n~ is

totally disjoint from every node of Ne UNg. (See Figure 4.) We can choose a perceptible

contraction {Wp};;1 to n~ such that no node of Ne uNg lies in the first arm Al and thereby

in any arm Ap of that contraction.

Next, let M be the reduced network induced by all the branches that are not separated

from n~ by Ne uNg. (In Figure 4, M is the reduced network lying within the ring of nodes

comprising Ne UNg.) The only node of M whose rank is no less than (3 is n~. We wish to

know Prob( sn~, rNe, bNg). However, we cannot as yet use Rule 10.1 because our inductive

hypothesis with respect to Rule 10.1 is presently assumed only for a starting node ns of

rank less than (3. What we can do, however, is short the arm Ap to obtain a single O-node

n~ and then examine Prob( sn~, rNe, bNg). As p -? 00, the Vp contract to n~, and hopefully

the corresponding Prob(sn~, rNe, bNg) converge. (They will.) The limit can then be taken

as the definition of Prob(sn~,rNe, bNg).

To proceed. Let Mp be the network obtained from M by replacing every branch of

Ap by a short. That shorting creates an ordinary O-node n~ and eliminates n~. Thus, the

essential rank of Mp is a, where a < (3. So, we can apply Rule 10.1 to Mp with ns = n~ to

get Prob(sn~, rNe, bNg) as the voltage vp at n~ when Ne is held at 1 V and Ng is held at 0

V. Let us refer to these imposed voltages at Ne and Ng as the excitation E. On the other

hand, we can formally apply Rule 10.1 to M to get Prob(sn~,r.\~. bNg) as the voltage u~

at n~ under excitation E. In this section, we will show that vp - u~ as p -? 00. This will

prove that Rule 10.1 extends continuously to a formula for determining Prob(sn~, rNe, bNg)
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with respect to M.

The excitation E can be produced by a pure 1-V voltage source eo = 1 in a branch

bo appended to M or Mp; bo is connected from a short at Ng to a short at Ne. Let

Ma = M u {bo} and let Mpa = Mp U{bo}. In accordancewith Theorem 7.4, we obtain a

unique voltage-current regime v, i in Ma and another one vp, ip in Mpa. We have i E Ka

(and ip E Kpa), where Ka (respectively, Kpa) is the Hilbert space indicated in Theorem 7.4

with respect to the network Ma (respectively, Mpa) in place of N~.

We can extend the current vector ip E Kpa for Mpa into a current vector i~ E Ka for Ma

as follows. On Mpa, i~ and ip agree. Next, let Cp be the cut at Wp. Cp resides in Mpa.

Let nk be any node of Vp and let Pk be that part of a contraction path that connects nk to

n~. Let Cpk be the algebraic sum of the currents in the branches of Cp that are incident to

nk. (Measure those currents as directed toward nk') Assign to Pk the current flow of value

Cpkdirected toward n~. Do the same thing for every node of Pk to obtain a current flow

from each node of Vp along a contraction path to n~. In Mpa, Cp is simply the finite set of

branches incident to the ordinary O-node n~. Therefore, Kirchhoff's current law is satisfied

at Cp, and it follows that the algebraic sum of all the flows Cpkis O. As for those branches

of Ap that are not in any Pk, let their currents be O. In this way we extend ip E Kpa into a

current vector i~ for Ma.

On the other hand, vp is the voltage vector for Mpa dictated by Theorem 7.4; that is,

vpo = -eo and, when j =I0 and the branch bj lies in Mpa, Vpj= rjipj. We extend vp into

a voltage vector v~ for Ma simply by assigning 0 V as the branch voltage for each branch

in Ap. Note that, for the regime v~, i~, Ohm's law is not satisfied along the paths Pk, but

for our purposes this is of no concern.

Given any voltage vector wand any current vector s for Ma. we define a coupling of w

and s by (w, s) = L: WjSj, where the summation is over the indices of the branches in Ma.

Our next objective is to show that

(
e' .e

) 0V - Vp' 1 - Ip = . (15)

That (V,i) = 0 followsdirectly from the application of Theorem 7.4 to Ma; see (5). Simi-

larly, upon applying that theorem to Mpa, weget (vp, ip) = O. Sincev; vanishesthroughout
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Ap, we also have (v;, i;) = O.

We now wish to show that

(v,i;) = o. (16)

For this purpose, we use the space Ka indicated in Theorem 7.4 but now with N~ replaced

by Ma. If we can show that i~ E Ka, then (16) will follow from (5) with s = i~.

Lemma 12.1. i; E Ka.

