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PERMISSIVELY STRUCTURED TRANSFINITE
ELECTRICAL NETWORKS *

Armen H. Zemanian and Bruce D. Calvert

Abstract — Transfinite electrical networks of ranks larger than 1 have previously been
defined by arbitrarily joining together various infinite extremities through transfinite nodes
that are independent of the networks’ resistance values. Thus, some or all of those transfinite
nodes may remain ineffective in transmitting current “through infinity.” In this paper,
transfinite nodes are defined in terms of the paths that permit currents to “reach infinity.”
This is accomplished by defining a suitable metric d” on the node set Mg, of each v-section
S¥, a v-section being a maximal subnetwork whose nodes are connected by two-ended
paths of ranks no larger than v. Upon taking the completion of Mg. under that metric @,
we identify those extremities (now called v-terminals) that are accessible to current flows.
These are used to define transfinite nodes that combine such extremities. The construction
is recursive and is carried out through all the natural-number ranks, and then through the
first arrow rank & and the first limit-ordinal rank w. The recursion can be carried still

further.

1 Introduction

The idea of a transfinite graph or network was introduced in [2] and more thoroughly
investigated in [3]. The transfinite structure was obtained by joining together various infinite
extremities of infinite graphs, but the choices of those connections were quite arbitrary.
With regard to transfinite electrical networks, those choices did not reflect the ways in
which currents could or could not flow toward infinite extremities and through transfinite

* 1998 Mathematics Subject Classification. Primary 05C12, 05C40. Secondary 94CQ5.
Key Words nd Phrases Transfinite networks, infinite electrical networks, metrics on networks.
This work was partially supported by the National Science Foundation under Grants DMS-9200738 and
MIP-9423732.



nodes. A more recent work [1] showed (among other results) that the permissive paths,
through which currents might flow toward the infinite extremities of an electrical network,
could serve as a guide for joining various choices of those extremities in order to construct
transfinite nodes.

However, this was accomplished only for the first rank of transfiniteness. The aim of
this paper is to extend this way of constructing transfinite networks to higher ranks of
transfiniteness. This is achieved through a recursive development, which is carried through
all the natural-number ranks, the first arrow rank &, and the first transfinite rank w. This
paper ends by pointing out how this recursion can be carried forward to ranks larger than
w. The resulting networks are herein called “permissively structured.”

The basic idea is to construct metrics on maximal sets of transfinite nodes that are
v-connected, one metric d for each rank v of transfiniteness, and then to complete each
such set of nodes under the metric d“. The new limit points obtained thereby are called “v-
terminals” and are the “permissive extremities.” The set of v-terminals are then partitioned
arbitrarily, and the sets of the partition are then joined into transfinite nodes of the next
higher rank v+ 1. All this works for the natural-number ranks; modifications are needed for
the arrow rank & and the limit rank w. However, we impose some restrictions to enable the
recursion — as, for example, the conditions that no node embraces a node of lower rank,
that each v-section has only finitely many v-terminals, and that each (v + 1)-node consists
of only finitely many v-terminals. (A v-section is a maximal subnetwork whose branches
are v-connected [3].)

This paper is written in such a fashion that it can be read independently from [1]. Our
notation and terminology conforms with that used in [3]. In addition, we use the following.
The notation z 4 () denotes that the entity z is embraced by the entity ). The resistive
length | P| of a path P is the sum of all the resistances of its embraced branches; in symbols,
|P] = Y 44pTs, Where ry is the resistance of the branch b embraced by P. We say that
P is permissive if |P| < oo. The resistive size |N| of a network N is defined similarly:
IN| = Ypan 7. We shall say that a v-node, where v > 1, is permissive if every one

of its embraced tips has a permissive representative (in which case all its representatives



are permissive). Every 0-node will be called permissive. R™ will denote n-dimensional

Euclidean space with the usual Euclidean norm.

2 Permissively Structured 1-Networks

We start with a 0-network N°®. The components of N? will be called 0-sections. We assume
the following two conditions.

Condition 2.1. N is locally finite (i.e., every 0-node has only finitely many incident
branches).

Condition 2.2. N? has at least one 0-section having infinitely many 0-nodes.

We will be dealing in general with a nonlinear monotone network but will assign a single
positive linear resistance value to each branch. We will get from the nonlinear network to
the network with assigned linear branch resistances by adopting the construction given in
[1].

First of all, we assume that there is no electrical coupling between branches; this will be
understood henceforth. Next, having assigned an orientation to each branch b with respect
to which we measure the branch voltages v, and the branch currents ¢;, we take it that for
each b we have a maximal monotone function M;: R ~ 2R that maps each ¢, € R into a
subset of R consisting of corresponding voltages v,. We recall that a function f: R ~» 2F
is monotone when

(f@) - fW'Nz-y) 20
for every number f(z)* in f(z) and for every number f(y)* in f(y). We may write (z,y) € f
to mean y € f(z). We define f~1: R ~» 2R by the statement: For (z,y) € R?, (y,z) € f~}
if and only if (z,y) € f. We say that f: R ~ 2F is maximal monotone if the two conditions
(z1,%1) € R? and (y — y1 )(z — 21) > 0 for all (z,y) € f imply that (z1,11) € f.
We will assume that the following three conditions hold.

Conditions A.

(1) For each b € B, there is at least one y with (0,y) € M, (i.e., 0 € Domain(M,;)), in
which case we set

65(0,0, My) = min{ly|: (0,y) € Ms}.



(2) For each b € B, there is at least one z with (z,0) € M, (i.e., 0 € Range(M;)), in which

case we set
65(0,0, M) = min{|z|: (z,0) € M,}.
(3)
I =)6(0,0,M) < o (1)
beB
and
V = ) §(0,0,M) < oo. (2)
beB

Next, to each branch b we assign Ry € [0, ] and G} € [0, 00] as follows:

(i) Ry is the Lipschitz constant of M on [~1I,I]if M, is a Lipschitz continuous function

on [—1I, I]; otherwise, Ry = 1.

