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UNCOUNTABLE TRANSFINITE GRAPHS A.ND

ELECTRICAL NETWORKS *

A. H. Zemanian

Abstract - Up to now, the theory of infinite and transfinite graphs aI-.] electrical net-

works has been established only for the case where the branch sets are comn:.ble. This work

extends that prior theory to graphs and networks with uncountable branch ~ets. Moreo\'eL

conditions on the local structure of the transfinite graph are given which in~ure the count-

ability ofthe branch set. Finally, it is shown that only count ably many ofthe branches in an

uncountable network can have nonzero voltages and currents, and therefore the restriction

to count ability in the prior theory is not essentially restrictive.

1 Introduction

Transfinite graphs and electrical networks were introduced in [4] and [5],but it was assumed

in those works that such a graph had only count ably many branches. This assumption can

be relaxed, and doing so is the first objective of this work. We shall pre~ent a series of

definitions which culminate in transfinite graphs and networks with possibly uncountable

branch sets. The ranks of those graphs can be any countable ordinal. furthermore, as

another extension, we shall introduce a new kind of node, the "O-node". where () is any

countable limit ordinal; such nodes had been omitted in our prior construction of transfinite

graphs. Examples of such graphs are given.

A second objective of this work is to establish conditions under which transfinite graphs

will have countable branch sets. In addition to the transfinite connectedness of the graphs,

these conditions impose requirements on various kinds of extremities of the graphs. They

are in fact generalizations of the standard result that an ordinary connected graph whose

"This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-
9200748.
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nodes are all of countable degrees has a countable branch set. But, the transfiniteness of

the graphs considered herein complicates matters considerably.

Finally, the significance of un count ability for electrical networks is examined. It is

shown that, even though the network may have an uncountable branch set. only count ably

many branches can have nonzero \'oltages and currents. This implies, for example, that an

uncountable parallel circuit can be removed without affecting the voltages and currents in

the rest of the network. It also implies that, so far as voltage-current regimes are concerned,

no generality is lost by imposing count ability on the branch sets.

A note about how we refer to paths: Instead of ;'finite transfinite paths:' a terminology

used in [4, pages 72 and 144] and [.5],we now say ..two-ended transfinite paths."

2 Countable and Uncountable Transfinite Graphs

The starting point in the construction of a transfinite graph is a finite or infinite set TO. We

require that TO have even cardinality if it is finite, but otherwise yO can be arbitrary. We

will be primarily interested in the case where TO is an infinite set. The elements of yO will

be called elementary tips. Later on, we will be introducing other kinds of "tips," categorized

by their "ranks." The elementary tips are the tips of lowest rank, and 0denotes that lowest

rank. (For the sake of certain numerical formulas that will arise, it will be convenient to

employ -1 as an alternative notation for 0.)

Next, TO is partitioned into two-element subsets, and each such subset is called a branch.

B will denote the set of branches. If yO is either a countable (Le., finite or denumerably

infinite) set or alternatively an uncountable set, then B is countable or respectively un-

countable, and the transfinite graphs we shall construct below will be said to be countable

or uncountable accordingly. An O-pathis taken to be a single branch.

Furthermore, let us also partition TO in any arbitrary fashion. Each subset of this latter

partition is called a 0-node, 0 being its rank. The set of 0-nodes is denoted by N°. N° may

be either finite, denumerable, or uncountable so long as yO is large enough. The cardinality

of each O-node is called its degree. If both elementary tips of a branch b are contained in the

same O-node, then b is called a self-loop. A branch b and a O-node nOare said to be incident
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if bn nO f:. 0. Thus, the degree of nO is the cardinality of the set of branches incident to nO,

except that a self-loop is counted twice when determining the cardinality of a finite O-node.

A 0-graph is the pair

gO = (8,.\1:1). (1)

It is determined by ~ and the two aforementioned partitions of yO. The rank of gO is

designated as O.

This construction implicitly determines a ma?ping from B into .\'0 through the inci-

dences between branches and nodes. Thus, ou!" i)-graphs are graphs in the conventional

sense. All the definitions regarding conventional graphs can and will be transferred to

O-graphs. In contrast to conventional graphs, isolated nodes do not occur in O-graphs.

Moreover, ali the definitions pertaining to O-graphs given in [4] and [5] again hold for

the O-graphs introduced here. The fact that we now aliow TO and thereby B and possibly

N° to be uncountable does not alter those definitions. Thus, a O-pathin gO is again an

alternating sequence of branches and nodes and is the same as a path in a conventional

graph. Furthermore, we can define the 0-tips of gO as equivalence classes of one-ended

O-paths in gO, where two one-ended O-paths are considered equivalent if they differ on no

more than a finite number of elements. go may not have any O-tips; this occurs when gO

has no one-ended O-paths. But, if gO does have O-tips, we let TO denote the nonvoid set of

all O-tips of gO.

