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Abstract

A technique is proposed where the load sharing of divisible loads is modeled through the use
of a set of differential equations. These equations are used to describe the flow of data between
processors connected in a linear daisy chain and two dimensional mesh configurations. The two
dimensional mesh is reduced to nine basic structures that describe any m by n mesh. The
processors have heterogeneous link speeds, processing speeds, and loads. The equations are
designed to model the balancing of these loads over a period of time, by distributing the loads
between the processors, allowing the amount at any processor’s load to be accurately calculated
at any point in time.
1. Introduction

In this paper a method is advanced that uses differential equations to model the load sharing
of divisible loads. The differential equations are the decisions makers, and use the amount of
load on adjacent processors, to determine if a task (load) is to be passed to another processor.
The exchange of data between processors in two different topologies is demonstrated. These
are the linear daisy chain and mesh topologies. Both configurations have heterogeneous link
speeds, with processors that function at different rates. The loads of the linear daisy chain and
mesh configurations are divisible, and have load amounts that vary. The decisions made by the
differential equations balance these loads, through a process of redistribution of the loads

among the processors. The load is considered processed when the load at all of the processors



has reached zero. The exact amount of load at any processor can be determined precisely at

any point in time.

2 State of The Art

There is a large body of literature on load balancing. Most of this literature is dedicated to
indivisible jobs. Here some representative works will be considered that also encompass
divisible jobs. Load balancing techniques are often components of an application. Their
purpose is to make the applications perform better. Different techniques are better suited for
certain applications. The types of load balancing techniques and applications vary. However
the common thread in load balancing is the redistributions of tasks. Proposed methods are
diverse as in {1} where a work stealing algorithm is used that distributes workloads in a parallel
system so that underutilized processors seek out work from other processors. Mitzenmacher
demonstrates the usefulness of this modeling technique. When a processor is idle it tries to
steal a task from a processor selected at random with an uniform distribution. If the chosen
processor has more than one task, a task is stolen. This model employs differential equations.
The differential equations rely on the expected change in the behavior of the system over small
periods of time. That is based on arrivals or departures of tasks. A core term of these
equations is similar to a term in the equations in this paper, but used differently.

Another technique is diffusive load balancing [8]. In diffusive load balancing if a processor
has a quantity of tasks greater than its neighbor it moves a portion of its tasks to the
neighboring processor. The decision to move some of the tasks is based solely on local
information, and the amount of tasks transferred is in proportion to the differential between

the number of tasks on the two processors. Furthermore only the number of tasks at each



node is subject to attempts of equalization. This method of having nodes with greater loads
transfer load to nodes with lesser loads is used in this paper. An interesting load balancing
technigque is used in [3], where data from a high energy physics experiment is analyzed. The
problem of an imbalance, occurring in queues is resolved using dynamic load balancing,
resulting in the ability to detect the point of imbalance and remove it.

An application detailed in [5], where a dynamic load balancing technique is used as part of an
Asynchronous Iterations-Asynchronous Communication (AIAC) model. Here the load balancing
is not based on the amount of data, but the residual i.e. the max norm of the difference
between a current value and two consecutive iterations. In this paper dynamic load balancing
is load balancing that evolves as load arrives, and is transferred and processed. Here one task is
to determine if asynchronism interferes with an effective distribution of the workload when
load balancing is used. The results demonstrate that using load balancing in conjunction with
asynchronism gives a greatly improved performance than when asynchronism is used by itself.
In [6] a dynamic load balancing method is developed for parallel applications. That has the
purpose of evenly distributing work to processors to ensure that processors are not idle while
others are busy. For simple data structures the application divides the work into groups of
equal size and distributes the groups among the processors. For complex data structures as in
unstructured meshes, partitioning methods are used.