(ii) Gy is the Lipschitz constant of M;"! on {~V,V] if M;! is a Lipschitz continuous

function on [~V, V]; otherwise, Gy = 1.

Finally, we set r, = Ry if Ry € (0,00) and ry > 0 if Ry = 0, but in the latter case we choose
the 7, values such that 374, —o 7 < 00. This is how we assign a positive linear resistance
value 7, to each branch of our nonlinear network satisfying Conditions A. (In this paper we
will not make any use of Gy, but G will be employed in subsequent works.)

Note that, had we started with a linear network N, in which every branch b consists of
a positive resistance along with possibly a parallel current source or a series voltage source,
then r, would simply be that positive resistance. If, on the other hand, a branch b in N
was a pure voltage source, we would set r, = 1, and, if that branch was a pure current
source, we would choose r, > 0 arbitrarily except that the rp’s for all the pure current
sources would have a finite sum.

As the next step, we define the metric d° (this was denoted by d, in [1, page 5]), which
we may now refer to as a 0-metric to distinguish it from metrics of higher ranks that we
shall consider subsequently. Let NMgo be the set of 0-nodes in a given 0-section S°®. Let

P(S° m,n) be the set of all 0-paths in S° that terminate at the nodes m and n in Ngo. Set
d°(m,n) = inf{|P|: P € P(S°,m,n)}.
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It is easy to see that d° is a metric on d°. (For example, d°(m,n) = 0 since trivial paths
are allowed.)

Now, take the completion J’V\SO of Ngo under d° and call the resulting limit points 0-
terminals. (Each 0-node of S? is an isolated point under d°.) B%(T?, ¢) will denote the open
ball in ﬁso with center at the 0-terminal 7° and radius e:

BT%¢) = {z:z € Ngo,d%z,T°) < ¢}

We will say that a one-ended 0-path P° (whether permissive or not) converges to a 0-
terminal T° if, for each ¢ > 0, the node sequence of P? is eventually in the ball B(T?,¢).

Let us now assume

Conditions 2.3. FEvery 0-section has only finitely many 0-terminals. Moreover, in-
finitely many 0-sections each have at least one 0-terminal.

We have available the following results.

Proposition 2.4. [1, Theorem 2.3] For any 0-terminal T° of S° and any one-ended
0-path PP that starts at the 0-node n° of S® and converges to T°, we have d°(n°, T°) < |PY|,
where | P°| denotes the resistive length of P°, that is, the sum of the resistances for all the
branches in P®. Moreover, for any 0-node n° of S°, any 0O-terminal T° of S°, and any
€ > 0, there erists a one-ended 0-path P° within S°® that starts at n® and converges to T°
and whose resistive length satisfies |P°| < d®(n°,T°) + ¢.

Let O3, be the set of all permissive one-ended paths in S°.

Proposition 2.5. [1, Corollary 2.4] Fach permissive 0-path in a given 0-section S°
converges to one and only one 0-terminal of S°. Thus, the 0-terminals determine a partition
of 0.

Proposition 2.6. [1, Corollary 2.5] BY(T?,€) N Ngo is 0-connected whatever be the
choices of T® and .

Proposition 2.7. {1, Corollary 2.6] For any two O-terminals T{ and Ty of a given
0-section S°, there erists a permissive endless 0-path P° within S°, one of whose O-tips is
in TY and the other in TY (i.e., along each of its infinite extensions P° converges to each

of those two terminals) and whose resistive length satisfies | P®| < d*(T?,T9) + «.



We now create an entity, which we shall call a permissive I-node, by partitioning the set
of all the 0-terminals for all the 0-sections of N° in any arbitrary way and then by taking
each set of the partition to be a permissive 1-node. But, we shall do so in such a fashion
that the following holds.

Condition 2.8(a). Every permissive 1-node consists of only finitely many 0-terminals
and does not embrace any 0-node.

We can relate these permissive 1-nodes to the 1-nodes in [2] and (3] as follows. Each
0-terminal corresponds to the set of all permissive one-ended 0-paths that converge to
that 0-terminal. Therefore, by Condition 2.8(a) each permissive 1-node corresponds to
the union of only finitely many such sets of permissive one-ended paths. Furthermore, all
the representatives of a permissive 0-tip are perforce in the set of permissive 0-paths for
some 0-terminal. Consequently, each permissive 1-node can be identified with some set of
permissive 0-tips and is therefore a 1-node by the definition used in [2] and [3].

Finally, each nonpermissive 0-tip (i.e., all its representatives are nonpermissive) will be
assigned to a singleton 1-node, which we shall refer to as a nonpermissive I-node. Thus,
every nonpermissive 0-tip is open. In other words, we have

Condition 2.8(b). Every nonpermissive I-node is a singleton consisting of ezactly one
nonpermissive 0-tip.

Thus, all the 0-tips have now been assigned to 1-nodes, and we have a special case of
the 1-networks defined in [2] or [3]. We shall call any 1-network constructed in this way a
permissively structured I-network. To simplify terminology, we shall say that each 0-tip is
in some O-terminal, which in turn is in some 1-node.

Here are some direct consequences of this construction.

Note 2a. Every node is maximal (by Condition 2.8(b) and the definition of a nonpermissive

1-node).

Note 2b. 0-sections and 0-subsections coincide (by (i)). Thus, every boundary node of a
0-section is a bordering node of that 0-subsection. Conversely, if a bordering node is

incident to two or more 0-subsections, it is a boundary node of that 0-section.



Note 2c. Every 0-section has only finitely many incident permissive 1-nodes (by Condition

2.3). (A O-section may have infinitely many incident nonpermissive 1-nodes.)

Note 2d. Every permissive 1-node is incident to only finitely many 0-sections (by Condi-

tion 2.8(a)). Every nonpermissive 1-node is incident to exactly one 0-section.

Note 2e. Every 0-path is restricted to a 0-subsection, that is, all its nodes are interior
nodes of the 0-subsection (by Condition 2.8(b) and the same fact about nonpermissive
1-nodes). Thus, every representative of a 0-tip (whether permissive or not) reaches

exactly one 1-node.

