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ABSTRACT: Future CDMA personal communication systems will support a wide range of
broadband services exhibiting self-similarity or long-range dependence. The long-tail property
of the aggregate self-similar traffic makes it difficult for the system to predict future resource
usage from current resource usage. The result is difficulty in efficient management and control
of admitted traffic components. To address this problem, we propose a medium access scheme
that guarantees Quality-of-Service (QoS) requirements for a DS-CDMA personal
communication system that supports voice, delay-insensitive data and self-similar traffic. The
proposed scheme controls the data transmission by estimation of traffic load in the next slot.
Estimation of self-similar traffic is based on representation by a hyperexponential distribution.
The performance of the scheme is analyzed in terms of outage probability, data packet delay and
throughput of voice and self-similar traffic. Numerical results are calculated and compared with

the performance of a system without control of data access.
I. INTRODUCTION

CDMA is an attractive technique for personal communication networks that offers
advantages such as efficient spectrum utilization, soft capacity, soft hand-off, inherent diversity
and resistance to multipath fading characteristics. Because of the anticipated proliferation of
personal mobile computing and wireless devices for entertainment, future CDMA personal
communication networks will support not only voice and data services, but also a wide range of

broadband services, such as video and Internet traffic. Recent research has revealed that both



video and Internet traffic exhibit long-range dependence (LRD) or self-similarity [1-3]. This
characteristic is different from the traditional short-range dependence (SRD) Markov-related
traffic models. Many medium access schemes in the technical literature, for example [4] and [5],
control the access of each session using the Markovian property of traffic’s on/off periods (or
burstiness). For self-similar traffic components, the system can not reliably estimate the future
resource usage based on current resource usage. This is because each individual self-similar
session has the long-tail property, which implies large variances of the duration of on and off
periods. This makes finding an efficient medium access control scheme a challenging problem
and complicates the theoretical analysis of system performance. Few papers address the problem
of media access control of self-similar traffic at the level of individual session. The performance
of a CDMA/PRMA protocol with individual self-similar sessions has been considered in [6]
where the performance analysis is done by simulation (instead of theoretical analysis). In this
paper, we approach the problem by fitting the long-tail distribution by a hyperexponential

distribution.

We consider a wireless CDMA personal communication system that supports three types
of traffic: voice, delay-insensitive data and self-similar traffic. It is important to consider how to
control the interference caused by multiple access so that QoS requirements can be met. We

propose a medium access scheme with this objective.

In Section II of this paper, the system model and models for voice, delay-insensitive data
and self-similar traffic models are described. The outage condition of the system is established
and the motivation for an efficient medium access control is described in Section III. In Section
IV, a medium access scheme for efficient management of self-similar traffic is proposed, and its
implementation is discussed. Performance of the scheme is analyzed in Section V. Numerical

results and conclusions are presented in Sections VI and VII respectively.



II. SYSTEM DESCPRIPTION AND TRAFFIC MODELS
1. System Description

A CDMA personal communication system consists of many micro-cells. There is a base
station (BS) in each cell to provide services to mobile users in its proximity. Here we focus on
the reverse link and consider the limitations that it places on system capacity. The definition of
outage and interference refer to the reverse link. We assume that in the system, time is divided
into slots (each having a duration of 7 ) and that admitted sessions are synchronized and transmit

only within these slots.
2. Voice Traffic

We assume that a voice session consists of alternating talkspurts and silence gaps. The

talkspurts and silence gaps have random durations which have negative exponential distributions
(ned) with means of T, and T, respectively. Then, the transition intensity from talkspurt to
silence gap, y.,is 1/ T., and the transition intensity from silence gap to talkspurt, 4, ,is 1/ T..

During a talkspurt, a user generates voice packets at a constant rate of one packet per slot. No
voice packets are generated during a silence gap. The voice traffic is delay-sensitive, so if a

voice packet is not transmitted successfully in a slot, it will be lost due to the delay constraint.

Given that N voice sessions are admitted to the system, their combined activity can be

modeled as a continuous-time Markov chain with N +1 states, as shown in Fig. 1. The state
index i denotes the number of voice sessions that are in talkspurt mode at any time. Let

p, (i) denote the equilibrium probability of state i, 0 <i < N . This is identified with the
(equilibrium) probability that exactly i of the N, voice sessions are in talkspurt mode. Using the

properties of Markov chains and the representation of Fig. 1, we can derive the following

equations for the state probabilities
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Because T, and T, are typically much larger than the duration of a slot, 7, the

probability that more than one transition event occurs in one slot is very small and is assumed to
be negligible. The transition rate from state i to state i-1 is i-|, the transition rate from state i to
state i+1 is (N, —i)-A . Because the system that we consider is a slotted system, the continuous-
time model has to be adapted to a discrete-time time model and the transition rates in the
continuous-time model have to be adapted to transition probabilities in the discrete-time time
model. The discrete-time mode] is shown in Fig. 2. Let N and N define the numbers of
active voice sessions in the current slot and in the next slot respectively. Using Fig. 1 and 2, we
find that the probability that there is no change at state i in the next slot, P,(N , =iIN  =1i),is
given by

