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NONSTANDARD TRANSFINITE GRAPHS

A. H. Zern'anian

Abstract — For any given sequence of transfinite graphs all of the same rank, a non-
standard transfinite graph of that same rank is constructed. The procedure is similar to an
ultrapower construction of an internal set from a sequence of subsets of the real line, but

now the primitive entities are the nodes of various ranks instead of real numbers.

1 Introduction

In several prior works [1], [2], [3], [4], [5], the idea of nonstandard transfinite graphs and
networks was introduced and investigated. The basic idea in those works was to start with a
given transfinite graph, to reduce it to a finite graph by shorting and opening branches, and
then to obtain an expanding sequence of finite graphs by restoring branches sequentially.
If all this is done in an appropriate fashion, it may happen that the sequence of finite
graphs fills out and restores the original transfinite graph once the restoration process is
completed. If in addition there is an assignment of electrical parameters to the branches,
we finally obtain sequences of branch currents and branch voltages, from which hyperreal
currents and voltages can be derived. The latter will then automatically satisfy Kirchhoff’s
laws even though Kirchhoff’s laws may on occasion be violated in the original transfinite
network—an important advantage of this nonstandard approach.

However, this is only a partial construction of a nonstandard graph in the sense that
the completion of the restoration process—if successful—results in the original standard
transfinite graph. The sequence of restorations only provides a means of constructing hy-
perreal currents and voltages satisfving Kirchhoff’s laws. A more general approach might
start with an arbitrary sequence of transfinite graphs and construct from that a nonstan-

dard graph in much the same way as an internal set in the hyperreal line *R is constructed



from a given sequence of subsets of the real line R, that is, by means of an ultrapower
construction [6, page 125]. In this case, the resulting nonstandard transfinite graph has
nonstandard branches and nonstandard nodes of various ranks. Thus, that nonstandard
transfinite graph is much different from those of the prior works cited above.

Our objective in this work is to develop this Jatter approach to nonstandard graphs.
The standard 0-graphs are the (possibly infinite) conventional graphs, and the standard
graphs of higher ranks are nontrivially transfinite. The nonstandard versions of these graphs
contain, in addition to analogues of standard branches and nodes, nonstandard branches
and nodes that have no standard analogues—in much the same way as unlimited hyperreals
are different from real numbers. Our procedure is presented in detail for the ranks 0 and
1 and merely summarized for higher ranks of transfiniteness because it extends to higher
ranks in much the same way.

Various definitions and results concerning transfinite graphs are invoked throughout this
work. Whenever this occurs, references to [7] are given wherein any needed information can

be found.

2 Nonstandard 0-Graphs

A standard O-graph G° is a conventional (finite or infinite) graph G° = {B, A%}, where A'®
is the set of its nodes (called 0-nodes henceforth) and B is the set of its branches. Each
branch b € B designates a two-element set b = {z°,¢°} with 2%,4° € A% and 2° # % b
and z° are said to be incident and so, too, are b and y°. Also, 2° and 4° are said to be
adjacent through 6. We allow neither parallel branches (i.e., multigraphs) nor self-loops
(i.e., branches that are each incident to just one 0-node).

Next, let (G0),cn be a given sequence of O-graphs, where IV is the set of all natural
numbers n = 0.1,2,... . For each n, we have 9’2 = {Bn,(l’,?}, where B,, is the set of
branches and 1?2 is the set of 0-nodes. Also. for each n. we label all the 0-nodes in order to
distinguish them from each other: however. in the following we suppress this labeling—it
being understood. Furthermore. let F be a chosen nonprincipal ultrafilter on IV [6, pages

18-19).



In the following, (z2) will denote a sequence of 0-nodes with z2 € A?? for all n. A
nonstandard 0-node *z° is an equivalence class of such sequences of 0-nodes, where two such

sequences (z2) and (y2) are taken to be equivalent if {n: z% = y2} € F, in which case we

0

write “(z2) = (y0) a.e.”

or say that 8 = 2 “for almost all n.” We also write z% = [20],
where it is understood that the 20 are the members of any one sequence in the equivalence
class. |

That this truly defines an equivalence class can be shown as follows. Reflexivity and
symmetry being obvious, consider transitivity: Given that (z9) = (yg) a.e. and that
(¥2) = (z8) a.e., we have Ny = {n: 2% = 42} € Fand N,. = {n:y2 = 22} € F. By
the properties of a filter, N, N Ny. € F. Moreover, N, = {n: 2% = 2%} D (N, N N,.).
Therefore, N, € F. Hence, (22) = (22) a.e.; transitivity holds. We let *V'® denote the set
of nonstandard 0-nodes.