Note 2f. Every permissive 1-node is 1-adjacent to only finitely many permissive 1-nodes

(by Conditions 2.3 and 2.8(a)).

Proposition 2.9. If two O-tips are permissive and nondisconnectable, they are in the
same 0-terminal.

Proof. Let P (resp. PJ) be a representative of the permissive 0-tip t? (resp. t3).
Then, P{ and P meet infinitely often (i.e., they share infinitely many 0-nodes). Let T° be
the 0-terminal to which the nodes common to P? and P? converge. Then, all the nodes of
the permissive P{ must converge to the same limit 7°, and similarly for P (see Proposition

2.5). This is equivalent to saying that tJ and tJ are in 7°. &

3 The 1-Metric

As the next step in our recursive construction, we set up a “l-metric” for the nodes of a
1-section in a permissively structured 1-network N!. A 1-section of N! is a component of
N1. Let A1 be the set of all 0-nodes and permissive 1-nodes in a 1-section S! of N!. For
the sake of a convenient terminology, we shall call every 0-node permissive. Thus, Ng: is
the set of all permissive nodes in S'. (Since we have not yet defined the 2-nodes, S! has no
bordering nodes at this point.) Let m and n be distinct nodes in Ng1. Let P(S!, m,n) be
the set of all permissive paths (of ranks 0 or 1) in S! that terminate at m or n. For any

P € P(S!,m,n), let | P| denote the resistive length of P, that is, the sum of the resistance



values r; for all the branches embraced by P. Thus,

|P| = Z"‘b,

5P

where b 4 P indicates that branch b is embraced by the path P. Set
d'(m,n) = inf{|P|: P € P(S},m,n) (3)

Proposition 3.1. If m and n are distinct permissive nodes in the same [-section of N,
there exists a permissive two-ended path P, , terminating at m and n (thus, |Pp | < o).
Furthermore, if at least one of m and n is of rank 1, then any path terminating at them
will be of rank 1.

Proof. If m and n are incident to the same 0-section, the conclusion follows from [1,
Theorem 2.3 and Corollary 2.6]. So, assume m and n are not incident to the same 0-section.

Since they are in the same 1-section, there is a 1-path
Priz,n = {m,Pg,n},P{’,...,n}(,P,%,n} (4)

where K is a finite positive integer. Since there are no embraced 0-nodes, each 0-path is
incident to the 1-nodes next to it through a 0-tip. Moreover, each n¥ is a nonsingleton 1-
node and therefore is permissive. (Remember that each nonpermissive 0-tip was left open.)
On the other hand, m and n are permissive by hypothesis. This means that all the 0-tips
in m, n, and all the n} are permissive. Consequently, each PP is permissive. Since there
are only finitely many PP, P,}m is permissive too. &

We have shown that d'(m,n) < co whenever m and n are permissive nodes in the same
1-section.

Lemma 3.2. When m and n are distinct permissive nodes in the same I-section,
d'(m,n) > 0.

Proof. If either m or n is a 0-node and P, , is a permissive path connecting m and n,
| Pm,n| is larger than the smallest r, for the finitely many branches incident to m and n. So,
d'(m,n) is clearly positive in this case.

Now, let both m and n be permissive 1-nodes. Every 1-path connecting m and n must

pass completely through a 0-section incident to m and therefore must have a resistive length



no less than ming{d'(m, ¢)}, the minimum being taken over all the finitely many 1-nodes ¢
that are 1-adjacent to m. Again, we can conclude that d*(m,n) > 0. &

For any m € Ng1, we set d'(m,m) = 0. Also, if m,n € Ng: are distinct, we clearly
have from (3) that d'(m,n) = d'(n,m).

Now, for the triangle inequality for d'.

Lemma 3.3. For m,n,q € Ns1,
d'(m,n) < d'(m,q) + d'(q,n). (5)

Proof. We have something to prove only when m, n, and ¢ are distinct. By Proposition
3.1, there exists a permissive path P, , terminating at m and ¢ and a permissive path P, ,
terminating at ¢ and n. By Proposition 2.9 and the fact that each nonpermissive tip is
open, we have from (3, Corollary 3.5-4] that there is in Pp, 4 U P, a path P, (perforce

permissive) terminating at m and n. Thus,
|Prnl < |Pmgl + [Pyl (6)

Moreover, by the definition (3), for each ¢ > 0 we can choose P, , and P, , such that
the right-hand side of (6) is no larger than d'(m,q) + d'(g,n) + €. Since this is so for all
€ > 0, the definition (3) now implies that (5) holds. &

Altogether then, we have established

Proposition 3.4. d! is a metric on Ns:.

Remark 3.5. Although the 0-nodes of Ngo for any given 0-section S° are all isolated
under d° and d', the 1-nodes of AVg1 are not isolated from the 0-nodes of Ag: under d!. &

Remark 3.6. For m,n € Ngo where S° is a 0-section within the 1-section S?, d*(m,n) <
d®(m,n) because there are in general 1-paths in S! connecting m and n in addition to the
0-paths in SO connecting m and n. We will discuss this fact in more detail in the proof of
Lemma 3.7. &

We could now complete Ag: under d!, establish what the limit points are, and then
construct a permissive 2-network. (S! need not have any limit points under d! other than
those obtained under d°, but, if it does have such points, it can then be shown to have

permissive 1-tips, and our recursive process can continue.) Now, however, we will instead



continue our recursive construction of “permissively structured ” transfinite networks by
passing directly to the more general case of a p-network where u is a positive natural
number. But, before doing this, there is one more preliminary result to consider.

Given the permissively structured 1-network N!, consider the set Ago of all 0-nodes
in a chosen 0-section S® of N!. We may complete Ago under d% in addition to the said
0-nodes, which are all isolated points under d° (and under d' as well), we now obtain the
aforementioned 0-terminals as limit points. On the other hand, we may complete Ao
under the weaker metric d'. Conceivably, distinct limit point under d° may now merge into
a single limit point under d'. We will now show that this does not happen.