Partition yo in an arbitrary fashion to obtain the subsets T;:, where T denotes the indices

of the partition; thus, TO = u,.7,.°. Each T;: may be finite, denumerable, or uncountable

(but never void). Furthermore, for each T, let .\~ be either the void set or a singleton

containing one of the O-nodesof gO;we require that N~ n N~ = 0 if T1 oj:.T2. We now

define a I-node for each T as the set 7,.° U N~. Thus, every O-tip appears in exactly one of

the I-nodes. Also, every O-node appears in either no I-node or in exactly one I-node; in the

latter case, that O-node is called the exceptional dement of the I-node. Conversely, every

I-node contains at least one O-tip and no more than one O-node. NI will denote the set of

aliI-nodes.
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The I-graph gl is now defined as the triplet

gl = {B,AfJ,N1}. (2)

Its rank as a transfinite graph is 1.

By continuing this construction recursively. we obtain the definition of a transfinite

graph of rank J-Lfor every natural number J-L.(Henceforth, J-Lwill always denote a natural

number.) In short, assume that such graphs go have been defined for each a = 1, p-1.

The a-paths and a-tips of go are defined as in [4] and [5], and we assume that, for each

a, go has a-tips. If gl1-1 has at least one one-ended (J-L - I)-path and thereby at least

one (J1- I)-tip, partition the set 711-1 of all (p - I)-tips into subsets 7:-1, where again

T denotes the indices for the partition. Furthermore, for each T, let JV.f-l be either the

void set or a singleton containing some a-node nQ, where 0 ::; a ::; J-L- 1. As before, we

require that, if Nf;.-1 and N~-1 have nodes, those two nodes are different nodes and neither

node embraces the other. Then, for each T, we define a J-L-nodenil as the set 7f-l U/\/;:-1.

The single element of N.f-l , if it exists, is called the exceptional element of nJ1..Finally, we

define the J-L-graphgl1 as the (J-L + 2)-tuplet

gll = {B,.ifJ,... ,NJ1.}. (3)

It is understood here that each }/"I (I = 0,. . ., J-L)is nonvoid. Because the branch set B is

allowed to be uncountable, we now have a more general definition of a J-L-graph than that

given in [4] and [5].

The next step of generalization is represented by a special kind of graph denoted by gw,

where w represents the rank of gO. (w is the first arrow rank for a transfinite graph.) It will

be possible to define such a graph so long as the constructions of the node sets N°, N1 , . . .

of progressively higher ranks can be continued without end. In other words, the sequence

{gJ1.}~1 of J-L-graphsgenerated recursively must be such that each gJ1.has one-ended J-L-paths

(and thereby an infinity of J-L-nodes),for otherwise there would be no J-L-tipswith which to

define gJ1.+1.So, let us assume that, for each natural number J-L,nonvoid sets NJ1.have been

constructed.
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Let us also introduce a new kind of node, the w-node, something that was omitted in

[4]and [5]. Let {JLd~o be a strictly increasing, infinite sequence of natural numbers; thus,

0 :::;Po < JLI < JL2< . . . . For each k, let there be a JLk-node nJ.Lk. If, for each k, nJ.Lkis the

exceptional element of nJ.Lk+l, then the infinite sequence

° - { 110 111 112 }n - n ,n ,n ,... (4)

is called an w-nodt. and 0 denotes its rank. The set of all w-nodes will be denoted b:, .v0.

It follows from this definition that two different 0-nodes are disjoint: that is, if a particular

JL-node appears in both C)-nodes, then those C)-nodes must be the same [4, Lemma .5.1-2].

Note that an w-node is automatically a nonsingleton.

This definition differs substantially from that of a JL-node nil with a natural-number

rank JLin two ways. First, n~ does not contain any w-tip, whereas nJ.Lalways contains

JL-tips. Secondly, nO embraces an infinity of nodes, whereas nJ.Lembraces only finitely many

nodes - perhaps none at all.

We now define the w-graph g~ of rank w as the well-ordered, infinite set of sets

gO = {B,}.f\NI,...,N~}, (5)

where, for each natural number JL,the node set Nil is nonvoid. However, N~ is allowed to

be void. The node sets are ordered within (5) in accordance with the ranks of their nodes.

We take the rank w to be larger than all natural-number ranks. (Later on, we will introduce

still higher ranks; C \vill be the least rank larger than all the natural-number ranks and the

largest rank less than all the transfinite-ordinal ranks (,,),(,,)+ 1, . . . .) This is a more general

definition of an w-graph than that given in [4] or [5] because now we allow w-nodes as well

as a possibly uncountable set B of branches.

Example 2.1. Here are three simple examples illustrating countable w-graphs. The

first of these is a star graph, illustrated in Figure l(a). It consists of a branch b (i.e., a

a-path) and the JL-paths pJ.L(JL= 0,1,2,.. .) all incident to the O-node mOthrough branches.

Thus, mOis of degree ~o. Except for the incidences at mO, these paths are totally disjoint.