Proof. Upon applying Theorem 7.4 for Mpa, we obtain the current vector ip E Kpa;

i; extends ip as described above. Assume at first that ip E K~a' where K~a is the span of

basic currents in Mpa. Thus, the flow of ip through the single ordinary O-node n~, obtained

by shorting Ap and thereby Wp, can be represented by a finite number of loop currents in

Mpa; thus, the currents in the branches of the cut Cp arise from the superposition of finitely

many loop currents. If such a loop current passes along a short between two different nodes

of Wp, that loop current can be taken to flow - not along that short - but instead along

one or two contraction paths between Wp and n~, and thereby from one node of Wp through

n~ to another node of Wp. (Possibly n~ embraces a O-node of Wp, in which case just one

contraction path might be traversed.) With such an alteration for everyone of the said

loop currents, we will obtain i;. Moreover, this procedure will convert any basic current for

Mpa into a basic current for Ma. We can conclude that i; E K~.

Next, assume that ip E Kpa. The flow through the aforementioned short (Le., through

the ordinary O-node n~) can again be represented by finitely many loop currents in Mpa.

Once again, each such loop current can be extended into a loop current passing through n~

via one or two contraction paths. The result is an extension i; of ip E Kpa.

Moreover, ip is the limit in Kpa of a sequence of current vectors in Kga, each of which

can be extended in the same way into a member of K~. Furthermore. convergence in Kpa

implies branchwise convergence. Since the current Cpkin each path Pk is the algebraic sum

of the currents in the finitely many cut-branches that are incident to the node nk E Vp at

which Pk terminates, we get branchwise convergence on Pk as well.

We now argue that, since each Pk is perceptible, we get convergence on Pk in accordance

with the norm of Ka. Indeed, corresponding to a sequence {ipv}~l of vectors in Kga
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that converges to ip E Kpa, we have a sequence {i~v}~l of extended current vectors in

K~ converging branchwise to i~ and also a sequence {Ckv}~1 of current flows in Pk that

converge to Ck. With LPk denoting a summation over the branch indices for Pk, we have

L Tj(i;j - i;vj)2 = (Ck - Ckv)2L Tj.
Pk Pk

(17)

By the perceptibility of Pk, LPk Tj < 00. Consequently, the right-hand side and thereby

the left-hand side of (17) tend to 0 as v -.. 00. But that left-hand side arises from the

restriction of the squared norm of Ka to the branches of Pk. Whence our assertion.

Moreover, the norm for Kpa is the restriction of the norm for Ka to the branches of Mpa.

We can conclude that i~ is the limit in Ka of a sequence of vectors in K~. Hence, i~ E Ka..
As was indicated above, Lemma 12.1 establishes (16).

To finally establish (15), we have to show that

(v;, i) = 0 (18)

whenever i E Ka. By definition, v~ vanishes throughout Ap. Hence, the left-hand side of

(18) is equal to (vp, is), where vp is the voltage regime dictated by Theorem 7.4 as applied

to Mpa and is is the restriction of i E Ka to the branches of Mpa.

Lemma 12.2. is E Kpa.

Proof. Again let Cp be the cut at Wp. Now, any loop current in Ma that passes

through some branches of Cp can be truncated into a loop current in Mpa that flows along

the short at Wp. Thus, when i E K~, we have is E K~a' We can now use a limiting process

as in the preceding proof to conclude that is E Kpa whenever i E Ka ..

By Theorem 7.4 as applied to Mpa (in particular, by (5)), (vp. is) = O. This establishes

(18). Altogether then, we have established (15).

The components of v and v~ for the source branch bo are both -eo = -1. Thus, the

left-hand side of (15) can be written as a summation just for the branches in M. In fact,

upon rearranging that summation into two sums, one over the branch indices for M\Ap
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and the other for Ap, and using the branch conductances 9j, we can rewrite (15) as

L 9j(Vj-V;j)2 + L(Vj-v;j)(ij-i~j) = o.
M\Ap Ap

Since v~ vanishes on Ap, the second summation is equal to

"v' (i'-ie. )L.J 1 1 Pl
Ap

" 2 " .e
L.J 9jVj - L.J VjZpj
Ap Ap

L9j(Vj - V;j)2 - L Vji~j'
Ap Ap

=

Thus, (15) becomes

L9j(Vj - V;j)2 = LVji~j'
M Ap

By Schwarz's inequality,

[ ]

I~

2:9j( Vj - v;;)2 = L yf§jVj.;r;i~j::; L9jVJ 2: rj(i~j)2 .
M Ap Ap Ap

(19)

Since the voltage-current regime for M is of finite power, LAp 9jVJ -+ 0 as p -+ 00. Our

next objective is to show that LAp r j( i~j? remains bounded as p -+ 00.