P(N, =ilN, =i)y=e W4T g<i<N . 4)
The probabilities of a transition from state i to state i-1 and state i+1 are given respectively by

P(N, =i—-1IN, =i=[i-u, (N, =i)- A, +i-pg)]- (1= VD487 1<i< N (5)

PN, =i+1IN_=i)=[(N,=i)- AN, =i)- A +i- 1)} (1= VP47 0<i<N -1 (6)



3. Self-Similar Traffic

Traffic, such as video-on-demand, that exhibits timescale-invariant burstiness can be
described by the notion of self-similarity. In stochastic traffic modeling, self-similarity means
that the traffic’s structure is the same regardless of the timescale over which the traffic is

observed. The mathematics of self-similarity is briefly described in Appendix A.

As shown in [1], the superposition of many i.i.d. copies of renewal reward processes with
long-tail inter-renewal time exhibits self-similarity. Readers are referred to details in Appendix
B. Thus, we take a renewal reward process with long-tail inter-renewal time as an adequate
traffic model for an individual self-similar session. We assume that the rewards in the renewal
reward process of a self-similar session take only the values 1 and 0. For a renewal with a
reward of 1, it is supposed that during the interval between this renewal and the next renewal, the
self-similar session generates a packet every time unit (slot). That is, the self-similar session is
in an “on” period. For a renewal with a reward of O, it is supposed that during the interval
between this renewal and the next renewal, the self-similar session generates nothing. That is,
the self-similar session is in an “off” period. Modeled in this way, an individual self-similar
session is equivalent to an ON/OFF source. We assume that on-time and off-time of self-similar

sessions have different distributions. Let T

on

denote the duration of an on period and 7, denote

the duration of an off period. Let F(f)and F,() respectively denote the (cumulative
distribution functions) cdf’s of the on-time and off-time. Because durations of both on-time and
off-time are long-tail distributed [1], we have

1-F()=P{T, 2t} ~t™ -y (1),as t 5 oo, 1<, <2 @)
I-F,(0)=P{T, 21} ~17™ cu,(t),as t > oo, 1<, <2 (8)
where u,(r)and u, () vary slowly at the infinity. For simplicity of illustration, we assume that

the self-similar traffic discussed in the paper is delay-sensitive, so no retransmission of self-

similar packets is allowed.



4. Delay-Insensitive Data Traffic

One way to control the data transmission is for the BS to determine (and control) the
maximum number of data sessions that can transmit in each slot. Another way is for the BS to
determine at each time slot an access probability of data traffic and send this probability back to
the data sessions. The data sessions then transmit (or not) according to this probability. In this
paper, we consider the latter approach. As in [7], we assume that in any slot there is a data
packet ready for transmission for any data session that has been admitted. We assume that there

are N, data sessions admitted to the system. In every slot, the BS computes the data access
probability, p,, for the next slot. Then in the next slot, the data sessions will transmit with the

computed access probability. If a data packet is either not transmitted or not transmitted
successfully (due to multiple access interference), it will be stored in the sender’s buffer and will
be retransmitted until it succeeds. As in [8], we assume that the BS returns an acknowledgment
to the mobile terminal for each packet that is received correctly. No new packet is generated by

the data session until this packet succeeds in its (re)transmission.

III. OUTAGE PROBABILITY

CDMA systems are interference-limited and require effective power control of each user
in order to deal with the near-far problem. It is usually assumed that there are enough codes in
each BS so that when an admitted session wants to use a code to transmit there are always some
codes available. We assume that the system uses a call admission scheme to control the number
of admitted sessions. Details of the call admission scheme are not important in the context of
this paper. The reception quality of a session is affected by the transmission powers of other
sessions that are transmitting at the same time. The transmission power of each session is
assigned by the BS. For simplicity, we consider a CDMA system with perfect power control, so

that all sessions in the coverage range are received with the same power at the BS.

Suppose that in a single cell there are i voice sessions, j self-similar sessions and d data

sessions that are transmitting in the same slot. Let E,,, E,, and E, denote the energy per bit for



voice, delay-insensitive data and self-similar sessions respectively. Let R,, R, and R denote
the required bit rate for voice, delay-insensitive data and self-similar sessions respectively. Let
N, denote the background noise. The total noise-plus-interference power, denoted by /W, is
given by

IW=i-E, -R +j-E R +dE, R, +NW )]
It is required to limit the ratio /W / N W because of the dynamic range limitations on the BS’s

multiple access receiver [9]. Thus, we require
IW/NW<l/n, n<l (10)
where 77, called the noise-to-interference threshold, typically takes value from 0.1 to 0.25.