This is an w-graph, but it has neither an w-node nor an w-path.
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An w-graph having an w-node nWbut no w-path is shown in Figure l(b). The branch b

and the JL-paths p/J.again meet through branches at the O-node mO, but now they also meet

at the :J-node nW through tips. More specifically, b meets the O-node nO, which is embraced

by the I-node nl. Moreover, for each JL,the JL-tipof p/J. is one member of the two-element

(p - 1)-node n/J.+l, whose other element is the JL-noden/J..Thus, each node of the sequence

{nO. nl. n2,...} embraces all the nodes of lower ranks in the sequence, and the sequence

itself is an w-node n';'.

finally, Figure 1(c) shows the beginning of an w-path. (Such a path is defined in [4,

page 1-!1]and [5, Section 5].) This is the simplest example of an C-graph with an C-path

but no "::-node. '"

following the w-graphs, the next kind of transfinite graph of still higher rank is the "w-

graph." where the rank w is the first transfinite ordinal. Such a graph can be constructed

from a given w-graph gw so long as gw has at least one w-tip [4, page 148], [.5.Section 5].

Partition the set TW of all w-tips of gw into the subsets T,Wjthus, TW = u.,..4::;),where as

usual T denotes the indices of the partition. Also, for each T, let Nf be either the void set

or a singleton whose only member is either an w-node of gw or a JL-node of g::;;,JLbeing a

natural number as always. Again, we require that, if N~ and N~ have nodes, those two

nodes are different nodes and neither node embraces the other. Then, for each T again,

we define an w- node n<::as the set 7,.w U Nf. Finally, an w-graph gUJis defined as the

well-ordered, infinite set of sets

gr.u= {B,~,Nl,.. .,Nw,NUJ}, (6)

where JVr.udenotes the set of LV-nodes.The only node set in (6) that is allowed to be void is

N::;). Here too, we have a more general definition of an w-graph than that gi\'en in [4] and

[5].

With a view toward generating transfinite graphs of still higher ranks, let us note that

the construction of the w-graph gUJ is like that of the O-graph because the w-tips assume the

role played by the a-tips previously. In particular, the limit ordinal w has no immediately

preceding ordinal, and neither does the ordinal OJmoreover, we have to introduce tip ranks,

namely, wand respectively athat are not ordinals. So, it appears that the transfinite graphs
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of next higher rank, the (w + I)-graphs, can be constructed by mimicing how the I-graphs

were generated from the O-graphs. In short, w-tips are defined as equivalence classes of

one-ended w-paths, the set of w-tips is partitioned into subsets, (w + 1)-nodes are defined as

the set of w-tips in one of the partitioning subsets possibly accompanied by a single node

of rank no larger than w - with the sets of embraced elements of t\\'O (w + I)-nodes being

disjoint, N"-'+l is taken to be the set of all (w + 1)-nodes, and finally the following definition

is set up.

gUJ+l - {B
ArO Arl \ '':; \ '.oJ JVUJ+l}- ,jV ,jV ,,,.,. " , ( I)

Clearly, we can proceed in this way to define recursiwly any (w + ,ui-graph gc.u+I1,\\There,u

is any natural number again. Then, an (w+ w)-graph g.oJ+cJcan be defined by mimicing the

construction of an C-graph gw; this entails the definition of (w + w)-nodes. Next, graphs of

rank w + w = u':. 2 can be defined by appropriately modifying the definition of w-graphs.

And so forth.

In this \vay v.;erecursively obtain transfinite graphs of all countable ordinal ranks, but in

doing so we also acquire transfinite graphs of rank {j,whenever () is a transfinite, countable,

limit ordinal. {j will be called an arrow rank; it precedes 0 but lies beyond every ordinal

smaller than O. \Ye also have inodes, which are quite analogous to C-nodes. In. particular,

a inode is a \vell-ordered infinite set of nodes, ordered according to their ranks with each

node of the set embracing all the nodes preceding it. Every inode is automatically a

nonsingleton.

Let us also note that, when v is a rank no less than w, any v-node may embrace infinitely

many nodes since there are infinitely many ranks less than v. This stands in contrast to a

J1-node, J1being a natural number, which can only embrace finitely many nodes.

3 Examples ofUncountableand Countable Transfinite Graphs

Example 3.1. Let Sa denote an uncountable star graph whose branch set is indexed by

the real numbers and whose branches are joined only at a single central O-node of degree c,

the cardinal number of the continuum. We can append a replicate of Sa to every end O-node

of Sa by shorting the central O-node of each replicate to each end O-node. Furthermore,
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we can indefinitely continue this process of appending replicates of SO to every end O-node

that arises. The result is an uncountable tree T. Its branch set also has the cardinality c

of the continuum [1, pages 376 and 381].