For this purpose, we need a particular form of the reciprocity theorem for the two-port

illustrated in Figure 5. The needed equation is derived from the general reciprocity relation

[5, Corollary 3.3-7 and page 155] exactly as it is derived in [1, pages 776-778], even though

we are now dealing with an internally transfinite two-port rather than a finite one. With

regard to the port variables indicated in Figure 5, the needed result is

vIiI + v2i2 = VIh + fT2Iz (20)

vVecan choose variables as follows. The symbols with "hats" are the port variables when a

1-V voltage source is applied to port 2 (V2 = 1) and an open circuit is maintained at port

1 (11 = 0). By Corollary 8.5, IVII :S1. The symbols without "hats" are the port variables

when a current source of value h is applied at port 1 and a short is imposed on port 2

(V2 = 0). Consequently, (20) yields

Ihl = IVIIII ::; 1111 (21)

50



We may now apply (21) to a rearrangement ofMp into a two-port. The two terminals of

port 1 will be the short at Ne and the short at Ny; Ne and Ny are not shorted together. To

obtain port 2, do the following to M. Remove the branches in the arm Ap. Then, choose

any node n~ of Vp and let i,t be one terminal of port 2. Also, short the nodes of Wp\ {nn

and let that short be the other terminal of port 2. Now,when an external short is imposed

upon port 2, we will have Mp again, and moreover the current in that external short will

be the current Cpkin the path Pk used when we were constructing i;.

To apply (21) to this rearrangement of Mp, short port 2 and impose a pure current

source at port 1 whose value is the current hp flowing through the 1-V voltage source under

excitation E. By (21), Icpkl :s; Ihpl. Since the choice of n~ was arbitrary, we can conclude

that the component of i; for each branch bj in Ap satisfies li~jl :s; Ihpl.

Let us now return to the case where Mp is obtained simply by replacing every branch of

Ap by a short. Let Po be a fixed natural number and let p > Po. We can change Mpo into

Mp by adding resistances to the branches in Apo\Ap. By Rayleigh's monotonicity principle

[5, pages 103 and 156], Ihpl :s; Ihpol. Thus, li~jl :s; Ihpol. Since every path Pk is perceptible,

we can now conclude that the last summation EAp Tj( i~j? in (19) remains bounded as

p ~ 00. Consequently, the left-hand side of (19) tends to 0 as p ~ 00.

Finally, let u~ be the voltage at n~ under a formal application of Rule 10.1 to M - as

before. Also, for Mp, let vp be the voltage at the node n~ produced by shorting all of Ap

- again as before. Let P be a perceptible path in M from the short at Ny to n~. Since

v; vanishes on Ap, we can write the following, where Ep is a summation over the branch

indices for P.

lu~ - vpl ~ I~ hj - ~ h;j I = I~ oiy9j( Vj - V;j)y'rjl

[ ]

1/2

[ ]

1/2

:s; ~gj(Vj - V;j)2~rj :s; t=gj(Vj - t';j)2~rj

Since P is perceptible, Ep Tj < 00. Thus, vp ~ u~ as p - x). This is what we needed

to show in order to justify an application of Rule 10.1 for a random walker W starting at

a ,a-node and reaching Ne UNy, when Ne and Ny are specified as in the first paragraph of

this section. We summarize all this through
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Theorem 12.3. For M and Mp defined as above and with n~ being the O-node obtained

by shorting all of Ap, Rule 10.1 extends continuously as p --+ 00 from the case where q;

starts at n~ and reaches Ne U Ng to the case where q; starts at n~ and reaches Ne U Ng.

That is, for a {3-roving q; and as p --+ 00,

Prob( sn~, rNe, bNg) --+Prob( sn~ , rNe, bNg)

where the probability on the left is for Mp and the probability on the right is for M.

13 Roving

Let us now indicate the reason why the condition of roving is being imposed upon the

walks that q; is permitted to take. Assume that q; a-roves for every a less than {3but does

not necessarily {3-rove. We have seen (Theorem 11.3) that q; has a positive probability of

reaching a {3-node n~ from within a ({3- )-subsection incident to n~. Can q; leave n~? The

answer is "no" - in the following sense. Let us assume the Rule 10.1 - as expressed by

Theorem 12.3 - still governs the wanderings of q; as it starts from n~ even though q; only

a-roves. Then, given any other node, the probability that W will reach that other node

before returning to n~ is O.

To show this, choose a perceptible contraction to n~. Let Xp and Xq be two conjoining

sets for that contraction, let Vp and Vq be the corresponding bases, and let p < q. Also, let

1) be the set of nodes that are O-adjacent to n~. Two cases arise.