From (9) and (10), we have

i-E, -R,+jE,-R+d-E,  -R;=(I, -N)W<IW(-7n) (11
If welet o, = LpRe , oy = EwRy and o= EyR, , equation (11) can be written as
IN'% Iw | IW
o +ja+d-oa,<(1-n) (12)

A feasible power assignment for a voice-only CDMA system exists only when I W /N W <1/n

[9]. Similarly, for the CDMA system that we discuss, a feasible power assignment exists only
when condition (12) is met. If the condition (12) is not met, the system is in the outage
condition. We take @ as the requirement of outage probability to provide acceptable QoS. We
assume pessimistically that if an outage condition occurs in a slot then all packets transmitted in
the slot will be corrupted. If no outage occurs in a slot then all packets transmitted in this slot
will be received correctly by the BS. If the outage probability of the system is high, voice and
self-similar traffic will suffer high packet loss and data traffic will suffer high packet delay. To
keep the outage probability below the requirement &, an appropriate medium access scheme that
controls the transmission of admitted traffic components is necessary. This is the motivation for

the medium access control.



IV. MEDIUM ACCESS SCHEME

The basic idea of the medium access scheme is to allow more data sessions to transmit
when the voice and self-similar traffic load is low, and allow less data sessions to transmit when
voice and self-similar traffic load is heavy. This is done by the BS’s control of the access
probability of data traffic based on the estimation of the voice and self-similar traffic load in the
next slot. In our scheme, the BS controls the data access probability to meet a specified outage

probability requirement.
1. Hyperexponential Approximation

The BS can estimate the voice traffic load by using the Markov property of the combined
voice sessions’ activity. However, the on-time and off-time of self-similar session are long-tail

distributed in form of (7) and (8). Let E[T, ] and E[T,,] denote the mean of the on-time and

on [0

off-time respectively. Then their variances V[T, ] and V[T, ]are given by

on 0]

VIT,1=ElT,, - E[T,1)°] (13)

on on on

VIT,, 1=E[T,, - E[T,;1)] ' (14)

Since a long-tail distribution, such as a Pareto or Weibull distribution, weighs values that are far
away from the mean significantly, the variance is usually very large. This makes it very difficult
for the BS to reliably estimate the self-similar traffic load. The data access probability should be
determined by the estimation of the total voice and self-similar traffic in the next slot. If the BS
can not estimate the self-similar traffic load in the next slot, efficient control on the access
probability of the data traffic can not be exerted. We circumvent this problem by casting the

long-tail property of the inter-renewal time in a renewal-reward process model into a Markovian

framework.

In [10], it has been shown that a wide range of long-tail distributions, including Pareto

and Weibull distributions, can be approximated by an hyperexponential distribution with

appropriate parameters. The on-time and off-time cdf’s F,(t) and F,(¢) in the renewal reward



process model of self-similar session can then be approximated in a certain time interval [7,,1,]

and expressed as

K k
I—F‘l(t)=2pie_ii”te[tl’t2]7zpi=1 (15)
i=] i=l
1-F(0=Y g,  telt,.1,], Y, p,=I (16)
Jj=1 J=1

Parameters k and m are the number of exponential components in the models that are used to fit
the long-tail distributions. Typically, k and m take values between 4-20, [10]. The larger k and

m are, the better the fitting result is. Parameters p;’s, 4’s, ¢,’sand y;’s are obtained by

using the fitting algorithm in [10]. Readers are referred to [10] for details of the fitting
algorithm. Since self-similarity is observed only on a finite timescale [1-3], in the network

performance analysis, a long-tail distribution only matters through its values in some finite

interval [z,,2,]. If ¢, is sufficiently small and ¢, is sufficiently large, the values of the
distribution outside the interval [z, ,] are not important and the approximation will be good
enough for the purpose of performance analysis. For example, in the algorithm we can choose ¢,

to be 0.01 sec (duration of a slot) and f, to be 10%sec (11 days).

An individual self-similar session can be represented as a continuous-time Markov chain
with k+m states as shown in Fig. 3 [10]. State i, 1 <i <k, corresponds to the session in the on

period with the component exponential having parameter A4, ; state j, k+1< j<k+m,

corresponds to the session in the off period with the component exponential having parameter

U, - Packets are generated at a constant rate of one packet per slot only when the session is in
the on period. The transition intensity from state i (1S i< k)tostate k+j (1< j<m)is Agq j» the
transition intensity from state k+j (1< j<m)tostate i (1<i<k)is u;p,;, and all other
transition intensities are 0. Let p (/) denote the steady state probability of state [ (I=1, 2, ...,

k+n1). Since Fig. 3 depicts a Markovian process, we have the following balance equations for the

state probabilities

Py A=p; ¥, p(k+j)-u; 1Si<k (17)
j=1
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k
plk+ ) =g, pD A, 1< j<m (18)
i=]

S p )+ Y p,k+ =1 (19)
i=] J=i
pv(i)=&-—ﬂl p.(D), 1<i<k (20)
A A P,
ph+ p=2i B p k) 1<j<m @21
A