Next, we define the nonstandard branches: Let "z = [z%] and *y° = [y¢] be two non-
standard O-nodes. This time, let N, = {n: {29,942} € B,} and N, = {n: {22,4°} ¢ B..}.
Since F is an ultrafilter, exactly one of N, and -ny is a member of F. If it is N, then
% = [{28,48}] = {*z°7y°} is defined to be a nonstandard branch; that is, * is an equiv-
alence class of sequences (b,) of branches b, = {z%,4%} € B,, n = 0,1,2,....} We let "B
denote the set of nonstandard branches. On the other hand, if N, € F, then [{29,4°}] is
not a nonstandard branch.

We shall now show that this definition is independent of the representatives chosen for
the 0-nodes. Let [{z2,4°}] and [{vl,w?}] represent the same nonstandard branch. We
want to show that, if (z2) = (v2) a.e., then () = (w?) a.e. Suppose (y0) # (w?) a.e.
Then, {n:28 =2} N {n:y° # wl} € F. Thus, there is at least one n for which the three
nodes z% = 12, 4%, and w? are all incident to the same standard branch—in violation of
the definition of a branch.

Next, we show that we truly have an equivalence relationship for the set of all sequences

of standard branches. Reflexivity and symmetry being obvious again, consider transitivity:

Let b = [{z9,40}], B = [{z°%,7°}), D = [{29,%°}], and assume that b = D and D = *. We

17, .
Incidence between a nonstandard branch and a nonstandard node and adjacency between two nonstan-
dard nodes are defined in much the same way.



want to show that " = *b. We have Nz = {n: {28,92} = {z%,7%}} € F and Ny = {n:
{En’ yn} = {iE”, yn}} € ]: MOI‘QOVQI‘ Nbb - {" {-’L'n, yn} = {.’I‘”, yn}} D ("Vbb N Arbl;) € ]:
Therefore, N,; € F. Thus, "b = *b, as desired.

Finally, we define a nonstandard 0-graph *G° to be the pair *G° = {*B, *1"°}.

3 Nonstandard 1-Graphs

A standard 1-graph G! is a triplet G! = {B, A%, .'''}, where B and .\'¥ are sets of standard
branches and standard 0-nodes as before and ' is a set of standard 1-nodes [7, Sec. 2.1].
Each 1-node z! contains a set of O-tips [7, page 20] of the 0-graph GY = {B,A°} and at
most one 0-node unique to that 1-node. That is, z! either contains no 0-node or exactly
one 0-node z° and that 0-node is not a member of any other 1-node. In the latter case, we
write z° € z!.

Now, let (G1),en be a given sequence of standard 1-graphs. So, for each n = 0,1,2,.
we have G! = {B,, X%, A’'}. Thus, for almost all n, {B,, X’} is a conventionally infinite
0-graph with at least one 0-tip. In addition to the labeling of all the 0-nodes, we label all
the I-nodes in order to distinguish them as well; again we suppress this labeling—it being
understood. As before, we let F be a chosen and fixed nonprincipal ultrafilter. With these
items in hand, we construct the sets "B and *1’® exactly as before.

In the following, (z}) will denote a sequence of 1-nodes where z} € A} for each n.
The definition of a nonstandard 1-node "z! is virtually the same as that for a nonstandard
0-node. Specifically, *z! is an equivalence class of such sequences of 1-nodes, where two such
sequences (z)) and (y}) are defined to be equivalent if {n: 2] = yl} € F. That this truly
defines an equivalence class is shown exactly as in the case of 0-nodes. When equivalence
holds, we write “(zl) = (yl) a.e.” We also write *z! = [z]], where again it is understood
that the z} are members of one of the sequences in the equivalence class.

By definition [7, page 22], each standard 1-node z} of G} is a set .2 UNC,, where U, T,%

is a partition of the set of 0-tips in the O-graph GV = {B,, AV} and AV, is either the empty

nr

set or a singleton whose sole member is a 0-node in A’2, that is not a member of any other

l-node in G}. If {n: 2l € 21} € F, we write 2° = [20] € ! = [z]].

n



From the given sequence (Gl)nen, we can define the nonstandard 0-tips as follows: Let
(1) be a sequence of 0-tips, one from each G2. Two such sequences (t9) and (s2) will be
taken to be equivalent if {n: ¢ = &8} € F. This is truly an equivalence relationship;
its transitivity can be proven exactly as transitivity was proven for equivalent sequences
of 0-nodes. We write *t° = [t?], where the t are the members of any one sequence in
the equivalence class. Now, given any sequence (zl) of standard 1-nodes, we can chooée a
sequence (t2) of standard 0-tips with t2 € z} for every n. Thus, we can write %0 = [t] €

*z1 = [z1]. On the other hand, since for each n every tJ is a member of some z}, we have

n’

that %® = [t2] is a member of some *z! = [zl].

1 1

We should now show that, if "z! = =y, where "z! = [z1] and "y' = [y}], and if a O-tip

9 of GU is a member of z) for almost all n, then t2 is a member of y! for almost all .
Suppose this is not true. Thus, for almost all n, t2 € z} and t & y1. Hence, it is not true
that *z1 = *y!. We can conclude that, if "z! = "y, then t© € 2l if and only if t° € ¢},
again for almost all n.