Lemma 3.7. Given any 0-section S° of a permissively structured I-network N', a
sequence of 0-nodes in Ngo is a Cauchy sequence under d° if and only if it is a Cauchy
sequence under d!.

Proof. Only if: Let m% n® € Ngo. Let P° be the set of 0-paths terminating at m°
and n®. Perforce, all the nodes of such a 0-path are in NMgo. Let P°! be the set of 1-paths
terminating at m® and n° and meeting only one 1-node. Perforce, the 1-node for such a
1-path is a bordering node of S, and all the other nodes of that 1-path are in Ago. Let P!
be the set of 1-paths terminating at m® and n® and meeting two or more 1-nodes incident

to S°. Then, by virtue of [1, Theorem 2.3 and Corollary 2.6] and the triangle inequality,
d°(m®,n®) = inf{|{P|: P € PO U P}
and
d*(m®,n%) = inf{|P|: P e PPUPTUP)
= min(d®(m®,n®),inf{|P|: P € P'}). (7)

Hence,

0 < d'(m°%n% < d%m?° n°).

This establishes the only if part of Lemma 7.1.
If: Set D = min{d'({*,¢")} , where the minimum is taken over all pairs of 1-nodes

and ¢! incident to S®. There are only finitely many such pairs. Therefore, D > 0. It follows
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that inf{|P|: P € P!} > D. The “if” part of Lemma 3.7 now follows from (7) because D
is independent of the choices of m® and n® in S°. &

An immediate consequence of Lemma 3.7 is

Proposition 3.8. The limit points obtained when Ngo is completed under d° coincide

with the limit points obtained when Ngo is completed under d'.

4 The Recursive Assumptions

In order to treat the more general case of recursively proceeding from a permissively struc-
tured p-network N* to such a (u+1)-network N#+1, where 4 is any positive natural number,
we first have to state the conditions and properties that permissively structured networks
of lower ranks are assumed to have. All of them have already been assumed or proven
for the case where ¢ = 1. In the next section the conditions stated in this section will be
assumed for the rank g + 1, but the properties stated in this section will be proven. Let
it be understood from now on that all of the conditions and properties displayed in this
section hold for all ranks p = 1,..., u; we will at times refrain from stating this restriction.

We start by assuming that, for each p = 1,..., u, the permissively structured p-networks
N? have already been constructed; this includes the specifications of the permissive and
nonpermissive p-nodes. The assumption that a p-network exists implies that there is at
least one p-node, therefore at least one (p — 1)-tip, therefore again one-ended (p — 1)-paths
— each having of course infinitely many (p — 1)-nodes. Therefore, we are led to

Condition 4.1. For each p = 1,...,pu, there is at least one (p — 1)-section having
infinitely many (p — 1)-nodes.

To simplify matters, we also assume

Condition 4.2. No node embraces any node of lower rank. (Thus, every p-node is
maximal and simply a set of (p ~ 1)-tips.)

We also impose

Property 4.3. If m and n are distinct permissive nodes of ranks no larger than p—-1 in
the same (p — 1)-section SP~1, then there ezists a permissive n-path (n < p — 1) terminating

at m and n and lying within S},
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Next, we take it that for each p — 1 there is a metric d*~! defined on the set Ng,-1 of
all permissive nodes of all ranks from 0 to p — 1 in each (p — 1)-section S?~! of N*. To be
specific, for m,n € Nge-1, let P(S?~1,m,n) be the set of all two-ended permissive paths of
ranks no larger than p — 1 that terminate at m and n. Perforce, each such path lies within
S°~1, Indeed, by virtue of Condition 4.2, no path of P(S*~!, m,n) meets a bordering node

of SP~1. We define a mapping d”~!: Ngo-1 X Ngpo-1 ~ R! by
d*~'(m,n) = inf{|P|: P € P(S*"!,m,n)},

where as before | P| denotes the resistive length of P, that is, the sum of resistances for all
the branches embraced by P.

Property 4.4. d*~! is a metric on Ngp-1.

Furthermore, let us assume that the following holds.

Property 4.5. For each p=1,...,u, a sequence of permissive nodes of ranks p — 2 or
less in a (p — 2)-section SP~2 is a Cauchy sequence under d°~? if and only if it is a Cauchy
sequence under d°~1. (This property is trivially satisfied when p = 1.)

By virtue of this property, the completion /Vsp-x of Ngp-1 under d?~! yields two disjoint
sets of limit points, the first being the limit points of all the Ng,-2 for all (p — 2)-sections
S?~% in S~! and the second being new limit points different from (i.e., additional to) those
former limit points. We call the latter limit points (p — 1)-terminals.

Condition 4.6. Foreachp=1,...,u, each (p—1)-section SP~! has only finitely many
(p — 1)-terminals. |

We shall say that a one-ended (p — 1)-path P?~! in S#~1 converges to a (p — 1)-terminal
T?~1 of SP~1 if the nodes embraced by P?~! converge to T*~! of under d*~!. To be more
specific, let us observe that the nodes of all ranks embraced by P?~! form a totally ordered
set, that ordering being determined by a tracing of P?~1 starting at its initial node and
progressing toward its (p — 1)-tip. If m and n are distinct nodes embraced by P*~1, we
say that n is beyond m or m is before n and we write n > m or m < n if that tracing
meets m before n. We say that P?~! converges to T~ ! if, given any € > 0, there exists a
node m embraced by P?~! such that for all nodes n embraced by P?~! beyond m we have

d*"1(n, TP 1 < e.

12



Let O’S”;l, be the set of all permissive one-ended (p — 1)-paths in the (p — 1)-section
Se-1,

Property 4.7. Every member of 0&:11 converges to a unique (p — 1)-terminal of SP71.

Thus, the (p — 1)-terminals of S*~! partition Og;ll in accordance with which (p —
1)-terminals the members of OQ;E, converge. Furthermore, all the representatives of a
permissive (p—1)-tip clearly converge to the same (p—1)-terminal. In fact, upon identifying
T*~! with its corresponding subset in Og’;ll , we can say that each (p — 1)-terminal 7771 is
partitioned by the permissive (p— 1)-tips whose representatives converge to T°~!. Thus, we
can identify each (p—1)-terminal as a union of permissive (p—1)-tips, and every permissive
(p — 1)-tip is a subset of some (p — 1)-terminal. We will say that such a (p — 1)-tip is in
that (p — 1)-terminal.