Finally, we obtain

px(i)=[—ZLJ/[i—l—i+ ﬂ], 1<i<k 22)

i =l Y j=1 /uj
. k ) m .
pk+ =l LUS LS L e jam (23)
H; i=1 /1,' j=I M
The probability that a self-similar session is in the on period or the off period is given
respectively by
k
p.lon)=3 p,(0) (24)
i=1 .
and
p.(aff)=3 p(k+j) (25)
Jj=1

We assume that self-similar sessions are independent of each other. If there are N _self-

similar sessions admitted to the system, the probability that there are exactly j self-similar

sessions in the on period among these N sessions, is given by

. N.v ] N, —j
P())= j -p,(on)’ - p (off )"’ (26)

We take the duration of a slot, 7, to be 10 msec. It is seen in [10] that the fitting of a
typical long-tail distribution, such as Pareto or Weibull distribution, usually generates parameters

1/A4, (1<i<k)and 1/, (1< j<m) which are much larger than the duration of a slot, 7.

11



Thus, the probability that more than one self-similar session among the N, admitted sessions

make a transition between the on and off period during the same slot is very small and is
assumed to be negligible. This simplification is valid for normal traffic load in a cell, for which
the number of admitted self-similar sessions (only part of the total admitted sessions) is less than
100. Even if this small probability event occurs, it will only degrade the outage performance, but
will not affect the operation of the medium access scheme. If j self-similar sessions are on in the

current slot, then the number of on sessions in the next slot can only be j-1, j or j+1.

Suppose that there are j self-similar sessions that are currently on. For a self-similar

session that is on, there are k possible states in the hyperexponential approximation model; for a

session that is off, there are m possible states. Let [ denote the vector (/,,1,,...,1y ), where [, is

the state of the ith self-similar session. Then, the probability of lis given by
. N
o.0=]1r.) @7
i=]

Let €(j) denote the subspace of vector ] when there are J sessions in the on period among N,

self-similar sessions. Let ¢x(2 | /) denote the conditional probability of the vector Z given the

number of on sessions is j. Then

6.1 j)=¢.(1)/ P.(j) (28)

In order to estimate the self-similar traffic load, we need to know the probabilities that

there will be j-1, j and j+1 on sessions in the next slot given that there are j on sessions in the
current slot. Let /. denote the set of all possible vectors resulting from [ when one off session
in [ transits to on and no other session changes its states. Let I denote the set of all possible
vectors resulting from ! when one on session in / transits to off and no other session changes its
states. In vector [, the i-th self-similar session will change its state with a transition intensity of
. Ny - N,
A, if I, <k (or y,_, if [, > k). Let A(l)denote 2/1‘, ,and let y(I)denote zﬂh . Thus, the
i=1 i=l
Lisk li>k

vector | will transit to a vector either in Z+ or 1. with a transition rate of /1(2) + ,u(Z) . The

12



following equations adapt the continuous-time state-transition model to the slotted-time model

under consideration here.

9,(111) = Hbuidr 09
0, (Z- | Z) =_J£L(1 _ e-[/l(})+p(?)]r) 0
l A + pdl)
1.11 ,U(Z) —M(;)HI(;)]r
. l+ | l = 1 —_ (3 1)
¢+ 1) A+ 1) (1-e )

Let N, and N, define the numbers of self-similar sessions that are on in the current slot and in

the next slot respectively. Let P.(j—11 j)denote the probability that there will be j-1 on

sessions in the next slot given there are j on sessions in the current slot. It can be expressed as

P(N, =j-1IN, ==Y 6d-1D-¢,(1) (32)

leQ())
Similarly, let P(N_, = jIN_=j) and P(N, = j+1IN_ = j) denote the probabilities that

there will be j and j+1 on sessions respectively in the next slot given there are j on sessions in the

current slot. They are given as

PN, =jIN, =)= 28,11D)-4,d1)) N E)
1eQ(j)
PAN, =j+1IN, ==Y 8,(.1D-4,d1 j) (34)
€Q(j)

As we can see, the hyperexponential approximation allows the BS to estimate the self-
similar traffic load in the next slot by using the transition probabilities in (32), (33) and (34).

The estimate is used to determine the access probability of data traffic.
2. Medium Access Scheme
Based on the number of transmitting voice and self-similar sessions, the BS will estimate

the maximum data access probability with the specified guaranteed outage probability. Let

| x |denote the least integer that is not smaller than x. Let d(i, j)denote the minimum number of

13



transmitting data sessions that will cause outage when there are i voice sessions and j self-similar
sessions transmitting. From equation (12), d(i, j)is given by
di, p=l-m-i-a, - j-a)la,] (35)

Let P (i, j, p,) denote the outage probability when there are i voice sessions and j self-similar

out

sessions transmitting in a slot and all data sessions are transmitting with an access probability p,

in the same slot. If d(i, j) is even larger than N, then P, (i, j, p,) is 0. Otherwise, it is given

as the average probability that data transmission causes outage, i.€. average probability that the

number of transmitting data sessions is at least d(i, j).

