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Every Finitely Structured v-Graph Has a Spanning Tree *

A. H. Zemanian

Abstract — It is shown by example that not every transfinite graph has a spanning
tree. However, if the graph is finitely structured, it does have a spanning tree. This is

established by induction on subsections and on ranks of transfiniteness.

1 Introduction

Every conventional connected graph (whether finite or infinite) has a spanning tree. Does
very connected transfinite graph have one? The answer is “no.” We will show this by
example. We will then prove that, if the transfinite graph is finitely structured, it will
have a spanning tree. (See [1, Section 4.5] for the definition of finite structuring.) This
is established inductively by working from lower ranks for subsections to higher ranks and
by building a spanning tree for each subsection by expanding a tree through subsections of
lower ranks.

Most of the definitions and terminology used herein are explicated in [1]. We cannot
repeat them here without excessively lengthening this paper, and so we refer the reader to
(1] and its Index for the special terms that are not defined below. As with a conventional
graph, a spanning tree in a v-connected v-graph G” is a v-connected subgraph that meets
every node and has no loops. As a standard definition for a conventional graph, the distance

between two 0-nodes of a 0-graph is the number of branches in a shortest path between them.

2 Transfinite Graphs Without Spanning Trees

Perhaps the simplest such graph is the one shown in Figure 1. Therein we find an infinite

series circuit of parallel circuits consisting of the branches a; and b;. That infinite series
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circuit has infinitely many 0-tips. Two of those 0-tips, one with a representative along
the ax branches and the other with a representative along the by branches are connected
through two 1-nodes n! and n} respectively to two branches 8, and B,. The latter are
incident to two 0-nodes n? and ng respectively. The other 0-tips of that series circuit are
also embraced by 1-nodes, one for each, but 'those 1-nodes are singletons and are not shown
in the figure. There is no spanning tree for this graph because no tree can meet any two
of its 1-nodes without containing the branches a; and bi for some sufficiently large k —
that is, without containing a loop. Indeed, if the tree is to meet any two 1-nodes, it must
traverse a representative for each, and, since those representatives must differ, they will
differ for an a; and b; for some k.

The simple graph of Figure 1 can appear imbedded in more complicated graphs, making
it impossible for the latter to have spanning trees as well. An example of this is a one-ended
infinite ladder. A more complicated example is shown in Figure 2. One might speculate
that an “essentially spanning” tree might be found, one that meets every nonsingleton node,
is v-connected, and contains no loops. This is so for the ladder. But, the graphs of Figures
1 and 2 dispel that idea.

What we shall do in the rest of this paper is establish that all finitely structured trans-
finite graphs G¥ have spanning trees, this being true for all ranks v < w and certainly for

many higher ranks as well.

3 1-Graphs

Theorem 3.1. Every finitely structured 1-graph G! has a spanning tree.

Proof. Choose any 0-subsection of G!. For‘a subsequent purpose, we shall denote it by
SP0.1- Sho is either a 0-graph of a 1-graph, but its internal rank is 0. So, let us consider
at first the 0-graph of Sa?,o,v that is, the graph consisting of all the branches and 0-nodes
of 51?,0,1- (The 1-nodes of 820,1 will all be bordering nodes and are only finitely many in
number.) In that 0-graph we can choose a spanning tree T§ as follows. Choose any internal
0-node n° in 81?,0,1 along with its finitely many incident branches. This is a star graph.

We now proceed inductively as follows. Assume that a spanning tree has been chosen for



the subgraph induced by all the 0-nodes at distances from n° less than m (m > 1). Let
"9n,k (k= 1,...,Kpn) be the finitely many 0-nodes that are at a distance m from n%. Set
N2 = {nmk: k=1,...,Kn}. Choose any branch connecting n2, ; to a 0-node in NJ_;;
there will be such a branch. Proceed along the nodes of N2 as follows. Having chosen one
such branch for each n3, ; (1 <! < k < Ky,), choose one branch connecting n;), ; to a node
in N2_,. At each k there will be at least one such branch, and — whatever be that choice
— no loop will be formed with the previously chosen branches because that last branch
will be an end branch. Proceeding in this fashion along the nodes of each NS and then
successively for m = 2,3,..., we obtain a spanning tree T{ for the 0-graph of 31?,0,1-

Now, consider any bordering node n' of Sy, ;. If n! contains a 0-node n°, then the tree
TQ will meet ! through a branch incident to ng. Otherwise, the tree will reach n! through
one or more 0-tips. However, the arms A, (p = 1,2,...) for any contraction to n! within
Spo.1 Will have bases V, whose cardinalities are all bounded by some natural number g. It
follows that the tree T§ can reach n! through no more than q 0-tips. Since Sl?,o.l has only
finitely many bordering nodes, the tree T{ will have only finitely many 0-tips.

Next, consider the 1-loops and 0-loops created by the shorts imposed by the bordering
nodes of 880,1 upon the 0-tips and finitely many of the elementary tips of T9. There can
be only finitely many such 1-loops and 0-loops. We can break all of them one-by-one by
opening finitely many branches without disconnecting the resulting graphs. This yields a
spanning tree T for S7y ;. (T may have 1-nodes.)