Furthermore, if we replace every branch of T by an endless v-path, where v is any

countable ordinal, and every O-node of T by a (v + I)-node, we will obtain a (v + 1)-graph

with a branch set whose cardinality is again c. .
Example 3.2. The ladder {o shown in Figure 2 is an example of a countable O-graph

haYing uncountably many O-tips, To appreciate this uncountability. note first of all that

any O-tip of this graph can be uniquely identified with the set of just those representath'es

for it that start at the O-node nO. Any two such representatives for a given O-tip differ on

no more than finitely many branches. Moreoyer, eyery such representative for any O-tip

can be specified by a binary sequence {XO,X1,X2,.. .}, where Xk = 0 (or Xk = 1) if the

representatiye passes through ak (respectively, bk). Of course, within the representative a

vertical branch Ck appears between the branches corresponding to Xk and Xk+1 whenever

X k f:. x k+ 1, and Co precedes bo when Xo = 1. Now, the set of one-ended binary sequences

has the cardinality c of the continuum because every real number between 0 and 1 can be

represented by such a sequence. However, in order to determine the cardinality of the set of

O-tips of the ladder, we must examine a partitioning of those binary sequences, where two

sequences are considered equivalent if they differ on no more than finitely many elements.

Nate that eyery set S of equivalent sequences is countable. Indeed, choose any binary

sequence So = {XO,X1,X2,...}. Then, count the one binary sequence Sl that differs from

So only in Xo, then count the two additional binary sequences S2 and S3 that differ from So

and Sl only in Xl, then count the four additional binary sequences that differ from So, Sl,

and S2 only in X2, and so forth. Thus, the cardinality of S is No, the cardinal number of

a denumerably infinite set. Consequently, the cardinal number of the set of O-tips for the

ladder is c -;- No = c [1, page 377].

We can construct an uncountable 1-graph gl by appending branches to the O-tips of the

ladder {o, as is indicated in Figure 2(b). In particular, a 0-node n~ of each appended branch

is shorted to each O-tip t~ of the ladder by means of a 1-node n1 = {n~,t~}. Notehowever
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that, except for the two O-tips with representatives along the ak branches alone and along

the bk branches alone, each O-tip is nondisconnectable from every other O-tip; that is, any

representatiye of any O-tip meets a representative of every other O-tip infinitely often. Later

on, we will at times restrict our attention to graphs in which pairs of nondisconnectable

tips are either shorted or at least one of them comprises a singleton node (Condition 4.1).

This 1-graph cannot be one of them. '"

Example 3.3. Another example of a countable O-graph with uncountably many O-tips

is the binary tree shown in Figure 3(a). In this case, eyery O-tip can be uniquely represented

by a one-ended O-path that starts at the topmost O-node. Each such O-path can in turn

be uniquely specified by a one-ended binary sequence. Hence, the cardinality of the set of

0-tips for the binary tree is also c.

Once again we can construct an uncountable 1-graph by appending branches bijectively

to the O-tips as before. See Figure 3(b). Now, however, no two O-tips are nondisconnectable.

Thus, this uncountable I-graph is not eliminated by Condition 4.1. ...

Example 3.4. It may be worth noting at this point that everyone of the examples

of v-graphs (v 2: 1) given above possesses maximal nonsingleton nodes of all ranks up to

and including v. This need not be the case. In fact, there are v-graphs whose maximal

nonsingleton nodes are all ofrank v - all the maximal nodes oflower ranks being singletons.

It is the nonsingleton nodes that are of importance in electrical network theory; the singleton

nodes play no role with regard to the flow of current. An example of such a transfinite graph

requires a rather complicated construction, as follows.

Start with a single branch b. Then, introduce two one-ended O-paths Pp and pJ, whose

O-tips are shorted to the two nodes of b through two 1-nodes; this is shown in Figure 4(a).

Next, short the O-nodes of Pp and pJ to the O-tips of other one-ended O-paths in a bijective

fashion, as shown in Figure 4(b). Do the same thing to the O-nodes of the newly introduced

one-ended O-paths. Continuing in this way indefinitely, we obtain a 1-graph g\ all whose

maximal nodes are of rank 1. The result of the first four steps of this construction is shown

in Figure 4( c).

g1 has I-tips. For example, a representation for a 1-tip t1 can be traced in Figure 4(c)
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by starting at the I-node nl, proceeding along a O-path to n~, then along another O-path

to n§, and so forth in (Jl. In fact, gl has at least a continuum of I-tips, for a binary tree of

one-ended O-paths can be embedded in gl. Every I-tip of gl will comprise the sole member

of a singleton 2-node in our subsequent constructions.

Kow, consider a replicate of 91 and let t6 be tl1': I-tip of the replicate corresponding to

the I-tip t1 introduced above. Short t6 to the I-node n~ of Figure -!(c), creating thereby

a nonsingleton 2-node. Do the same thing for all che other I-nodes of gl, using another

replicate of 91 for each I-node of gl. This yields an 'C=nbracing2-node for each I-node of 91.