P (i _ & (N, b Ny—h 36
(P = D, Y [P (=py) (36)
h=d (i, ])

As in [4], we assume that each packet has a preamble, which is always received by the
BS correctly. This is made possible by controlling the data rate of the preamble. Readers are
referred to [4] for details. Upon receiving all the preambles in the current slot, the BS knows the
respective numbers of transmitting voice, self-similar and data sessions in this slot. For the self-
similar sessions, the BS knows only the number of sessions that are on, but does not know which
state i (i=1, 2, ..., k) that a particular session is in. This is because the on-time and off-time are
modeled by the hyperexponential approximation only for the convenience of the characterization
of traffic load and performance analysis. The states do not have physical meaning. Thus, the BS
must estimate the self-similar traffic load in the next slot based only on the self-similar traffic

load in the current slot.

Suppose that there are i voice sessions and j self-similar sessions transmitting in the
- current slot. Based on the current traffic load, the BS estimates all the possible voice and self-
similar traffic load in the next slot with corresponding probabilities using equations (4)-(6) and

(37)-(39). Then, the BS must determine the data access probability in the next slot. For a

probability p,, if there are & voice sessions and k self-similar sessions transmitting in the next

slot the outage probability will be P, ,(h,k, p,)as determined in (41). Let h__ (i) and

max

h_,. (i) denote the maximum and minimum values of the number of active voice sessions in



next/last slot given the number of active voice sessions in the current slot is i. We have
h,. ({)=min(i+1,N,) and A, ({)=max(i—1,0). Similarly, let k, (/) and &, () denote the

maximum and minimum values of the number of on self-similar sessions in next/last slot given

the number of on self-similar sessions in the current slot is j. We have k__ (j)=min(j+1,N,)

and k_.(j)=max(j—1,0). Let p,__ (i, j) denote the maximum data access probability allowed

min

in the next slot in order to meet the outage probability requirement given that there are i voice

sessions and j self-similar sessions in the current slot. This is the maximum p, that makes the

average outage probability over all possible traffic loads in the next slot meet the requirement 6.

Using (33) and (34) this is calculated by

ax(f) kmax(/)
pdmax(i’ j)=maXb{]: R)(an =hIch=i) ZR(NM=k|N\'c=j).B)ut(h’k’pd)=e} (37)
) kmin())

The base station broadcasts data access probability for the next slot for the use by data sessions
at the mobile terminals. Before the end of each slot, each data sessions knows the data access

probability for the next slot and get adjusted to the probability for transmission.

If the data access probabilities for all the possible states (i, j)in (37) are computed

beforehand and stored in the BS, the BS does not need to compute the data access probability in
each slot. However, upon the new call or hand-off call arrival, call completion and hand-off
departure, the numbers of admitted voice sessions, self-similar sessions and data sessions are
changed. This means that the models of combined voice traffic in equations (4)-(6), combined
self-similar traffic in equations in (32)-(34) and cembined data traffic in equation (36) are
changed. Then, data access probabilities for all the possible states in equation (37) have to be
recomputed. Because the changes of admitted traffic models occur over a much larger time scale
than the duration of a slot, the recomputation will not add much complexity to the medium

access scheme.
V. PERFORMANCE ANALYSIS

Because both voice and self-similar traffic are delay-sensitive, no retransmission of

corrupted packets is allowed. So, if an outage occurs, all the voice and self-similar packets

15



transmitted in this slot are lost. While all the data packets transmitted in this slot are also
corrupted but will be retransmitted in subsequent slots until they succeed. We define the total
voice and self-similar traffic throughput as the average total number of voice and self-similar
packets that are transmitted successfully per slot. We define the throughput of data traffic as the
average number of data packets that are transmitted successfully per slot and the average data
traffic delay as the average of the time between a data packet’s generation and its successful
transmission. Recall that outage probability is defined as the probability that condition (12) is
violated. Throughput of voice, self-similar and data traffic, delay of data traffic and outage
probability are the major performance metrics of interest. We compare the performance of the

system with data access control and the system without access control.
1. System with Access Control Based on Estimation

Let P(N, =hI|N, =1i)denote the probability that the number of active voice sessions
in the current slot was / given the number of active voice sessions in the next slot is i. Let
P.(N, =h,N, =1i) denote the joint probability that the number of active voice sessions in the
current slot and the next slot are & and i respectively. We have the following equations:

P(N,=hN, =i))=P(N,=hIN, =i)-p,@i)

=P.(N,, =iIN, =h)-p,(h) (38)
So, the conditional probability that the number of active voice sessions in the current slot is

given the number of active voice sessions in the next slot is i can be expressed as

R'(NVC = h ’ NVII = i) =Pl' (NVIK = i l NVC = h) ’ pv (h)/pv(i) (39)