Property 4.8. If two (p—1)-tips are permissive and nondisconnectable, they are subsets
of the same (p — 1)-terminal.

Property 4.9. For any (p — 1)-terminal T*~! of the (p — 1)-section S*~! and for any
one-ended (p — 1)-path PP~! that starts at an interior node n of S*~! and converges to
T?=1 within SP~}, we have that d*~}(n,T*?) < |PP71|. Moreover, for any interior node
n of S*71, any (p — 1)-terminal of S*~! of T*~!, and any € > 0, there exists a permissive
one-ended (p — 1)-path P?~! within SP~! that starts at n and converges to T*~! and whose
resistive length satisfies |PP~| < dP~}(n®, TP71) + e.

B?=1(T*~1 ¢) denotes the open ball in jvsp_x centered at T°~! and of radius e
B NT*" ' ¢) = {z:2 € Ngp-1,d* (2, T?" < ¢}

Property 4.10. B*~YT?~1,€) N Ngp-1 is (p — 1)-connected whatever be the choices of
T+~ and e.

Property 4.11. For any iwo (p — 1)-terminals T'™ and T{™" of a given (p — 1)-
section SP~1, there ezists a permissive endless (p ~ 1)-path PP~ within SP~!, one of whose
(p—1)-tips is in T'™" and the other in TZ™"; moreover the resistive length of PP~ satisfies
[Pl < de~Y (TP, T2 + e

With regard to the p-nodes we assume
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Condition 4.12. Every (p — 1)-tip is assigned to some p-node as follows: Every p-node
is either a singleton with a nonpermissive (p — 1)-tip or consists of all the (p — 1)-tips in
only finitely many (p — 1)-terminals (chosen from among all the (p — 1)-terminals of all the
(p — 1)-sections in N*).

The former p-nodes will be called nonpermissive, and the latter p-nodes will be called
permissive. In order to save words, we shall simply say that each permissive p-node consists
of only finitely many (p — 1)-terminals and that the permissive p-nodes partition the set of
(p — 1)-terminals. We do allow a permissive p-node to be a singleton (i.e., to have exactly
one (p — 1)-terminal having exactly one (p — 1)-tip). By Condition 4.6, every (p — 1)-section
has only finitely many incident p-nodes.

Here are some direct consequences of the above conditions. As always, p = 1,...,u

except in Note 4i.
Note 4a. Every node is maximal — by Condition 4.2.

Note 4b. (p — 1)-sections and (p — 1)-subsections coincide — by Condition 4.2 again.
Thus, every boundary node of a (p — 1)-section is a bordering node of that (p — 1)-
subsection. Conversely, if a bordering node of a (p — 1)-subsection is incident to two

or more (p — 1)-subsections, then it is a boundary node of that (p — 1)-section.
Note 4c. Every bordering node of a (p — 1)-section is of rank p — by Condition 4.2.

Note 4d. Every (p — 1)-path (whether permissive or not) is restricted to a single (p — 1)-
section S?~! and will not meet any bordering node of S#~! — by Condition 4.2.
(However, it will reach one bordering p-node or two bordering nodes if it is one-ended

or endless respectively. Thus, Condition 4.2-2(c) of {3, page 87] is fulfilled.)

Note 4e. Every permissive p-node is incident to only finitely many (p — 1)-sections —
by Condition 4.12 and the fact that each (p — 1)-terminal belongs to exactly one

(p — 1)-section. Every nonpermissive p-node is incident to exactly one (p — 1)-section.

Note 4f. Every (p — 1)-section has only finitely many permissive bordering p-nodes, and

they are all of rank p — by Conditions 4.2, 4.6, and 4.12. On the other hand, a

14



(p — 1)-section may have infinitely many nonpermissive bordering p-nodes.

Note 4g. Every p-node is p-adjacent to only finitely many permissive p-nodes and is not

p-adjacent to any 6-node (6 > p) — by Notes 4e and 4f and Condition 4.2.

Note 4h. All nodes of any path — except perhaps for the first and last nodes — are

permissive because a nonpermissive node is a singleton (Condition 4.12).

Note 4i. For each p = 2,...,p, there are infinitely many (p — 2)-sections having infinitely

many (p — 2)-nodes. This follows from Conditions 4.1, 4.6, and 4.12.

5 Permissively Structured (u + 1)-Networks

With the permissively structured u-network N* in hand, we now set about constructing
a permissively structured (u + 1)-network N#*!, In doing so, we shall assume for N# the
conditions corresponding to the conditions displayed in the last section but will prove all
the properties displayed therein; the latter will now become propositions. All the conditions
displayed herein must hold if this recursive process is to continue. If any one of them fail,
Our recursive process ceases.

Corresponding to Condition 4.1, we assume the following.

Condition 5.1. There is in N# at least one u-section having infinitely many pu-nodes.

Let us restate Condition 4.2 as

Condition 5.2. No node embraces any node of lower rank.

On the other hand, corresponding to Property 4.3, we have

Proposition 5.3. If m and n are distinct permissive nodes in the same p-section S*
of N#, there ezists a permissive path P, in S# terminating at m and n. Furthermore, if
at least one of m and n are of rank p, any path terminating at them will be of rank u.

Note. The ranks of m and n can be no larger than u because these nodes reside in the
p-network N#,

Proof. The proof is simply an adaptation of the proof of Proposition 3.1. Just replace

0 by p—1, 1 by g, and Theorem 2.3 and Corollary 2.6 of [1] by Properties 4.9 and 4.11. &
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Let Ng. be the set of all permissive nodes of all ranks from 0 to u in S*. With
m,n € Ngu, let P(S#,m,n) be the set of all permissive paths (of any ranks) in S¥ that
terminate at m and n. (We allow a trivial path when m = n.) Define the mapping

d“!NSu X NS;A ~ Rl by
d*(m,n) = inf{|P|: P € P(S*,m,n)}

where | P| denotes the resistive length of P as before. We now set about showing that d* is
a metric on Ng,.