Case 1. q; leaves n~ along an incident branch: We are seeking the probability that

q; will reach 1) before reaching Vq for any q. By a formal application of Rule 10.1,

Prob(snq,r1),bVq) is the voltage u~ at n~ when 1) is held at 1 V and Vq is held at 0

V. By the voltage-divider rule, u~ = Rq/(Rd + Rq), where Rq is the resistance of the arm

Aq between n~ and a short at Vq and Rd is the parallel resistance of the branches incident

to n~. Since the contraction paths in Aq are perceptible, Rq is finite, and moreover Rq --+0

as q --+00. Therefore, u~ --+0 as q --+00. This implies that the probability of q; leaving n~

through a branch incident to n~ instead of along the arm Aq is O.

Case 2. W leaves n~ along the arm Aq: That is, q; reaches Vq for some sufficiently large

q greater than p before reaching V. Let n~,i be any node of Vq. With q; starting from
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n~.i' how probable is it that qr reaches Vp before returning to n~? To answer this, we can

invoke Theorem 11.2 with Me containing Vp and Mq = {nn - even though we are not

assuming that qr necessarily /3-roves. Indeed, by Theorem 11.3 again, there is a positive

probability that qr will reach Vp U {n~}. (The only other possibility is that qr wanders

indefinitely without ever reaching Vp or n~. We will show later on -see Lemma 16.1 -

that the probability of this happening is 0.)

We argue that, as q -> 00, Prob(sn~.i' rVp,bn~) tends to O. That probability is the

voltage Uq,i at n~,i when Vp is held at 1 V and n~ is held at 0 V. But, by Theorem 8.3

and Property 8.1(b), Uq,i-> 0 as q -> 00. This implies that it is a certainty that qr, after

starting from n~ along the arm Aq, will return to n~ before reaching Vp for any given p.

Both cases taken together mean that only a vanishingly small proportion of the random

walks that start at n~ will reach Xp without first returning to n~, whatever be p. This in

turn implies the following for the random walker qr that a-roves for every a less than /3 but

does not necessarily /3-rove: Once qr reaches a /3-node n{3,the probability that qr will reach

any other node before returning to n{3is O.

However, this does not mean the there are no roving /3-walks. It simply means that we

are dealing with the exceptional case when we consider the random roving /3-walks among

all the transfinite random walks. In short, Definition 9.2 for roving ,3-walks remains valid,

and we are free to restrict qr to such walks and to assign probabilities for transitions from

a /3-node in accordance with Rule 10.1.

14 From a ,g-node to a ,g-Adjacent (,0+)-N ode

So far in our inductive argument, we have examined transitions from within a (/3-)-

subsection to a bordering (/3+)-node and from a /3-node to within a (3- )-subsection. As

the next step, we discuss transitions from a /3-node to its /3-adjacent (/3+)-nodes. The

argument now needed is the same as that leading up to Theorem 11.2.

Let the random walker qr start at the /3-node n~ and let n~+ (k = 1,..., K) be the

(/3+ )-nodes that are /3-adjacent to n~. (See Figure 6.) Choose a perceptible contraction

{Wk.P1J~=1 for each n~+. Also, let H(Pb...,PK) be the reduced network induced by
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all branches that are not separated from n~ by Uf"=lWk,Pk' H(Pl,"', PK) is of rank 13

because it contains n~ - the one and only (13+)-node in it. Moreover, H(Pl" . ., PK) will

be j3-connected when the PI"" ,PK are chosen sufficiently large. H(Pl,... ,PK) plays the

same role as the a-network F(Pl," ., PK) did before. We define Ne and Ng as two finite

disjoint nodal sets such that n~ ~ (Ne u Ng) and, for each k, Wk,Pk lies entirely within Ne

or alternative within Ng. (It will be understood that, as Pk -+ 00, Wk,Pk remains in Ne or

in Ng; the latter sets adjust accordingly.) Furthermore, Me and M 9 are similarly defined

except that n'~+ replaces Wk,Pk'

Under the present meanings of these symbols, we can use the argument of Section 11 -

virtually word for word - to get Lemma 11.1 again and thereby the following extension of

Rule 10.1.

Theorem 14.1. As the Pk -+ 00, Rule 10.1 extends continuously from the result

achieved in Theorem 12.3 to the following result: For a I3-roving '1', Prob(sn~,rMe, bMg)

is the voltage at n~ when Me is held at 1 V and Mg is held at 0 V.

Once again, we take this as the definition of probabilities of transitions from a ,8-node

to its j3-adjacent (,8+ )-nodes.

15 Transitions within a Truncation of a j3-Subsection; the
Surrogate Network

We continue our inductive argument by showing that Rule 10.1 holds for a truncation T of

any j3-subsection S~ when 13< J-L.(The case where 13= J-Lwill be considered in the next

section.) \Ve shall do this by setting up a "surrogate" O-network T3-0, whose behavior

mimics that of T in a certain way, and then by applying the Nash- 'Williams rule to T6-0.

T.6>-+oin turn is obtained from a 1Iarkov chain encompassing the probabilities for transitions

among finitely many maximal nodes of T.