Similarly, let P(N_=kIN, = j)denote the probability that the number of on self-

similar sessions in the current slot was k given the number of on self-similar sessions in the next
slotisj. Let (N, =k,N_ = j) denote the joint probability that the number of on self-similar

sessions in the current slot and the next slot are & and j respectively. We have the following
equations:

R(Nu :k’an =j)=Px(Nxc =kIN.\'u = -})P\(-])

16



=P (N, =jIN, =k)-P(k) (40)
So, the conditional probability that the number of on self-similar sessions in the current slot is k

given the number of on self-similar sessions in the next slot is j can be expressed as

P(N,=kIN,=j)=P (N, =JjIN, =k) P(k)/P()) (41)

The combined voice and self-similar traffic activity is modeled as a 2-dimensional

Markov chain. The state (i, j) is the number of active voice and self-similar sessions
respectively. According to the traffic model of data sessions, at any state the number of ready
data packets is N,. Thus, the average length for the data packet queue, Lu,is alsoN .- The
data access probability at state (i, j) is determined by its predecessor state (h,k). Let

((i, j),(h,k)) denote the coupled states of (i, j) and its predecessor state (h,k). Thus, each
coupled states ((i, j), (h,k)) has a data access probability p, ... (h,k) that is determined in (37).
Ifi-a, + j-a, =2 (1-1),an outage will definitely occur. In this case, the throughput of data

traffic is obviously zero. Otherwise, the data throughput will be the average of throughput
whenever data packets do not cause outage. The throughput of data packet at coupled

states ((i, j),(h,k)) is given by
0 if i-0p+j-a2(1-1)

m (IZ’: ] Panal Bl (=D, (BI)N™ otherwise (42)

T, (G, ) (R R)= “%‘
nrel
The throughput of data packet at state (i, j) is the average throughput over all possible coupled
states ((7, j),(h,k)). It can be expressed as
o) K )
T,G, /)= Y PN, =hIN, =i) Y PN, =kIN, =j)-T,(G)."k) (43)
Pinin(i) kmin(J)

The average throughput of data traffic is the average over all possible states (i, j).
— N\' N.\‘
Ty=Y p, )Y P.(j)-T,3, ) (44)
i=0 j=0

Using Little’s law [11], the average delay of data packet can be expressed as

Du=Ly /T, (45)
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The throughput of voice and self-similar traffic at state (i, j) will be i+J, if no outage
occurs in this slot. For coupled states ((i, j),(h, k)), the throughput of voice and self-similar
traffic, T, (@, j).(h,k)), can be expressed as

T (G 1), (hk) =@+ J) - (1= P (G, o Pyan (B, KD)) (46)
Thus, the throughput of voice and self-similar traffic at state (i, j) is the average throughput over

all possible coupled states ((i, j),(h,k)). It can be expressed as

hyaxld) kpax()
Tv.\' (l’ -]) = ZPV(NVC =h I an =l) ZP\ (N\'c :k I N\‘n = ]) ’ TV\((I’ J)’(h’k)) (47)
hmin(i) kmin(j)

The average throughput of voice and self-similar traffic is the average throughput over all states

(7).
N,

. N,
Tw=Y p,()Y P(j) TG ) (48)

i=0 j=0

Recall that all voice and self-similar packets transmitted in a slot are lost if an outage
occurs. Then, the outage probability of the system corresponds to the packet loss probability of
voice and self-similar traffic. For coupled states ((i, j),(h,k)), the outage probability,

P . ((i, J),(h,k)), is equivalent to the outage probability given that i voice sessioné and j self-

similar sessions are transmitting. That is
P (0, ), (hk) =P, (i, ], Py (. 5)) (49)

The outage probability at state (i, j), P

out

(i, j), can be expressed as

I §) kmax(/)
P, G, j)= Y PN, =hIN, =i) Y P(N, =kIN, =))-P,(G,))hk) (50)
Fin(0) kmin(J)

Thus, the outage probability of the system, P

our ?

can be expressed as
N,

N,
P.=Yp,)Y.P.(j) P,GJ) 1)
=0

i=0
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2. System without Data Access Control

If the system can not estimate the self-similar traffic load in the next slot, the system has
no control on the access probability of data traffic at all. In each slot every data session transmits

with an access probability of one, that is, there are N, data sessions transmitting in every slot.

Suppose that at state (i, j), there are i voice sessions, j self-similar sessions and N, data sessions
transmitting in the same slot. Let 6(i-a, + j-&, + N, -, ) be the indication function of whether
outage occurs or not. If no outage occurs, 6(i-a, + j-a, + N, -&,) is one; otherwise, it is zero.