The I-nodes of the appended replicates of 91 are a~:o treated in the same way to embrace

them as well by 2-nodes, and this process is comi::.ued indefinitely. Moreover, all the 1-

tips of gl and its replicates - other than the I-tip: of the replicates used in constructing

nonsingleton 2-nodes - are taken to comprise singleton 2-nodes. All this yields a 2-graph

g2, whose maximal nodes are all of rank 2.

Furthermore, g2 has 2-tips. One of them, say, t6 can be found by starting at the I-node

nl, shown in Figure 4(c), passing through the I-tip ofthe replicate of gl appended to n~ and

proceeding through that replicate to reach the I-node that corresponds to nl, continuing

through the I-tip of another replicate of g1, and 50 forth. All those 2-tips will comprise

singleton 3-nodes in our later constructions.

We now use replicates of g2 and in particular their 2-tips corresponding to t6 to construct

3-nodes out of the nonsingleton 2-nodes of g2. We then repeat this for the replicates, and

then again for the newly introduced replicates, and so on. This gives a 3-graph whose

maximal nonsingleton nodes are 3-nodes. That 3-graph will also have singleton 2-nodes as

well as 3-tips.

This process can be continued indefinitely to obtain, for each natural number J-l, a J-l-

graph gl-', all of whose maximal nonsingleton nodes are of rank J-land whose maximal nodes

of lower ranks are all singletons.

We can proceed still further by never terminating at any rank J-l. The result is an w-

graph gc;i,whose maximal nonsingleton nodes are C-nodes and whose maximal nodes of all

lower ranks are singletons. gc;ialso has w-tips, and so the process can be continued to obtain
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an w-graph gw. In fact, for each countable-ordinal rank v = 1,2,..., W,w,LV+ 1, . . ., we

can generate a v-graph gv whose maximal nonsingleton nodes are all of rank v and whose

maximal nodes of all lower ranks are singletons.

Every such gv has a countable branch set. This can be shown by repeatedly using the

principle t ha t a countable collection of countable sets is countable, Moreover, since e\'ery

maximal nonsingleton node of g// is incident to a branch, those nodes comprise a countable

set too, ...

4 Countability Conditions on Sections

Henceforth, we let g// be any countable or uncountable, transfinite graph. Its rank v IS

either a countable ordinal or an arrow rank other than O. Henceforth, p will denote any

rank no larger the v; thus, p is either an ordinal rank or an arrow rank such as O. For the

sake of a more concise notation, we augment conventional symbolism regarding the ordinals

as follO\vs. If the rank p is an ordinal, we let p - 1 denote the rank immediately preceding

p; thus, p - 1 = P if p is either 0 or a limit ordinal. However, p - 1 will never be used

when p is an arrow rank. On the other hand, p + 1 will always denote the rank immediately

succeeding p; thus, if p is an arrow rank 0, then p + 1 = e.

Two branches bI and b2 of gv are said to be p-connected when the following condition

holds: If p is an ordinal rank (alternatively, arrow rank other than 0), then there exists a

finite ,-path YY, where, ::; p (respectively, , < p), such that YY meets bI and b2.

A p-section of gv is a reduction of g// induced by a maximal set of branches that are

pairwise p-connected. Since a finite p-path is also a finite 7}-path whenever p < 7}::; v,

a p-section SP is entirely contained in an 1]-section ST), and ST) may in fact coincide with

SP. Furthermore, we allow the special case where p = 0;now, SO is defined to be a single

branch.

p-connectedness is a binary relation between branches that is reflexive and symmetric,

but it need not be transitive [6, Section 3]. As a result, the p-sections may not partition

gv; in fact, two different p-sections may overlap, that is, may have common branches. We

wish to avoid this pathology and can do so as follows.
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We first need to define "nondisconnectable tips." Recall that, for an ordinal rank " a

representative of a ,-tip is a one-ended ,-path which in turn is a one-way infinite alternating

sequence of ,-nodes n] and (J - l)-paths p:-1 of the form:

P "I -
{

TJ D"I-1 "I P-y-1 "I 0"1-1
}- no, r 0 ' n1' 1 , n2' r 2 , . . . (8)

where the first node n8 has a rank TJ:s;, and certain conditions are satisfied [5, Section 4].

(If~: = 0, p-y-1 denote5 a branch.) Similarly, for an arrow rank "8 (8 > 0), a representative

of an f-tip is a one-ended "8-path which in turn is an alternating sequence of the form:

P f -
{

TJ D'Yo-l -'I P -'1-1
.

.'Y2 P 'Y2-1 ... }- no, r 0 . nl' 1 . n2' 2 ' (9)

where TJand the ,k are ordinal ranks with TJ:s;~fo< 'I < ,2 < ... and 8 = lim,k [1. page

334] and again certain conditions are satisfied [S, Section 5].

~ ow consider an infinite sequence of nodes {m1, m2, m3, . . .}of possibly differing ranks.