Let n~.6+1)+(l = 1,..., L) be the maximal bordering nodes of Sr Choose an isolating

set WI within S~ for each n~.6+1)+and let T be the reduced network induced by all branches

of S~ that are not in the arms corresponding to the WI. As before, it is understood that

the WI are chosen sufficiently close to the bordering nodes to ensure that T is ,8-connected.
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T will have only finitely many /3-nodes; this fact is a consequence of Lemma 3.6.

As usual, let n~ be any maximal node of T and let Ne and Ng be two disjoint finite sets of

maximal nodes of T such that n~ rt (Ne UNg) and Ne UNg contains Uf=l WI. Furthermore,

let M be a finite set of maximal nodes in T containing n~, all the nodes of Ne UNg, and

all the /3-nodes of T. M will be the state space of a certain Markov chain. Two nodes nl1

and nb of M will be called M-adjacent if there is a path in T that terminates at nl1and nb

and does not meet any other node of M. Thus, each node nl1of M will have a unique set

MI1 of nodes M-adjacent to nl1'

Lemma 15.1. If two nodes of Mare M -adjacent, then they are also /3-adjacent.

Proof. Let na and nb be M-adjacent nodes of M. If na and nb are not /3-adjacent,

they are not incident to the same (/3- )-subsection. Consequently, every path between na

and nb must meet a /3-node distinct from na and nb. Since M contains all the /3-nodes of

T, na and nb are not M-adjacent. "

We now assume that the random walker I]i/3-roves. This ensures that w, having started

at na EM, will surely meet the set M a of nodes that are M -adjacent to na. We say that

w makes a one-step transition from na to nb if nb E M a and if I]i starts at na and reaches

nb before reaching any other node of Ma. To construct our desired Markov chain, we need

the probabilities of the one-step transitions. By virtue of Lemma 15.1, we can apply to T

Rule 10.1 as extended by Theorem 14.1 to get those probabilities.

Note first of all that the /3-roving of I]iimplies still more; namely, if Wstarts at a ,B-node

na, it will surely meet a node of Ma before returning to na. However, if na EM is oflower

rank than /3, I]imay return to na before reaching .A1a. '''e will simply ignore such returns

when setting up our Markov chain. Thus, we restrict ourselves to the one-step transitions

from na to its ,Vt-adjacent nodes when assigning positiye probabilities to the one-steps of

the Markov chain..

Let na and nb be any two nodes of JVt, where now na and nb need not be M-adjacent.

We let Pa,bbe the probability of a one-step transition from na to nb. As was just explained,

we set Pa,a = O. Also, Pa,b= 0 if na and nb are not M-adjacent because it is then impossible

for W to make a one-step transition from na to nb. On the other hand, if there is only one
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node nb in Ma, we have Pa,b = 1. However, if there are many nodes in Ma, we use the

extension of Rule 10.1 given by Theorem 14.1 to obtain the probability Pa,b of a one-step

transition from na to nb in Ma. In this last case, we have 0 < Pa,b< 1 by virtue of Corollary

8.6 and the fact that there is a path from na to each node of Ma that does not meet any

other node of Ma. Finally, to conclude that we have the one-step probabilities of a Markov

chain, we have to show that these one-step probabilities sum to 1. This follows immediately

from the fact that it is a certainty that our ,B-roving'l1will reach Ma after starting from na.

It can also be shown electrically as follows: Measure the voltage Ua at na when one node

nb of M a is held at 1 V and M a\ {nb} is held at 0 V. Then sum the various values of Ua

obtained as nb varies through Ma. By the superposition principle, that sum is the voltage

at na when all of Ma is held at 1 V. Consequently, that sum equals 1. This confirms our

assertion.

Thus, for any choice as specified above of the finite set M, we have a Markov chain with

M as its state space. We denote that chain by M(M). We can examine the wanderings

of 'l1 among the nodes of M by analyzing M(M) - but only up to the point where 'l1

arrives at a node of UY=lWI. After that iI1may leave T when wandering in NIL, in which

case M(M) is no longer relevant. For our purposes, this is of no concern because we are

presently only interested in the wanderings of 'l1 from the point where it starts at a node

ns of T up to the point where it reaches Ne UNg. The last set contains UY=lWI.

Theorem 15.2. The Markov chain M(M) is irreducible and reversible.

Proof. The case where M has just two nodes is trivial. So, let .1\..1have more than two

nodes,

For any two M-adjacent nodes na and nb of M, Pa,o > 0 - as we have noted above.

The irreducibility of M(M) now follows from the ,B-connectedness of T [2].