A similar method is used in {7], where mesh adaptation is shown to be an effective
application for unstructured-grid computation. However a load imbalance is produced among
the processors when used on parallel nodes. To solve this problem dynamic load balancing is

used. The technique employs partitioning and remapping to balance the load. In [2] a load



balancing algorithm for a distributed system is used. The algorithm has the purpose of
minimizing the expected turnaround time. This is to prevent a situation in which a task waits
for one particular processor while there is another idle processor that could process the task.
The performance of the system is increased, when the instantaneous load on the multiple
processors network is balanced. Presented in [4] is an agent based load balancing technigue
that is used in a homogeneous min-grid to achieve a uniform distribution of task to nodes. This
solves the scheduling problem on the grid.

in references [1-7] the loads are indivisible i.e. they cannot be arbitrarily divided, and
directed to any desired node. However divisible jobs such as [8] mentioned previously are
usually data files instead of programs (or files in which the information must be processed as a
block of data). In [9] divisible load theory is presented with a synopsis of previous research
illustrating its achievements. Basic divisible load theory is discussed in [10, 11], and linear daisy
chains are covered in [19]. In [12, 13] N processors are connected by a bus, and the processors
are controlled by sensors. The divisible load produced by the sensors results in a load sharing
problem in which the optimum solution time is reached if all the processors stop computation
at the same time. Divisible loads are also used in [14] that studies closed form solutions for
large symmetric tree networks and in [11] where infinite networks are discussed.

Divisible load theory (DLT) can be applied to different topologies, a two dimensional mesh in
[16, 18], and a three-dimensional mesh in [17]. Distributed linear networks that can have
processors with and without front-end processors are studied in {19]. In [20] linearity in DLT is
shown by comparing superposition in an electrical network to that of a network using DLT. The

use of DLT in grid networks is explained in [21]. Signature searching is investigated in [22, 23]



where single and multiple files that can be arbitrary divided and examined. In [24] a process for
balancing a linear daisy (LDC) chain is offered. In this process the initial load is placed on an
exterior node of the LDC and the load propagates from node to node. The division of the load
depends on whether or not the exterior node has front end processing or not. Contrary to [24],
in this paper the loads are placed individually at each node at some point in time, and each
node can be considered a root node. Each node immediately starts to process load, and is
capable of transmitting load at the same. Similar to one case in [24], the nodes in this paper
function as nodes with front end processing and simultaneous start. That is they transmit and
receive at the same time and immediately start processing load as it is received, but only in a
given interval of time. It is not required that all nodes stop working at the same time i.e. the
finish time requirement for optimization does not come into play here. However as an
extension of this work the algorithm is being augmented to redirect load from nodes with large
loads to those with lesser foads to achieve the finish time requirement.

While Moges and Robertazzi sought to unite aspects of divisible load theory and Markov
chain models, the intent of this paper is to present and elegant and scalable model in a basic
form. This is to say that any network, cycle, or system that can be defined in terms of processor
speed, link speed, and load can be represented by this model. Fig. 1, shows a water allegory
that exemplifies the load balancing technique in this paper. Imagine containers of water with
an aperture at the bottom of each container. The size of the apertures represents how fast the
water will flow out of the containers. This is analogous to the processing speed. The containers
are connected in a linear daisy chain of n nodes, and can be extended to a grid containing m by

n nodes.
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Fig. 1. Demonstrates a water analogy using three containers, where n=3. The load L{n)} is
water, the processor speed is 1/w, and the link speed is 1/z. The width of the apertures at the
bottom of the containers indicates the processors speed, and the arrows the direction of flow.
The apertures on the sides of the containers represent the link speeds, and the arrows the
direct of the load transfers from container to container. There is no actual distance between
the containers.

If the sides of the containers are constructed such that water flows through them from a
higher potential (pressure) to a lower potential, the size of the apertures the water passes
through represents the links speed. Every portion of the wall is considered to be an aperture of
a certain size, the only barrier to flow is an equal potential. Larger apertures will transmit water
faster. The load, water can be thought of as a divisible load. In fact any quantity that can be
arbitrarily divided at any point e.g. chemical concentration or information can be regarded as a
divisible {oad.

When water is placed in the containers processing will start, and end when the last of the

water transverses the network of containers. Note the decision to transmit water depends on

the local conditions at the time, and constantly changes. The algorithm put forth in this paper



can provide information on when the load has reached zero, and the amount of load at each
processor at every time instant in a predetermined interval.

The approach in this paper differs from [24] in that the equations are not derived from a
timing diagram. This model is a load balancing technique, and could be placed as a component
in some of the applications mentioned above. With this technique underutilized or idle
processors are identified. Through changes to the program that uses this technique, the
information on underutilized or idle nodes could be used to increase the rate at which all nodes
reach a desired state. Furthermore this technique would be extremely useful in the detection
of imbalances in queues or in a system, since it can be used to find the load at every node, at
every time interval.