We shall say that the m{ approach a ,-tip t-Y (alternatively, an "8-tip l) if there is a repre-

sentative (8) for t"i (re5pectively, (9) for t5) such that, for each natural number i, all but

finitely many of the mj are shorted to nodes embraced by the members of (8) (respectively,

(9)) lying to the right of nJ (respectively, nJi). We also say that those nodes lie beyond nJ

(respectively, nJi) and that the mj approach any node that embraces t"i (respectively, t5).

Let ta and tb be two tips, not necessarily of the same rank. We say that ta and tb are

nondisconnectable if there is an infinite sequence of nodes that approach both ta and tb.

Condition 4.1. If two tips (of possibly differing ranks but both ranks no larger than

v - 1) are nondisconnEctable, then either the two tips are shorted together (i.e., are both

embraced by some node) or at least one of them is open (i.e., is the sole member of a

singleton node).

Under this condition, p-connectedness becomes a transitive relation and p-sections par-

tition (iv, whatever be the rank p [6, Section 6].

A p-section SP is said to traverse a tip t if SP embraces a representative of t (i.e., all the

branches of the representative are in SP). The rank of the tip may be larger than p; this

will be illustrated in Figure 5 below.
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Given a p-section SP, a node n is called a boundary node of SP if n embraces a tip

traversed by SP and also embraces a tip not traversed by SP.

Lemma 4.2. If n is a boundary node of a p-section SP, then n satisfies at least one of

the following two conditions:

(i) All the tips embraced by n and traversed by SP have ranks no less than p.

(ii) All the tips embraced by n and not traversed by SP have ranks no less than p.

JJoreol.'U, el.'uy boundary node of SP has a rank larger than p, and any path P that meets

a branch in SP and a branch not in SP must hal.'e a rank larger than p.

Proof. If n satisfies neither (i) nor (ii), then n embraces a node nCXof rank () no larger

than p, and there is an a-path passing through nCXand embracing a branch of SP and a

branch not in SP. This violates the definition of SP as a reduction induced by a ma..ximal

set of p-connected branches. The rest of the lemma follows directly. .
Two p-sections Sf and S~ will be said to be (p + I)-adjacent if there is a (p + I)-node

nP+l that embraces a tip of Sf and a tip of S~ with one of those tips having'a rank of p and

the other tip having a rank no larger than p. It follows that Sf and S~ are (p + 1)-connected

through nP+l and are both embraced by some (p + 1)-section.

Given a p-section SP, the (p + 1)-adjacency of SP is the set :J of all p-sections that

are (p + I)-adjacent to SP. If:J consists of only countably many p-sections, we say that

SP has a countable (p + 1)-adjacency; this does not necessarily mean that the p-sections

of :J are themselves countable. Note that, when p = 0, SP is a single branch b. and its

(p + I)-adjacency is the set of branches that share nodes with b. Also note that, if SP has a

countable set of boundary (p + 1)-nodes and if each such node is incident to only count ably

many p-sections (in which case we may say that that boundary (p + 1)-node is p-sectionally

of countable degree), then SP has a countable (p + I)-adjacency; but, these two conditions

are only sufficient - not necessary - for that countable (p + 1)-adjacency.

Example 4.3. Consider the ~-graph of Figure lea) and let 0 ::; p <~. For each

J.lwith p ::; J.l< ~, let m~+l be the first (p + 1)-node in the path pJ1.with respect to a

tracing from mO and let n~+1 be the second (p + I)-node in pJ1.. Then, the branches in
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the paths pTJ('TJ= 0, 0, . . ., p) along with the branches between mo and m~+1 in the paths

pJl. (fl = p + I,p + 2,...) induce a p-section SP. The boundary nodes of SP are the m~+1

(fl = p + 1,P+ 2,.. .). The (p + I)-adjacency of SP consistsof the p-sections between m~+1

and n~+l for all those J.l."-

Example 4.4. Figure 5 illustrates a 4-graph. n4 is the 4-node {n3, t3}, where t3 is the

:3-tip of the one-ended 3-path p3. Also, n3 is the 3-node {n 1,t2}, where t2 is the 2-tip of the

ow:?-ended2-path p2. Finally, nl is the singleton I-node {to}, where to is the a-tip of the

on~-ended a-path pO. Every a-node embraced by p3 (or p2) is a-adjacent to the a-node n~

Ire;:pectively. n~); that is, there is a branch that is incident to that a-node in the said path

and to n~ (respectively. ng) as well. The reduced graphs Sl and S2 to the left and to the

right of n4 are a-connected in themselves and are connected to each other by a :3-path such

as the one passing along pO, then through n3, and then along p2. No path of rank lower

than 3 connects Sl and S2' Therefore, Sl and S2 are p-sections for each of p = 0,1,2, but

not for p = 3,4. On the other hand, Sl US2 is the entire 4-graph and is a 3-section as well.