Repeat this procedure to get such a spanning tree for every 0-subsection of G!. Let
us denote the 0-subsections by S,‘,’,m,, (m=0,1,2,...;1 = 1,...,Lpm; Lo = 1), where, for
each m > 1 and each I, S}, ; is 1-adjacent to at least one subsection S, _,, but not
1-adjacent to any Sg o0 Where p < m — 1. The union of any finite number of spanning trees
for the S},),m,, will contain no more than finitely many 0-loops or 1-loops. These too can be
broken one-by-one by opening branches without disconnecting the resulting graphs. We do
so by proceeding sequentially starting with a spanning tree for Sl?,o,u then appending all the
spanning trees for the Sf," 1, and breaking loops, then appending all the spanning trees for

the Sg 2, and breaking loops, and so on. Since G! is finitely structured, it has only finitely



many 0-subsections. Thus, the procedure ends, and the result is a spanning tree for G!. &

Corollary 3.2. Let S} be a I1-subsection in a finitely structured v-graph (v > 2). Then,
S} has a spanning tree.

Note. Here, the superscript 1 indicates that the internal rank of the subsection is 1.
Thus, S} is a (2—)-subsection.

Proof. By working with the 0-subsections of S} as in the preceding proof, we can
construct a spanning tree T for the 1-graph of S}, but in this case the procedure may
continue indefinitely for m = 1,2,... since S} may have countably many 0-subsections.
Nonetheless, the said spanning tree will be achieved.

Every bordering node of S} will impose shorts among some of the tips (i.e., elementary
tips, 0-tips, and 1-tips) of T. But, here again S} has only finitely many bordering nodes,
and T will reach them through no more than finitely many 0-tips and 1-tips because of the
finite structuring. Therefore, only finitely many loops will be created by shorts imposed
by the bordering nodes of S}. So, here again we can break them one-by-one by opening
branches without disconnecting the resulting graphs. In the end we will have a spanning

tree for S}. &

4 Higher Ranks

This procedure for constructing a spanning tree can be extended inductively and without
much alteration to graphs with higher ranks. The induction is on the internal ranks of
subsections. We start with the natural-number ranks.

Theorem 4.1. Every finitely structured u-graph G*, where p is a natural number, has
a spanning tree.

Proof. Consider any a-subsection S of G#, where a is the internal rank of S¢ (2 < a <
p). S¢ is partitioned by its (a—)-subsections. We can arrange the latter by choosing any
one of them, say, Sy, then letting Sy, (I = 1,..., L1) be the (a~)-subsections that are
a-adjacent to S(:(Iv and similarly, for each m = 2,3,..., letting Sf:;,, (I=1,...,L,) be
the (a—)-subsections that are a-adjacent to at least one of the Sy’ _, ; but not a-adjacent

to any Sg’:;,, where p< m — 1.



Let us assume that a spanning tree T,,; has been constructed for each (a—)-subsection
Spma(m=0,1,2,...501=1,...,L;m; Lo = 1). Thus, To,) is a spanning tree for Sp'g ;. Then,
Toa U (U,L:ll Tu) will have only finitely many loops. These can be broken by opening no
more than finitely many branches without disconnecting the resulting graph. We get a
spanning tree Ty for Sp'g, (U{;’l f;,)

We proceed inductively for m = 2,3,.... Let T,,_; be the spanning tree obtained after
appending all the spanning trees T),; up to and including the index p = m — 1 and breaking

loops. Again Ty U (U{;"; Tmyz) will have only finitely many loops, and these too can be

broken by opening finitely many branches to get a spanning tree T, for Jp%o U,L:I Sppi-

Continuing this procedure through all m, we obtain a spanning tree for the a-graph of S,
where again « is the internal rank of S§'. As before, we need break no more than finitely
many loops — those created by the bordering nodes of S§' — to get a spanning tree for S§.

In view of Corollary 3.2, we can now conclude that, for each a = 1,..., 4, every a-
subsection of G# has a spanning tree, and in particular G* itself has a spanning tree. &

It is a fact that no d—graph can be finitely structured {1, Lemma 4.5-1(ii)]. So, let us
proceed to an w-graph.

Theorem 4.2. Every finitely structured w-graph G¥ has a spanning tree.

Proof. Every (w—)-subsection Sy~ of G“ has a spanning tree. We can conclude this
by induction on « as in the last paragraph of the preceding proof, where now a progresses
through all the natural numbers. (Remember that every loop in Sy~ must have a natural
number rank, and therefore every loop created in our procedure of appending trees will
be broken at some natural number for a.) Next, upon considering the shortings of tips
imposed by the finitely many w-nodes of G¥, we can break finitely many loops again to
obtain a spanning tree for G¥. &

We have thus constructed a spanning tree for any finitely structured graph of any rank
up to and including w. Clearly, our procedure can be continued to still higher ranks of
countable ordinals for both successor and limit ordinals. (No finitely structured graph can
have an arrow-rank — as is the case for &.) All that is required for extensions to higher

ranks is changes in notations. The procedure works for all finitely structured graphs that



can be defined.
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