It can be expressed as

0 i'a,+j-a,+N,-a, 21~
‘ 1 otherwise
Then, the throughput of data packet in a state (i, j) can be expressed as
T, (i, j))=N,-8G-a,+j o +N, o) (53)

The average throughput of data traffic is the average of the throughput in each state (i, j), i=1, 2,
... N,,j=1,2,..., N,. It can be expressed as
M Ny ] )
T, =Y p,)Y P()-T, () (54)
i=0 Jj=0
The average length of data packet queue, Li.,is N ,- Using Little’s law [11] as before, the

average delay of data traffic can be expressed as

Di=Ls ITJ (55)
The throughput of voice and self-similar traffic in a state (i, j) can be expressed as

T, G, )=(i+))-8G-a,+j o, +N, a,) (56)
The average throughput of voice and self-similar traffic is the average of the throughput in each

state (i, j), i=1, 2, ..., N,,j=1,2, ..., N,. It can be expressed as

—_ . N" N~" .
Tw=Y p,()Y P(j)T, J) (57)
i=0

J=0
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Let P .(i, j) denote the outage probability in a state (i, j). It is the complement of the outage

out

indication function. It can be expressed as
P (i, )=(1-8G-a +ja +N, a,) (58)

The average outage probability of the system can be expressed as

N, N, y
P =Y P, P.()) P, (i, ) (59)
i=0 j=0

VI. NUMERICAL RESULTS

The parameters chosen for the purpose of attaining example numerical results are shown
in Table I. These parameters are chosen for the purpose of demonstrating the numerical results
only. The distributions of on-time and off-time for self-similar traffic are taken to be Pareto

distributions with the following form

I-F(t)=(1+bt)™ (60)
where F (1) is the cdf of on-time or off-time distribution. For the on-time distribution, we took a
to be 2.2 and b to be 5. For the off-time distribution, we took a to be 1.2 and b to be 5. In the

hyperexponential approximation, we took both k and m to be 8. We applied the algorithm in [10]

to fit the two distributions. The results of the fitting algorithm are shown in the Table II.

Performance characteristics for different numbers of admitted voice, delay-insensitive
data and self-similar sessions were calculated. The average delay of data traffic in the system
with data access control and the system without data access control under system scenarios, i.e.
different number of admitted voice, delay-insensitive data and self-similar session are plotted in
Fig. 4 and 5 respectively. The average throughput of voice and self-similar traffic under
different system scenarios in the system with data access control and the system without data
access control are plotted in Fig. 6 and 7 respectively. The outage probabilities of the system
with data access control and the system without data access control under different system

scenarios are plotted in Fig. 8 and 9 respectively.
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From Figures 4 and 5, we can see that although in the system with access control data
packets are sometimes withheld from transmitting, once permitted to transmit, their probability
of successful transmission is high. So the average delay of data traffic in the system with access
control is low. In the system without access control, the data packets are permitted to transmit at
any slot but have a low probability of successful transmission. Thus, data packets have to be
retransmitted over and over, which causes much higher average delay than the system with

access control.

From Figures 6 and 7, we can see that because the data access probability is controlled on
the basis of the voice and self-similar traffic load, the total throughput of voice and self-similar
traffic is almost kept as a constant value over different number of admitted data sessions in the
system with access control. In the system without access control, because the data packets are
permitted to transmit at any slot without any coordination with voice and self-similar traffic load,
the total throughput of voice and self-similar traffic gets worse when the number of admitted

data sessions increases.

From Figures 8 and 9, we find that the outage probabilities in both systems increase as
the number of admitted data sessions increases. The outage probability in the system with access
control finally saturate around 0.1% because the outage probability is guaranteed at the cost of
delaying data transmission. The outage probability in the system without access control finally

reaches 100%, which means throughput of the system is zero.

As seen in Figures 4-9, the medium access scheme provides guaranteed outage
probability, much smaller data packet delay and much higher and constant throughput of voice

and self-similar traffic compared with the system without access control.
VII. CONCLUSION
In the paper, we proposed a medium access scheme to manage traffic efficiently in a DS-

CDMA personal communication system that supports voice, delay-insensitive data and self-

similar traffic. Because the on-time and off-time for self-similar sessions are long-tail

21



distributed, it is very difficult to estimate the self-similar traffic load in the next slot. We
resolved this difficulty by casting the long-tail distribution into a Markovian framework using a
hyperexponential approximation. The base station estimates the voice and self-similar traffic
load in the next slot, and based on the estimation it controls the data access probability to
guarantee the outage probability requirement. In this way, the data transmission is coordinated
with the traffic load of delay-sensitive traffic, i.e. voice and self-similar traffic. The performance
metrics including delay of data packets, throughput of voice and self-similar traffic and outage
probability of the system were developed to evaluate the medium access scheme. The numerical
results have shown that this scheme provides much better system performance than the system

that can not estimate the self-similar traffic load, i.e. the system without access control.
APPENDIX
A. The Stochastic Property of Self-Similarity

Let X (X, :1=0,1,2,...)denote a discrete-time wide-sense stationary stochastic process
with mean 4, variance ¢, and autocorrelation function p . The autocorrelation function is of
the form

p(k)~k™PL(k), ask — oo (61)
where 0 < <1 and L(k)is slowly varying at infinity. That is, lim,_ L()/L(k)=1 for all
7 >0 [1]. If the original series X is observed at a timescale that is m times larger, we get a new
process X ™. Suppose that the original series X is divided into nonoverlapping subblocks of

size m. The kth element of the new process X ™, X '™, is the arithmetic average of series X in
the kth subblock. Then for each m=1, 2, 3, ..., the kth element of X ™ (that is X, ") is given by

Xk(m)=(ka—m+l + ka—m+2 t..t ka)/nl s k=1a 2a 3’ o (62)

{m)

Each process X ™™ is a wide-sense stationary process with an autocorrelation function p™ .