~ ote that, even though Sl is a a-section, it traverses a 3-tip - a situation we promised to

illustrate. n3 is a boundary node for both Sl and S2, and so too is n4. But, nl is not for

either Sl or S2. Finally, as 2-sections, Sl and S2 are 3-adjacent because of the 3-path that

passes along pO, through n3, and then along p2, However, as a-sections (or as I-sections),

Sl and S2 are not I-adjacent (respectively, 2-adjacent). "-

Theorem 4.5. Let the v-graph gv satisfy the following conditions.

(a) gv is v-connected.

(b) gv satisfies Condition 4.1.

(c) For each rank p less than v, every p-section has a countable (p + 1)-adjacency.

Then, gv has a countable branch set.

Proof. We shall use transfinite induction, working with ranks rather than ordinals.

First, choose any a-section Sa and let b be any branch in Sa. Since a O-section is the

same thing as a branch, hypothesis (c) asserts that there are only count ably many branches

adjacent to b. Set Ho = {b}. For each positive natural number k, let Hk be the set of
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branches each of which is adjacent to a branch of 1ik-I. Since, Sa is O-connected, every two

branches of Sa is connected by a finite O-path in Sa. Furthermore, no O-path starting at b

will leave Sa. It follows that the branch set of Sa is Uk::O1ik. Since a countable union of

countable sets is countable, Sa is countable. (So far, we have argued a standard result [3,

page 39].)

\"ext, let p be any ordinal rank and let SP be any p-section. By hypothesis (b) and by

[6. Corollary 6.4], SP is partitioned by (p - 1)-sections of (?'. (Remember that p - 1 = P
if p is a limit ordinal.) For the inductive hypothesis, assume that every (p - 1)-section in

S: is countable. Let Sp-I be one of them and set 1io = {Sp-I}. For each positive natural

number k, let 1ik be the set of (p - I)-sections, each of which is p-adjacent to a (p - 1)-

section of 1ik-I' Since SP is p-connected, every t\VObranches of SP is connected by a finite

p-path in SP. Moreover, every finite p-path meets only finitely many (p - I)-sections, and

consecutively met (p-l)-sections are p-adjacent. Also, no p-path that meets Sp-I will ever

leave SP. It follows that Uk:O1ik is the set of all (p - 1)-sections in SP. By hypothesis (c)

and the fact that a countable union of countable sets is countable, each 1ik consists of only

count ably many (p - I)-sections, and so too does Uk:01ik' By the inductive hypothesis,

each (p-l)-section in SP is countable (Le., has only count ably many branches). Therefore,

SP is countable too.

Finally, let p be any arrow rank other than O. Thus, p = 8,where e is a limit ordinal.

Let S8 be any O-section in gv. Let f be the last arrow rank before 8; thus, , is a limit

ordinal and every rank larger than, and less than 8 is a successor ordinal. Also, let 17

denote any rank such that , ~ 17< e. Given any two branches bI and b2 of S8, there is for

some TJa finite TJ-path that meets them. This implies that, for , ~ TJI< TJ2< 8, any STi1in

S8 is contained in some S1/2in S8, and moreover

S8 = U S1/,
"1$.1/<8

(10)

where S'Y is any arbitrarily chosen ,-section in S8 and S1/1 C S1/2for , ~ 171 < 172 < 8.

As our inductive hypothesis, we now assume that every f-section in S8 is countable. This

is trivially so for f = O. By Hypothesis (c) and the preceding paragraph, every S-yinS9
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is countable. In fact, we may successively apply the result of the preceding paragraph to

assert that, for each TJwith I ~ TJ< 8,every STJin S8 is countable. Hence, by (10), S8 is

countable too.

The last two paragraphs taken together provide a transfinitely inductive argument es-

tablishing the theorem. ..

Actually. the last proof has also established the following result.

Corollary 4.6. Let S"I be a I-section in a v-graph 911, where I is any ranI.- no larger

than v. Assume that all tips traversed by S-i satisfy Condition 4.1 and that, for each rank

p le.5.5 than A;. every p-section in S"I has a countable (p+ I)-adjacency. Then, SA, has a

cou n table bra nch set.

5 Implications for Electrical Networks

A theory for transfinite electrical networks whose graphs are uncountable can be constructed

exactly as it was for the case of countable graphs [4], [5]. Hilbert spaces for the current

vectors are constructed exactly as before, but now inner products are summable series over

uncountable branch-index sets. A discussion of summability for uncountable series is given

in [2]. All the results of [4, Chapters 3 and 5] and [5] extend to uncountable networks with

this simple change.

Let NV be an electrical network with an uncountable graph and let J be the index set

for its uncountably many branches. Consider the case where every branch bj (j E J) is

in the Thevenin form; that is, bj is a series connection of a positive resistance rj and a

real-valued pure voltage source ej. If ej = 0, bj is considered to consist only of rj and is

called purely resistive. The branch current ij, branch voltage Vj, and branch voltage source

ej are measured in accordance with the polarities shown in Figure 6. Thus, Vj = ijrj - ej.

Also, gj = ril is the conductance of the branch bj.