We should also show that, if *z° € *z!,if %° € "y?, and if "z! = *y!, then z° = %°. Set
Ny={n:28 eaz}}, Ny={n: 42 € 41}, and Nyy; = {n: z} = y.}. We have N, N,, N,y €
F. Therefore, N, N N, N Ng; € F. We want to show that N0 = {n: 2% = 3¢} ¢ F.
Suppose Nyyo € F. Then, Ny = {n: 29 # y%} € F. Hence, Npyo N N N Ny N Nyyy € F.

1

This means that there exists at least one n for which z% € z!, y2 € ¢}, 2}

n

= gy}, but
z9 # y2. This a a contradiction because each 1-node embraces no more than one 0-node by
definition of a 1-node. Similarly, the assumption that “z® € *z!, "z! = ~y!, and "' does not
embrace a nonstandard 0-node leads to the contradiction that, for some n, z} = y! contains
a 0-node and does not contain a 0-node. In this way, our definition of a nonstandard 1-node
conforms with that of a standard 1-node.

Altogether then, we let *1'! denote the set of nonstandard 1-nodes and define the non-

standard 1-graph "G! to be the triplet:

G o= B, WO, )



4 Nonstandard Graphs of Higher Ranks

Virtually the same arguments establish nonstandard graphs of higher ranks. For instance,
given a sequence (G2),ex of standard 2-graphs G2 = {B,, X2, X)), 1;?}, where 12 is a set
of standard 2-nodes, we construct the sets *B, *V°, “A’! as before. Then, the nonstandard

2

2-nodes *z? are equivalence classes of sequences (z2) of standard 2-nodes, one 2-node from

each G2, with (z2) being equivalent to (y2) if {n: 22 = y2} € F. Nonstandard 1-tips
! = [¢1] are defined much as are nonstandard 0-tips, and it can be shown that, if 2 = ny?
and if ! € *z?, then ! € *y%. It can also be shown that, if *z® € *2? and % € =2, where
0<a,8<1,andif 2 = *?, then "z® = *y® (which implies of course that a = 3). Then,
with *A1’? denoting the set of all nonstandard 2-nodes, we define the nonstandard 2-graph

"G? arising from (G2) as the quadruplet

*g‘z - {:«B’ *{1}0’ *{_ ;]’ x/1;2}.

It is easy to set up a recursive argument through which nonstandard graphs of all
natural ranks can be defined. Then, applying the same arguments as above with all those
nonstandard graphs of all natural-number ranks in hand, we can define the nonstandard
graphs of ranks & and then w. Then, proceeding recursively, we can define nonstandard
graphs of ranks w+ k (k= 1,2,3,...), then to the ranks w + & = w -2, then w -2, and so

on to still higher ranks.

5 Comparison of Two Different Constructions of Nonstan-
dard Transfinite Graphs

As was mentioned in the Introduction, our prior papers on nonstandard transfinite graphs
were based on expanding sequences of finite graphs that filled out transfinite graphs. This
approach is subsumed by the following general procedure: As the basic set. we start with
the set (& of all graphs (both finite and transfinite). Then, we partition the set (&F of all
sequences of graphs into equivalence classes by considering two sequences (G,) and (H,,)
to be equivalent if {n: G, = H,} € F, where G,, = H,, denotes a graphical isomorphism.

Any such equivalence class is denoted by [G,], where The G, are the members of any one



sequence in the class. We then define [G,] to be a nonstandard graph. This ultrapower
construction is the same as that for the hyperreal numbers except that the real line R is
replaced by the set (& of all graphs. In our prior works, we used a special case of this
construction by restricting the sequences (G,) as stated above. The advantage of that
prior procedure is that it allowed us to replace the real currents and voltages in a standard
transfinite electrical network by hyperreal currents and voltages which would always saﬁsfy
Kirchhoff’s laws. This was a consequence of the fact that Kirchhoff’s laws are satisfied in
finite networks. Kirchhoff’s laws are not always satisfied by real currents and voltages in
transfinite networks.

In contrast, this paper starts with a sequence of O-graphs and uses its 0-nodes as the
basic elements from which nonstandard 0-nodes and nonstandard branches are constructed
in a way analogous to the construction of an internal set from a sequence of sets in R.
This yields a nonstandard 0-graph. Then, the 1-nodes of a sequence of 1-graphs are used
to obtain nonstandard 1-nodes in a similar way to get a nonstandard 1-graph—and so on
to the nonstandard graphs of higher ranks.

Thus, we have two different procedures yielding two different kinds of nonstandard
graphs. Further research on both of these seems inviting. For instance, instead of the
ultrapower construction used in both cases, a transfer principle should yield our results more

efficiently. This would require a symbolic language that encompasses transfinite graphs.
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