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Abstract — Ordinal distances were defined between certain nodes of transfinite graphs
and a variety of results concerning nodal eccentricities were established in a prior work.
When, however, a transfinite graph is restricted to being pristine (i.e., no node embraces a
node of lower rank), a number of simplifications and extensions of those prior results accrue.
They are presented in this short paper.
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1 Introduction

Distances in transfinite graphs can be represented by transfinite ordinals. Thus was pro-
posed and examined a prior work [3], and generalizations of several standard results con-
cerning distances in finite graphs were achieved as well as some other results having no
counterparts for finite graphs. That prior work considered transfinite graphs {1] in general.
Pristine graphs [2], being a special case of transfinite graphs, have additional properties,
some of which represent simplifications of the prior general results. In this short paper, we
present several theorems of this nature. The terminologies we use herein are defined in [2],
which has a thorough index. One definition of importance for this work is the following.
The set of ranks for transfinite graphs and the paths within them is the set of countable
ordinals along with the insertion of an arrow rank X just before each limit ordinal A (1, page
4], [2, page 4]. ’

A pristine v-graph is a transfinite graph of rank » in which no node embraces a node
of lower rank; as a result, all nodes are maximal, that is, no node is embraced by a node of

higher rank. In such a graph, each p-node consists only of (p—1)-tips. Also, no node can be



of rank dJ, in contrast to transfinite graphs in general, which can have &-nodes. Nonetheless,
a pristine graph can be of rank & by containing a one-ended &-path but no w-node. We
always assume in the following that the v-graph G* is pristine and is v-connected. Also,
we restrict the rank v to 0 < v < w. All our results can be extended to many ranks larger
than v with virtually no change in the arguments [2, Sec. 2.4]). Furthermore, the following
is also assumed throughout.

Condition 1.1. If two tips are nondisconnectable [2, page 31}, they are either shorted
together(i.e., are of the same rank and belong to the same node) or at least one of them is
open (i.e., is the sole member of a singleton node).

This is the pristine version of Condition 3.2 of [2]. It ensures that connectedness is a
transitive binary relation for nonsingleton nodes [2, Theorem 3.1-6]. It also ensures that
between any two nonsingleton nodes there exists at least one path terminating at them.
As a result, ordinal-valued distances can be defined between all pairs of nonsingleton nodes
and in fact between all pairs of nodes in any metrizable set M of nodes [3, Proposition 4.1}.
M contains all the nonsingleton nodes in G¥ as well as some singleton nodes. It will be
understood that a metrizable set M of nodes has been selected and fixed in the following.

One possibility is that M is just the set of nonsingleton nodes in G*.

2 v-Graphs Having One-Ended v-Paths

* A one-ended v-path (v # &) is one that starts at some node of rank v or less and passes
through infinitely many v-nodes. When it appears in a »-graph, its v-tip is not embraced
by any node of rank v or greater. In effect, such a v-graph extends infinitely without being
a subgraph of a graph of higher rank. A similar result holds when v = &, except that now
the starting node is of rank less than & because there are no &-nodes in a pristine graph,
and moreover the path passes through nodes of all ranks less than &. Because of this, the
eccentricities of all the nodes are all the same arrow rank, in contrast to the eccentricities
of nonpristine transfinite graphs whose eccentricities can be ordinal ranks as well as arrow

ranks and can differ. More precisely, we have the following theorem.



Theorem 2.1. Assume that the v-graph G¥ contains a one-ended v-path P*. Then,
every node of M has an eccentricity of whH,

Note. When v = &, w*+1 denotes w¥.

Proof. Let z be any node in M, and let y be any nonsingleton node in P” (and
therefore in M as well). Then, there is a two-ended path P, terminating at z and y. It
follows from [2, Theorem 3.1-6] that there is a one-ended v-path Q¥ in P, U P¥ terminating
at z. The length of Q* is w""‘H, and there is no path in G” having a greater length. Thus,
the eccentricity of z is W, O

The next theorem states conditions ensuring the presence of a one-ended v-path in
G". The critical properties are a transfinite generalization of local-finiteness along with the
assumed v-connectedness of G¥.

Theorem 2.2

(1) With v # &, assume that there are infinitely many nonsingleton v-nodes in G* and that,
for each rank p = 0,1,...,v (possibly, v = w), every nonsingleton p-node is p-adjacent
[2, page39] to only finitely many nonsingleton p-nodes. Then, for any node z € M,
there ezists at least one one-ended v-path in G¥ starting at z. Thus, the eccentricity

]

of every node in G¥ is wvtl,

(ii) For the &-graph G°, assume that, for each natural number p = 0,1,2,..., every non-
singleton p-node is p-adjacent to only finitely many nonsingleton p-nodes. Then, for
any node z € M, there exists at least one one-ended &-path in G% starting at z.

Moreover, the eccentricity of every node in G is w¥.