By Proposition 5.3, d¥(m,n) < oo whenever m and n are in the same u-section. Clearly,
d*(m,n) > 0 and d*(m,n) = d*(n, m). Also, d¥(m,m) = 0 since trivial paths are allowed.

Lemma 5.4. When m and n are distinct permissive nodes in the same p-section,
d*(m,n) > 0.

Proof. It is no restriction to assume that the rank p,, of m is no larger than the rank of
n. Then, every permissive path that terminates at m and n must pass completely through
a (pm — 1)-section to which m is incident. (If pp, = 0, that p,,-section is simply a branch.)
So, the resistive length of any such path can be no less than min,{d*(m,q)} where the
minimum is taken over the permissive p,,-nodes that are p,,-adjacent to m. There are only
finitely many such p,,-nodes according to Note 4g. &

Lemma 5.5. For m,n,q € Nsa,
d#(m,n) < d*(m,q)+ d*(q,n).

Proof. This proof is obtained from the proof of Lemma 3.3 by replacing 1 by u, Lemma
3.1 by Lemma 5.3, and Lemma 2.9 by Property 4.8. &

Altogether we have extended Property 4.4 to

Proposition 5.8. d* is a metric on Ng,.

Let us also extend Property 4.5.

Proposition 5.7. A sequence of permissive nodes of ranks y — 1 or less in a (u — 1)-
section S#~1 is a Cauchy sequence under d*=1 if and only if it is a Cauchy sequence under

dv.
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Proof. This proof is an adaptation of the proof of Lemma 3.7 by means of the following
replacements: 0 is replaced by x4 — 1, 1 by g, Theorem 2.3 and Corollary 2.6 of [1] by
Properties 4.9 and 4.11, and Note 2¢ by Note 4f. &

An easily obtained consequence of Lemma 5.7 and Property 4.5 is

Proposition 5.8. For each p = 1,...,u, the limit points obtained when Ngo-1 is
completed under d*~! is the same as the limit points obtained when Ngo—1 is completed
under d*.

We now take the completion ﬁsp of Ng. under d#. This yields two disjoint sets of limit
points, the first set being the limit points of all the Nge-1 for all the (p — 1)-sections in N#
(p=1,...,1) and the second set being new limit points, those that do not belong to any
./Vsp—-l. We call the latter limit points u-terminals.

To continue, we now assume

Condition 5.9. There is at least one p-section having one or more u-terminals. More-
over, each pi-section has only finitely many p-terminals.

(If Condition 5.9 fails, our recursive procedure terminates at this rank u.)

Next, using the terminology and notation specified after Condition 11.2, we say that
a one-ended u-path converges to a u-terminal T# if, given any € > 0, there exists a node
m < P* such that, for all nodes n 4 P* beyond m, we have d#(n,T#) < e.

As before, let Ogu denote the set of permissive one-ended u-paths in the given u-section
Sk,

Proposition 5.10. Each member of Og, converges to a unique p-terminal of S*.

Proof. Let P* € Og,. The embraced nodes of P¥ form a totally ordered set, the
ordering being given by a tracing of P# starting at its first node and progressing toward
its p-tip. Because P* is permissive, {r}s4p« is a summable set, that is 3, pu < 0o0. This
means that, given any ¢ > 0, there is a node m 4 P* such that, for all n,q 4 P* with
m < n < g, that part P,, of P* between n and ¢ satisfies [Py,| < €. Thus, the nodes
embraced by P* form a Cauchy net. Therefore, there is a unique p-terminal 7% in the
completion Mg of Vg, under d* to which P# converges. &

As was done in the preceding section, we can partition Og, in accordance with the u-
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terminals to which the members of Og, converge. This allows us to identify each u-terminal
with a set of permissive u-tips of S#, and then each permissive u-tip becomes a subset of
a p-terminal under that identification. To save words, we will speak of any u-terminal as
being a limit point of Ngu or alternatively as being a subset of Og,, as well as being a
union of some permissive p-tips.

Proposition 5.11. If two tips of ranks no larger than p are nondisconnectable, they
must be of the same rank.

Proof. Let t¢ and t” be two tips of ranks ¢ and 7 respectively with { < 7. Because
no node embraces a node of lower rank, all representatives of ¢ must be restricted to
some (-section. On the other hand, every representative of {7 cannot be restricted to any
single (-section; that is, it must leave every (-section it enters. Thus, t¢ and t? cannot be
nondisconnectable. (If however ¢ = 7, it is possible for t¢ and ¢" to be nondisconnectable.)
&

Proposition 5.12. [f two u-tips are permissive and nondisconnectable, they are subsets
of the same p-terminal.

Proof. The proof of this is just like that of Proposition 2.9 but with 0 replaced by u.
(Now, we deal with the embraced nodes of permissive paths.) &

Proposition 5.13. If T# is the u-terminal to which a given P* € Og,, converges, then,
for any node m -4 P*, d*(m,T*) < |P¥|. On the other hand, for any permissive node
m - S¥, any p-terminal T* of S*, and any € > 0, there is a P* € (’)g,, such that m is its

initial node, P* converges to T*, and
|P*| < d*(m,T") +e. (8)

Proof. The first statement is obvious. As for the second statement, we start by taking a
sequence {n} }$2, of permissive p-nodes with d*(n},T*) < ¢/2¥3. We can choose a p-path
Py terminating at m and nf with |Py| < d#(m,T#) + ¢/2. Also, for each k = 1,2,..., we
can choose a p-path Py terminating at n} and nf:H with |Pi| < €/2%*1; this can be done
because

d*(ng,ni,,) < d*(ng, T) + d*(nj,,,T") < €/2k 1,
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Now, @ = U2, P is a u-graph that satisfies Condition 4.2-2 of [3, page 87]. Indeed, part
(a) of those conditions is clear, part b is asserted by Property 4.8, part (c) is asserted by
Note 4d, and part (d) is asserted by Note 4g. (Regarding Condition 4.2-2(b), we need that
condition only for permissive tips of ranks g — 1 or less. Since the nonpermissive tips are all
open, the arguments of [3, Section 4.2] carry over to this present case. Similarly, Condition
4.2-2(d) is needed only for the permissive nodes. In general, we may restrict the arguments
to permissive tips, nodes, and paths and still arrive at Theorem 4.2-4 — but this time with
permissive one-ended paths.) So, by [3, Theorem 4.2-4], there is in @ a one-ended p-path
P*# starting at m. Furthermore,

o0
[P < S < Y|P

b-Q k=0

(o o]
< d*(m,T*) +2 e + Z 27F1¢ = d¥(m,T*) + .
k=1
Thus, we have (8).