As for reversibility, we start by recalling the definition of a cycle in M. This is a finite

sequence

C = (nl, n2". " nc, nc+l = nd

of nodes nk in M with the following properties: All the nodes of C are distinct except for

the first and last; there are at least three nodes in C (I.e., c > 2); consecutive nodes in
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Care M-adjacent. A Markov chain is called reversible if, for every cycle C, the product

TIk=l Pk,k+1of transition probabilities Pk,k+1from nk to nkH remains the same when every

Pk,k+1 is replaced by Pk+l,k [2, Section 1.5]. Thus, we need only show that

, Pl,2P2,3'" Pc,l = Pl,c'" P3,2P2,l (22)

According to Rule 10.1 as extended by Theorem 14.1, Pk,kH is the voltage Ukat nk obtained

by holding nk+l at 1 V and by holding all the other nodes of M that are M-adjacent to nk

at 0 V. For this situation, Uk will remain unchanged when the voltages at still other nodes

of M are specified.

To simplify notation, let us denote nk by mo and nk+l by mI' Thus, mo and ml are

M-adjacent. Also, let m2,' . ., mK denote all the nodes of ;\.1 that are different from nk and

nk+1 but are M-adjacent to either nk or nkH or both. Since the cycle has at least three

nodes, we have K ~ 2. Now, consider the K-port obtained from T by choosing mk, mo as

the pair of terminals for the kth port (k = 1,,", K) with mobeing the commonground for

all ports. To obtain the required node voltages for measuring Pk,k+1'we externally connect

a I-V voltage source to ml from all of the m2, . . .mK, with mo left floating (Le., mo has no

external connections). The resulting voltage Uoat mo is Pk,kH'

With respect to mo (taken as the ground node), the voltage at ml is 1 - Uo and the

voltage at mk (k = 2,"" K) is -Uo. Moreover, with ik denoting the current entering

mk (k = 1,...,K), the sum il +... + iK is O. (Apply Kirchhoff's current law at mI,)

Furthermore, the port currents and voltages are related by i = Yu, where i = (il"", iK),

u = (1 - uo, -Uo,' . ., -uo), and Y = [Ya,b]is a K X ;: matrix of real numbers that is

symmetric (Lemma 7.3). Upon expanding i =Yu and adding the ik, we get
K l\ l\

0 = il + .. . + iK = I:Ya,l - UoL I: Ya,b.
a=l a=lb=l

Therefore,

P L~=l }'~,l
k k+l = Uo = K K .

, La=l Lb=l Ya,b

Upon setting Gk = L~=l Lf::l Ya,b, we can rewrite (23) as

K

GkPk,kH = I: Ya,l.
a=l

(23)

(24)
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Now, L~=l Ya,l is the sum il + ... + iK when u = (1,0,.. .,0); that is, L~=l Ya,l is the

sum of the currents entering ml, m2, . . .,m K from external connections when I-V voltage

sources are connected to ml from all of the mo, m2, . . ., mK.

By reversing the roles of mo and ml, we have by the same analysis that Gk+1Pk+1k is. '

the sum io+ i2+. . .+ iK of the currents entering mo,m2, . . ., mK from external connections

when 1-V voltage sources are connected to mo from all of the ml, m2, . . ., mK. With respect

to mo acting as the ground node again, we now have UI = ... = UK = -1, and therefore

il = - L~=l YI,a' Moreover, under this latter connection, the sum -il - i2 - . . . - iK of

the currents leaving ml, m2,'" mK is equal to the current io entering mo. Hence, -il =

io + i2 + ... + iK. Thus,
K

Gk+IPk+l,k= -il = L YI,a'
a=l

(25)

Since the matrix Y is symmetric, we have YI,a = Ya,l' So, by (24) and (25),

Gk+1Pk+1,k = GkPk,k+I' (26)

Finally, we may now write

G2 G3 GI

PI,2P2,3. . .Pc,I = GI P2,1G2 P3,2 . . . Gc PI,c = P2,IP3,2'" PI,c'

This verifies (22) and completes the proof. ...

Because the Markov chain M(M) is irreducible and reversible, we can synthesize a finite

connected O-network T.6"""owhose O-nodes correspond bijectively to the nodes of M and

whose random O-walks are governed by the same one-step probability matrix as that for

M(M) [2, page 126]. We call T.6 o the surrogate netu'ork for T with respect to M. A

realization for T.6>-ocan be obtained by connecting a conductance gk,l = gl,k between the

O-nodes x~ and x? (I.:¥' l) in T.6"""o,where gk,l is determined as follows: Let nk x2 denote

the bijection from the nodes of M to the O-nodesof T.6>-o.If nk and nl are not M-adjacent

in T, set gk,l = O. If nk and nl are M-adjacent in T, relabel nk as mo, relabel n[ as ml, and

let m2,. . ., mK be the other nodes of M that are M-adjacent to either mo or ml, or both.