Self-similarity parameter H is defined as the self-similarity measure of a self-similar process. It

usually takes values between Y2 to 1. The process X is called second-order self-similar with self-
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similarity parameter H = 1— f/2if the aggregated processes X ™ have the same correlation
structure as X, that is
p " (k)= p(k), form=1,2,3, ... (63)

In other words, X is exactly second-order self-similar if the aggregated processes X ) are
indistinguishable from X with respect to their second-order properties. The essential property of

a self-similar process is that its structure remains unchanged over a wide range of timescales, m.
B. The Modeling of Self-Similar Traffic

At first, we briefly introduce the concept of the renewal process and renewal reward
process. Consider a sequence of renewals. If the inter-renewal time distribution follows a
general distribution, the resulting counting process is a renewal process. Let T, denote the inter-

renewal time between the (n-1)st and the nth renewals, and S, denote the time of the nth

renewal. If we let S;=0, the total time that elapses from 7=0 to the nth renewal is

S,=27T ,n=1,2, ... (64)

=1
Define N(t) =max{n|S, <t,n=1,2,...} [12]. Then, N(¢) represents the number of renewals in
(0, r]. The process N(t), is a renewal process. Suppose that at the nth (n=1, 2, ...) renewal a
reward of value W is earned. The renewal reward process, W(z), is the total reward earned by

the N(z)renewals in (0, f]. It is given by

N(1)
W=y W, (65)
i=l .
Suppose that the inter-renewal time of the renewal reward process W satisfies the long-tail
distribution
P{T 2t} ~t7™ -u(t),as t -, l<a<?2,forn=1,2, ... (66)

where u(r) varies slowly at infinity. We obtain a new process @ by aggregating M i.i.d. copies

1 .
WO, WP, W™ of process W in such a way

o(T, M) =iiw‘m>(r) (67)

t=1 m=l
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According to [13], the resulting superposition process @ is a fractional Brownian motion

process, that is, a self-similar Gaussian process. This means that the aggregate self-similar

traffic can be decomposed as a collection of simple renewal reward processes with long-tailed

inter-renewal time.
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Table I: Parameters Choice for the Numerical Results

Parameter Symbol Value
Voice bit rate R, 9.64 kbps
Self-similar traffic bit rate R, 9.64 kbps
Delay-insensitive data bit rate R, 9.64 kbps
System bandwidth w 1.25 MHz
Voice’s E, /1 level E, /I, 7dB
Self-similar traffic’s E, /I, level E /I, 7dB
Delay-insensitive data’s E, /I, level E, /I, 8dB
Voice mean talkspurt duration T, 1.0 sec
Voice mean silence gap duration T, 1.35 sec
Duration of a slot 10 msec
Noise-to-interference threshold 0.2
Outage probability 0.1%

Table II: Parameters of the hyperexponential approximation of on-time distribution.

On-time distribution Off-time distribution

i % Pi Hi g
1 0.000083176 | 0.0000052778 0.000090108 | 0.0000019171
2 0.000415858 | 0.0000364047 0.000450513 | 0.0000155329
3 0.002415113 | 0.0002602843 0.002535532 | 0.0001306811
4 0.012544923 | 0.0018165113 0.012994464 | 0.0010669561
5 0.063131158 | 0.0123455894 0.065115965 | 0.0084993608
6 0.309043963 | 0.0770551741 0.317520895 | 0.0625261319
7 1.383948615 | 0.3596328194 1.407287845 | 0.3315570226
8 3.345185230 | 0.5480975954 3.616488403 | 0.5962023970
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Fig. 1: Continuous-time model of N admitted voice sessions’ combined activity.
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Fig. 2: Discrete-time model of the N admitted voice sessions’combined activity.

Fig. 3: Hyperexponential approximation model of a self-similar session.
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Fig. 4: Delay of data packets in the system with medium access control under different

scenarios.
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Fig. 5: Delay of data packets in the system without access control under different scenarios.
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Fig. 6: Total throughput of voice and self-similar traffic in the system with medium

access control under different scenarios.
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Fig. 7: Total throughput of voice and self-similar traffic in the system without access

control under different scenarios.
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Fig. 8: Outage probability of the systems with medium access control under different scenarios.
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Fig 9: Outage probability of the systems without access control under different scenarios.
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