In the aforementioned theory, several restrictions are imposed upon NV in order to

obtain a unique voltage-current regime. For one thing, NV is assumed to be v-connected.

This means that every two branches are connected by a two-ended v-path plI. But, by

definition of a v-path, pv has no more than count ably many branches. Thus, for example,
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NV cannot contain a series circuit having uncountably many branches.

But, v-connectedness does not eliminate parallel circuits with uncountably many branches.

Those are effectively removed by two other restrictions of the theory; namely, the total iso-

lated source power is required to be finite:

L e;gj < 00,
jEJ

(11)

and the total dissipated power is also required to finite:

'" .2
L ljTj < 'X).
jEJ

(12)

\Yhen these two conditions hold, we say that we have a finite-power l;oltage-currcnt regime.

These two condition imply that only count ably many of the ej and ij can be nonzero.

Indeed, choose a sequence {€d~l of positive numbers tending to O. For each k, the number

of Cj for which lejl > €k must be finite if (11) is to hold, and similarly for the ij. Hence,

the asserted count ability.

It followsthat only countably many of the branch voltagesVj = ijTj - ej can be nonzero.

So, in any uncountable parallel circuit at least one branch voltage must be O. Since all branch

voltages of the parallel circuit are the same, every branch voltage is O. Hence, the t\ o nodes

of the parallel circuit can be shorted. This makes everyone of its branches into a self-loop

and effectively removes the parallel circuit so far as the voltage-current regime of the rest

of the network is concerned. In particular, Tellegen's equation [4, page 79], which is the

fundamental equation upon which the theory of infinite networks is based, remains satisfied

after that removal.

But, how does one account for the currents in the count ably many source branches of the

parallel circuit as the parallel circuit is shorted? For example, all the voltage sources may

be oriented the same way and may therefore feed currents all in the same direction from one

node of the parallel circuit to the other node; these currents no longer impinge upon those

nodes after the parallel circuit is removed. Does this not disturb the voltage-current regime

in the rest of the network? The answer is that Kirchhoff's current law need not be satisfied

at the two nodes of the parallel circuit because of the presence of the uncountably many
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purely resistive branches of the parallel circuit. In fact, an uncountable sum of positive

conductances cannot be finite, and therefore both nodes of the parallel circuit cannot be

restraining [4, page 81].

We can infer something more from (11) and (12). Except for count ably many branches

of N", all other branches will be purely resistive with 0 branch currents. Those branches

will be in a state of balance - such as the central branch of a balanced wheatstone bridge.

Hence, they can be removed either by opening them or by shorting them. \Vhatewr choices

are made, the result \\"ill be a countable network whose branches carry the same voltages

and currents as they do in the uncountable network N". In fact, there will be an un-

countable collection C of countable netv.;orks that are equivalent to N" in this sense. This

result also implies that no generality is lost by confining our attention to countable electrical

networks so far as the nonzero parts of the finite-power voltage-current regimes in uncount-

able networks are concerned. But, doing so would not reveal the equivalences between the

countable networks in C and the uncountable network N" from which they are derived.

:\Ioreover, since we have made a binary choice between opening and shorting each of the

removed branches and since the cardinality cardB of the branch set B of )V" is equal to

the cardinality of the set of removed branches (the two sets being uncountable and differing

only by a countable set), the cardinality cardC of C is higher than cardB. In fact, we have

cardC = 2cardl3.
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Figure Legends

Figure 1. In this diagram, heavy dots denote O-nodes, small circles denote I-nodes, and

double circles denote 2-nodes.

(a) A star graph consisting of a branch b and one-ended fL-paths (/1 = 0, L 2 ) termi-

nally incident through branches at the O-node mObut otherwise totally disjoint. This is an

':::-graph having no O-node and no w-path.

(b) A parallel connection of b and the pl1 (/1 = 0,1,2,...) meeting terminally at mO

through branches and at an w-node nW through tips. This is also an w-graph. It has no

':::-path.

(c) An w-path. This too is an w-graph. It has no w-node.

Figure 2. (a) A ladder network £°. The ak, bk, and Ckdenote branches, and nOis a O-node.

£° has an infinite set of O-tips, whose cardinality c is that of the continuum. The O-tips are

pairwise nondisconnectable.

(b) An uncountable I-graph wherein a branch is appended to each O-tip of £°.

Figure 3. (a) The binary tree. The set of its O-tips has the cardinality c of the continuum.

The O-tips are pairwise disconnectable.

(b) An uncountable I-graph having a branch appended to each O-tip of a binary tree.

Figure 4. The first three steps in the construction of a I-graph all of whose maximal nodes

are I-nodes.

Figure 5. A 4-graph. The dots denote O-nodes, the smallest circles are I-nodes, the x's are

2-nodes, the double circles are 3-nodes, and the triple circle is a 4-node. pl1 (fL = 0,2,3)

denotes a one-ended fL-path. Sl and S2 are p-sections for each p = 0,1,2.

Figure 6. The Thevenin form of a branch.
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