Proof. These conclusions follow from transfinite versions of Konig’s lemma given by
Corollary 3.3-6 and Theorem 3.3-7 of [2] with v # & and v = &I respectively. O

Let us note in passing that Konig-type theorems hold for nonpristine graphs as well,
but under some strong assumptions {1, Corollary 4.2-5 and Theorem 4.2-7]. This ensures
the existence of one-ended v-paths, and consequently the conclusions of Theorem 2.2 hold

once again.



3 v-Graphs With Only Finitely Many Nonsingleton v-Nodes

Very different results arise when M has at least one and no more than finitely many v-
nodes, which means in particular that there are only finitely many nonsingleton v-nodes
in G¥. Since there are no &-nodes in a pristine graph, we now have the restriction that
v # &, which is imposed throughout this section. We will now find that all eccentricities
are ordinals (never arrow ranks).

In this section, ¥ # & because there are no &-nodes in a pristine graph.

Theorem 3.1. Let M have at least one and no more than finitely many v-nodes. Then,
the eccentricities of all the nodes in M take their values in a finite set of ordinals having
the form

{w’ -p:1<p<2m} (1)

where m and p are positive natural numbers and m is the number of v-nodes in M.

Proof. Let P be any path in G” terminating at two nodes of M. All the other nodes
of P are nonsingletons and therefore in M, too. P can embrace no more than m v-nodes
and therefore can traverse no more than 2m v — 1-tips. Thus, the length of P is no larger
than w” - 2m. By Theorem 7.1 of [3], the nodes of any (v — 1)-section $¥~! all have the
same rank. Also, the length of any one-ended (v — 1)-path in S¥~! connecting a node of
8”71 to a bordering node of $¥~! is exactly w”. So, if z and y are nodes of M in different
(v —1)-sections, any two-ended path terminating at them has a length equal to w” -p, where
the natural number p satisfies 1 < p < 2m. This is also true if either (or both of) z and y
is a bordering node in M of a (v — 1)-section. (That bordering no‘dé will have rank v.) So,
the set of lengths of all paths terminating at nodes of M is a subset of (1) (possibly all of
(1)). Consequently, the distance between any such nodes will take their values in that finite
set. It follows that the eccentricity of any node in M will also be a value in that finite set.
O

In the next result, rad and diam denote the radius and diameter of a transfinite graph
as defined in [3].

Corollary 3.2. Under the hypothesis of Theorem 3.1, rad and diam are ordinals of

the form w” - p and WY - q, where p and q are positive natural numbers no larger than 2m.



Moreover, rad < diam < rad-2.

Proof. Because (1) is a finite set, rad and diam are respectively the minimum and
maximum of 1). Whence the first conclusion. The second conclusion follows from Theorem
7.2(i) of [3]. O

Corollary 3.3. Assume again the hypothesis of Theorem 3.1. Let z¥ be a bordering
node of a (v — 1)-section S*~!, and let y* be an (internal) node of S*~'. With w* - k and
w" - p denoting the eccentricities of ¥ and y* respectively, the following is true: |k —p| < 1.

Proof. This follows from the fact that any (v — 1)-path in $*~! that terminates at y*
and reaches z¥ has the length w”. O

That k — p can equal 0 in the last corollary is verified by the next example.

Example 3.4. Consider the pristine 1-graph of Fig. 1 consisting of a one-ended path
of 0-nodes w? and an endless path of 0-nodes yj connected to two 1-nodes z! and 2!, as
shown. The eccentricities are e(w)) = w -3 for k =1,2,3,..., e(z!) = w-2, e(y}]) = w -2
fork=...,~1,0,1,..., and e(z!) = w-3. Thus, e(z') — e(y}) = 0, as asserted. Note also
that rad = w - 2, diam = w - 3, the center consists of z! and all the y?, and the periphery
consists of z! and all the wg. a

An immediate consequence of Corollary 3.3 is the following.

Corollary 3.5. Under the hypothesis of Theorem 3.1, the set of eccentricities for M

form a consecutive set of values in (1).

4 v-Graphs With Infinitely Many v-Nodes But No One-Ended
v-Paths o

There are v-graphs that do not satisfy the hypotheses in the prior sections. There is, how-
ever, another circumstance wherein the eccentricities are all the same arrow rank. Specif-
ically, first consider the case where v # &, and assume that there is no one-ended v-path
in G¥. Assume furthermore that for each node in M there are two-ended v-paths of all
possible lengths w” - k (k = 1,2,3,...). (Such is the case, for example, for a star graph,
whose hub is a 0-node z° of infinite degree and whose spokes are two-ended paths starting

at z° and of lengths w” -k (k = 1,2,3,...).) In this case, the eccentricity of each node in



M is wH,

Similarly, when v = &, assume again that there is no one-ended &-path in G¥, but for
each node in M there are two-ended u-paths of all natural-number ranks u = 1,2,3,...
starting at every node. (Again, the star graph with hub 2° and infinite many spokes of such

p-paths serves as an example.) In this case, the eccentricity of each node in M is w®.
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