Finally, note that each Py is a two-ended p-path (i.e., has only finitely many pg-nodes)
because it terminates at two p-nodes and is in the interior of a u-section. Since P* is a
one-ended p-path, it is eventually in Ui>k Px whatever be the choice of the positive natural
number K. But, Ursx|Pi| € Yieg €/25T! = €/2K. Therefore, given any ¢ > 0, we
can choose K so large that, for each node ¢ 4 P* lying in Ugyk P, we have d*(¢,T#) <
Uks k| Px| < €/2K < €. So truly, P* converges to T*. &

Given any p-terminal T# of S# and any € > 0, the open ball Bg.(T#,¢) is defined by
Bsu(T*,€) = {z:2 € Ngu,d*(z,T*) < ¢}.

Proposition 5.14. Bgu(T#,¢) N Ngu is p-connected whatever be the choices of T* and

Proof. Let m,n € Bgu(T*,¢). By Proposition 5.13, there is a one-ended u-path Py
starting at m and converging to T# and also a one-ended u-path P} starting at n and also
converging to T* such that |P}'| < € and |P}'| < €. Thus, all nodes of P{* and P} lie in
Bsu(T*,€). Moreover, there is a node m* of P} such that d*(m*,T#) < €/2, and there is a

node n* of P} such that d#(n*,T*) < ¢/2. Hence, d*(m*,n*) < d*(m*, T*)+d*(n*,T*) < e.
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So, there is a path P3 terminating at m* and n* with | P3| < e. Now, for any node ¢ 4 Ps,
either the subpath Py, terminating at ¢ and m* has |Pym+| < €/2 or the subpath P,,.
of P3 terminating at ¢ and n" has |Py,+| < €/2. Therefore, by the triangle inequality,
d*(q,T*) < €. Hence, all the nodes of P; lie in Bgu(T#, €). Let Py be the subpath of P}
terminating at m and m*, and let P, be the subpath of P}’ terminating at n and n*. As
in the proof of Proposition 5.13, we are free to invoke [3, Theorem 4.2-4] to conclude that
there is a path in P+ U P3 U Py« connecting m and n. All the embraced nodes of that
path lie in AVgu, and therefore that path is of rank no larger than p. &

An endless p-path P* will be said to converge to two p-terminals T} and T} if any
representative of one of its u-tips converges to T} and any representative of its other p-tip
converges to T4

Proposition 5.15. Let T{' and T} be two p-terminals of S*. Choose any € > 0.
Then, there is an endless p-path P* in S* that converges to T} and T and is such that
|PH| < dH(TL,TY) +e.

Proof. Choose a node n of S# such that d*(n,T}') < ¢/2. By Proposition 5.13, there is

a one-ended u-path Q* starting at n, converging to T}, and such that |Q#| < ¢/2. We have
d*(n,T)) < d*(n,T}) + d¥(TY, 1)) < d*(T{,T) + ¢/2.

So, by Proposition 5.13 again, there is a one-ended u-path L* starting at n, converging to
T¥, and such that |L#] < d*(T¥,TS) + ¢/2. We are free to construct a (u + 1)-node nj*t!
consisting of the u-tips in T/ and another (u + 1)-node n4*" consisting of the y-tips in T
Then, by virtue of Property 4.8 and Proposition 5.12, we can invoke [3, Corollary 3.5-4]
to conclude that there exists a two-ended (i + 1)-path P* terminating at n4*' and ni*!
with all its branches embraced by Q#U L#. (The hypothesis of Corollary 3.5-4 requires that

n} *! and 71‘2""2 be nonsingletons. If need be, we can add a u-tip of an otherwise isolated

one-ended u-path to n4*! to make it a nonsingleton, and similarly for n‘2‘+1.) Thus, P* has
one of its pu-tips in 7} and its other p-tip in Ty because Q* U L* reaches T} only with the

p-tip of @# and reaches T4 only with the p-tip of L#. Now,
[PA) < Q¥ +IL¥| < €/2+d*(TY,T) + €/2.
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Since P* is the union of two members of Og,,, Proposition 5.10 now implies that P# con-
verges to T} and T}, &

So far, for this rank y, we have assumed all the conditions listed in the preceding section.
We have also proven all the properties therein — this time stated as propositions. We are
at last ready to construct our “permissively structured” (g + 1)-network N#*! given a
permissively structured u-network IN#. N has at least one and possibly infinitely many
p-sections, that is, components. Some or all of them may have no u-terminals. But, there
may be at least one p-section S# having p-terminals (hence, our assumption of Condition
5.9); for this to be so, it is necessary that S# have infinitely many permissive u-nodes. {On
the other hand, by Condition 5.9, S¥ has no more than finitely many u-terminals.)

A permissive (u + 1)-node n#*! is by definition a finite set of u-terminals chosen from
one or more pu-sections. As before, we may identify each u-terminal T# as the set of all
permissive one-ended p-paths that converge to T#. Moreover, every permissive u-tip is a set
of permissive p-paths, all of which reside in a single p-terminal T# under that identification.
Whence, T# can be viewed as the union of a set of permissive u-tips. Thus, a permissive
(1 + 1)-node is thereby a set of permissive u-tips. On the other hand, every nonpermissive
p-tip (i.e., all its representatives are nonpermissive) of N# is taken to be the sole member
of a singleton (u + 1)-node, which is then called nonpermissive. In this way, our definitions
of the permissive and nonpermissive (g + 1)-nodes conform with the definitions given in [2]
and 3] for transfinite nodes in general. Let us restate our definition of the (u + 1)-nodes as
follows.