Then, with our prior notation, set Gk = L~=l Lf::l Ya,b. Also set G = Lk Gk, where the

latter sum is over all indices for all the nodes of M. Finally, set gk,l = Pk,IGk/G, where Pk,l
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is the probability of a one-step transition from nk to n/ (before the relabeling). By (26),

9k,l = 91,k' This yields the surrogate network TJ3"""o.

The one-step transition probabilities for a random O-walk on TJ3"""othat follows the

nearest-neighbor rule are the same as the one-step transition probabilities Pk,l for M(M).

Indeed, the nearest-neighbor rule asserts that the probability of a one-step transition in

TJ3 o from a node x~ to an adjacent node x? is the ratio 9k,l/ z=f=l 9k,>.,where z=f=l 9k,>.

is the sum of all conductances incident to x~. Since 9k,/ = Pk,/Gk/G, that ratio is equal to

Pk,z/ z=f=l Pk,>..But, as we have noted earlier, z=f=l Pk,>.= 1. This verifies our assertion.

The point of all this is that we can now apply the Nash-Williams rule to TJ3"""'oto get

an extension of Rule 10.1 for the wandering of Ilt on any truncation T of a ,8-subsection,

where ,8 < J.L.That is, we have extended that rule from rank a to rank ,8. Indeed, we have

inductively established the following theorem. (It is now understood that a is replaced by

,8 in the definition of symbols given before Rule 10.1.) However, the assumption of ,8-roving

for Ilt in that rule will now be replaced by (,8+ I)-roving to insure that Ilt reaches Ne UNg.

But, this is not really necessary; as will be shown in the next section (Lemma 16.1 with J.L

replaced by ,8), ,8-roving alone suffices to insure that Ilt will reach Ne UNg.

Theorem 15.3. Rule 10.1 holds for any truncation of any ,8-subsection, when,8 < J.L

and 111(,8 + I)-roves.

16 Wandering on a J-l-Network

In the arguments up to and including Section 14 we allowed .0 = fl, but in Section 15 we

required that ,8 < J.L.So, we now need a replacement for Section 1.5for the case where

,8 = J.L. We cannot now require that Ilt (J.L+ 1)-rove because there are no (J.L+ 1)-nodes.

Instead we only assume that Ilt J.L-rovesand exploit the fact that there are only finitely many

J.L-nodes in N'"".

Let Nt be a finite set of maximal nodes in N'""; Nt will play the role that Ne U Ng did

before, but now we allow Nt to be a singleton. Let ns be a maximal node not in JV"".As

before, we let M be a finite set of maximal nodes that contains ns, all the nodes of Nt,

and all the J.L-nodesof N'"". M-adjacency for the nodes of M is defined as before, and, in
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accordance with Lemma 15.1, if two nodes of Mare M-adjacent, they are also J.L-adjacent.

Moreover, given any na EM, there is a unique set M a of nodes in M that are M -adjacent

to na. The fact that W J.L-roves insures that W, having started from na, will surely meet

Ma.

Exactly as in Section 15, we can assign probabilities of one-step transitions between the

nodes of M and conclude that we have a Markov chain M(M) governing the wandering of

the J.L-rovingW among the nodes of M. Moreover, the proof of Theorem 15.2 holds again

and shows that M(M) is irreducible and reversible. Thus, M(M) can be represented by

the wandering of a random walker W' of a finite connected O-network NJL"""o- a surrogate

for NtL, which of course depends upon the choice of M. W'obeys the nearest-neighbor rule.

Moreover, we have a bijection between the O-nodesXk ofNI'''''''o and the nodes nk ofM. The

Markov chain governing the wandering of W' on NJL"""ohas the same probability transition

matrix as that for M(M).

As was mentioned above, we cannot invoke (J.L+ I)-roving for Win order to assert the

the certainty that W, having started from ns, will meet M. Nonetheless, this conclusion is

true. To verify this, we employ a result of Nash-Williams [3, Lemma 3], whose proof we

repeat here. In the next lemma Nt is any finite non void set of nodes in NJL"""oand Xs is a

node of N JL"""Onot in Nt.

Lemma 16.1. It is a certainty that the random walker W' on NJL"""o,after starting from

Xs, will reach Nt in finitely many steps.

Proof. Let M' be the set of nodes for NJL"""o,let x E (.I\.1'\.v!), and let fJ(x,N!) denote

the distance in NJL"""ofrom x to Nt, that is, the length of the shortest path from x to .V{,

where the length of a path is measured by the number of branches in the path. Also~let

Qk( x, N!) be the probability that W', after starting from x, will reach Nt in k or fewer steps

(Le., in k or fewer single-branch transitions). Set

d = max{fJ(x,N;):x E (M'\N{n

and

Qmin = min{Qd(x,N/): x E (M'\N:n.
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Thus, Q min is a lower bound on the probability that \II', after starting from some node of

M'\N!, will reach N! in d or fewer steps. Therefore 1 - Qmin is an upper bound on the

probability that \II', after starting as stated, will not reach Nt in d or fewer steps.