Condition 5.16. Every u-tip is assigned to some (u + 1)-node as follows:
(a) Every permissive (u+1)-node consists of all the p-tips in only finitely many p-terminals
and does not embrace any node of lower rank.
(b) Every nonpermissive (y + 1)-node consists of ezactly one nonpermissive pu-tip.

With this specification of all the (u + 1)-nodes, we have defined the permissively struc-
tured (p + 1)-network N#+1. Indeed, we have completed a recursive cycle, going from N#
to N#*!, Thus, permissively structured transfinite networks have hereby been established

recursively for all natural numbers p.
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As the last task for this section, we can check that all the Notes 4a through 4i continue

to hold when p is replace by u + 1. This is straightforward.

6 Permissively Structured &-Networks, w-Networks, and
Networks of Still Higher Ranks

Our objective now is to obtain a permissively structured network whose rank is the first
transfinite limit ordinal w. To do so, we must first consider the arrow rank & [3, pages 4
and 5). In short, we now extend our recursive procedure from & to w. So, let us now assume
that our recursive procedure has been extended through all the positive natural numbers
p=1,2,3,...and has thereby yielded an &-network N¥ [3, Section 2.3 and page 122]. The
following is assumed to hold.

Condition 6.1. All the conditions and properties displayed in Section 4 hold for each
and all positive natural numbers p.

In this case, N¥ will be called a permissively structured J-network. Consequently, N¢
has infinitely many nodes for each rank u, but it does not have any &J-node. Also, note that
an &-network need not have any &-tip — permissive or nonpermissive [3, Section 2.3].

Let Ngs be the set of all permissive nodes of all natural-number ranks in a given -
section S¥ of N¥. Given m,n € Ngas, we now let P(S?,m,n) be the set of all permissive
paths of any natural-number ranks in S¥ that terminate at m and n. In this case, we define

the mapping d”: Ngo X Nga ~ R! by
d°(m,n) = inf{|P|: P € P(S°,m,n)}.

The same adaptation that leads from Propositin 3.1 to Proposition 5.3 also leads to the
fact that, if m,n € Ngs, then there exists a permissive path in S? terminating at m and
n. Consequently, d%(m,n) < co. Obviously, d*(m,n) > 0 and d°(m,n) = d%(n,m). Also,
d®(m,m) = 0. Since the chosen nodes m and n will be in the same u-section for a sufficiently
large p, Lemma 5.4 shows that d%(m,n) > 0 when m and n are different nodes. Similarly,
any three chosen nodes will be in the same p-section if p is large enough, and therefore, by

Lemma 5.5, d” satisfies the triangle inequality. Thus, d“ is a metric on Ngo. For the same
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reason, we can restate Proposition 5.7 as follows. (Again adapt the proof of Proposition
3.7)

Proposition 6.2. Let S be a p-section in S°. Then, a sequence of permissive nodes in
S* is a Cauchy sequence under the metric d* for Ngu if and only if it is a Cauchy sequence
under d“.

So, upon taking the completion /Vso of Nga under d”, we obtain two disjoint sets of
limit points. The first consists of all the limit points of all the u-sections in S for all y;
this set is certainly not void. The second set will consist of all the additional limit points;
this set may be void, but we shall henceforth assume that it is nonvoid. Each limit point
in the latter set will be called an &-terminal. We now assume the following.

Condition 6.3. There is at least one &-section having one or more J-terminals. More-
over, every G-section has only finitely many &-terminals. |

A one-ended &-path P? is said to converge to an &-terminal T if, given any € > 0, there
exists a node m - P® such that, for all nodes n 4 P“ beyond m, we have d“"(n,T“") < €.
Let 0@: denote the set of all permissive one-ended J-paths in S®. Replacing u by & in the
proof of Proposition 5.10, we get

Proposition 6.4. Every member of Og‘, converges to a unique &-terminal of S9.

As before, we can partition (’)“S"a according to which terminal each member of Oga
converges. Then, each &-tip is a subset of some set in that partitioning, and each &-
terminal can be identified as the union of some &-tips. Now, the following propositions
can be extended to the present case; just replace p by & in their statements: Propositions
5.11, 5.12, 5.13, 5.14, and 5.15. The proofs of these results are easily adapted from their
corresponding versions at lower ranks. For example, in the proof of Proposition 5.13, we
need merely replace the fixed u by an increasing sequence of ranks py, ft2, i3, . . . so that nj
is replaced by nj*. Similar alterations are used for the proofs of Propositions 5.14 and 5.15.

By virtue of the first sentence of Condition 6.3, we can now define w-nodes as follows.
Each w-node is either a singleton containing a nonpermissive &-tip or is the union of only
finitely many &-terminals chosen from one or more &J-sections, where in the second case

each J-terminal is identified as a set of permissive &-tips (note Proposition 6.4). As before,
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the first kind of w-node will be called nonpermissive, and the second kind permissive. Every
@-terminal is assigned to some w-node. This defines the permissively structured w-network
Nv. It satisfies

Conditions 6.5. Every O-tip is assigned to some w-node as follows:

(a) FEvery permissive w-node consists of all the &-tips in only finitely many &-terminals

and does not embrace any node of natural-number rank.

(b) Every nonpermissive w-node is a singleton consisting of ezactly one nonpermissive J-
tip.

We have now attained permissively structured transfinite networks for all ranks up to the
first limit ordinal w. We can continue our recursive procedure to the successor-ordinal ranks
w + p by using the techniques explicated in Sections 2 through 5 and then can continue on
to the arrow rank w4+ & = w - 2 followed by the second limit-ordinal rank w - 2 by repeating
the development of this section. And then again, we can continue still further to even higher
successor-ordinal, arrow, and limit-ordinal ranks. How far can this procedure be taken? It
is tempting to say— through all the countable and arrow ranks, but we have not explicitly

done this.
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