For any given x E (M'\Nf), we can trace a path P from x to N!whose length is no

larger than d. By the nearest-neighbor rule, for each node Xa in P, there is a positive

probability that \II' will proceed from Xa to the next node in P in one step. Consequently,

there is a positive probability that \II' will proceed along P to reach }-/f in d or fewer steps.

Since there are only finitely many nodes in M'\Nf, we can infer that Qmin > o.

Now, let Rk(Xs,Nf) = 1- Qk(xs,ND; this is the probability that \II',after starting from

Xs, will not reach Nt in k or fewer steps. Thus, we may write

0 ::; Rkd(Xs,ND ::; (1 - Qmin)k -+ 0

as k -+ 00. This shows that the probability of \II' never reaching Nf after starting from Xs

is O. Thus, it is a certainty that \II'will reach Nt in at most finitely many steps. "
We can now invoke the bijection between the nodal set M' of NiL"""'oand the nodal set

M to obtain immediately the followingconsequenceof Lemma 16.1. As before, .Nt c M

and ns E (M\.Nt).

Theorem 16.2. For a J.L-roving random walker \II on NiL, it is a certainty that \II, having

started from ns, will reach.Nt after passing through nodes of M at most finitely many times

- and therefore after passing through p,-nodes at most finitely many times.

Furthermore, we ~re now free to apply the Nash-Williams rule to NiL"""Oand invoke the

said bijection in order to obtain the following result.

Theorem 16.3. With Ne and Ng being any disjoint nonvoid finite sets of maximal

nodes in NiL and with ns being a maximal node in NiL with ns rt.(X~ u Ng), the following

is true for the wandering of a l1-roving random walker on NiL; Prob{sns,rNe, bNg) is the

voltage at ns when Ne is held at 1 V and Ng is held at 0 V.

With regard to the promised strengthening of Rule 10.1, note that. with p, replaced by

a, the truncation F(Pl,' . ., PK) of the a-subsection satisfies Definition 6.1 with J.Lreplaced

by a and therefore can play the role of NiL. (For instance, F(Pl,"" PK) has only finitely

many a-nodes.) Thus, Theorem 16.3 can be restated as follows.
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Corollary 16.4 Rule 10.1 continues to hold for any truncation F(Pl,.. ., PK) of an

a-subsection when the assumption of f3-roving for 111is replaced by the weaker assumption

of a-roving for 111.
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Figure Legends

Figure 1.

(a) A 1-graph consisting of a two-way infinite ladder shorted at its extremities by two

1-nodes and with an appended branch boo The heavy dots denote O-nodes, the two small

circles denote 1-nodes, and the line segments are branches.

(b) A 2-graph consisting of a ladder of ladders, to which are appended three extra branches

bo, b1, and b2 and also another ladder L. Each bar of two closely spaced lines denotes a

ladder of branches like that of part (a). The two larger circles denote 2-nodes at the two

extremities of this 2-graph.

Figure 2.

A 1-graph in which there is no path between the 1-nodes n~ and nl.

Figure 3.

An a-subsection Sb. The heavy lines denote the (,8+ )-nodes bordering Sb. The dot-dash

lines denote branches b1 and b2 of SI: incident to bordering (,8+)-nodes. Vk,Pk denotes

an arm base in Sb corresponding to the (,8+ )-node n~+j it is indicated by a line of dots.

F(Pl, . . . , PK) is the reduced network within the boundary consisting of the Vk,Pk (k =

1,...,J()j F(Pl,...,PK) contains the branches b1 and b2. (Wk,Pk is Vk.PkU{n2}, where n~

is the O-node embraced by n~+ and incident to SI:. In general, either h,pk may be void or

n~ may be absent, but not both.)

Figure 4.

A ,8-node n~ with its incident (,3- )-subsections. Branches incident to n: are denoted by

dot-dash lines. The base Vp is denoted by a ring of dots. The isolating set Wp is Vp along

with the O-node embraced by n~. The arm Ap is shown cross-hatched. ..VeuNg is also shown

by a ring of dots. Ne UNg does not meet Ap and separates Wp from all the (,8+ )-nodes

other than n~ j moreover, n~ ft Ne UNg.
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Figure 5.

A two-port which is internally a transfinite sourceless network.

Figure 6.

A ,8-node n~, its incident (,8- )-subsectionsSbl and Sb2, and its ,8-adjacent (,8+)-nodes

nf+ , . . ., nif<+.The notation is the same as that used in Figure 3, but now H(PI" . . ,PK)

replaces F(PI,' . ., PK).
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