3. Model Description

Both the linear daisy chain and two dimensional mesh configurations use the same method for
distributing loads. Each node is capable of sharing its load with its adjacent neighbors. The
loads move from the nodes with larger loads to those with lesser loads. This process continues
until a solution 1s reached, in other words, the loads reach zero at all nodes.

4. Variables

w(i}: the inverse processor speed

z(i): the inverse link speed in the horizontal directions
v(i): the inverse link speed in the vertical directions

L: the load

DL: derivate of the load

dt: the time interval



sgn(x): the signum function

N: the total number of processors
n: the number of columns

m: the number of rows

5. Linear Daisy Chain Configuration

In a linear daisy chain configuration, Fig. 2, the following set of differential equations

describes this load balancing process.
Fig. 2. Five loads connected in a linear daisy chain configuration, by four links.

For the linear daisy chain:

i: the number of processors between the first and last processor

i=2to N-1, inincrements of 1

1 1 ;
dL{1) = a [ww(l) +—3(—1)3gn(L(2)—L(1))} (1)
dL2(i) = dt [—5%5 + 3—(%3971,(L(i + 1) = L{E)) + - I,)sgn([,(*i, -1)- L(zﬁ))} (2)
1 . ;
dL3(N) = dt {_w(N) + 2N = 1)sgn(L(N —1) = L(N))} (3)

L(1) = L(1) + dL1(1) L(1)>0 @)



0 (5)
0 (6)

The derivative of the load (dL) with respect to time is divided into three equations. The
derivative dL1(1) represents the load on the first node, and the dL3(N) represents the load on
the last node. The derivative dL2(i} represents the loads on interior nodes between the first
and last nodes. The processor speed (1/w) has a minus sign to insure that the act of processing
always serves to decrease the load when added to the inverse link speed. The sign of the fink
speed (1/z) is determined by the difference between the loads. If the difference is greater than
zero the sign is positive, and if it is less than zero it is negative. Load is transported from nodes
with larger loads to adjacent nodes with lesser loads. in (1), the inverse link speed z(1) and the
inverse processor speed w(1) are fixed.

The differential equation dL1(1) uses the difference between the first processor’s load(L1),
and its nearest neighbor, the second processor’s load(L2), and the inverse link speed between
them in its calculations. In (1) “one” is used for the load at the first node, and “two” for the
load at the second node instead of i. The reason will become clear in the description of dL2(i).
The derivative dL3(N) works similar to dL1(1), the only difference being that dL1(1) uses the
node to its right and dL3(N} used the node to its left in the calculations. The derivative dL2(i)
takes into account its neighbors on either side. The variable i start at 2 to prevent division by
zero in the term 1/z{i-1) of (2). Other than this dL2(i) functions in the same sense as dL1{1) and
dL3(N). Once the derivatives of the loads are found they are added to the original loads, L(1),
L{i} and L{N) creating a new set of loads. The process repeats until the loads are balanced, i.e.

each node’s load equals zero. Loads are forced to be no less than zero. When a load reaches



zero it remains at zero unless a new load is added to that particular node. The load at a node

may also be increased at anytime in the process. Furthermore, the number of nodes may be
increased to any size N.
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Fig. 3. Load as a function of time vs. node position. There are five nodes, and the loads on
these nodes are measured at time, J X (1 X 10“68) where j represents the number of
iterations of (1) through (6}.

In Fig. 3, the loads as a function of time are plotted against the node position. The amount of
load on each node at a specific time is designated by the function L(j X dt(s)), where j is the
number of iterations of (1) through (6), and dt is the time interval, the iteration occurred in, here
1 x 10%s. As can be seen in F ig. 3, the initial load on nodes one through five are respectively [1
10 4 2 3]. They diminish with time in accordance with equations (1) through (6). However at a
given time when j = 3500 and f = 1 x 107 %s, the load at node 4 is increased by 5, L(j x 10°°
s} = L(0.0035 s) = 5. The increase can be seen at node 4 on the graph above. Note in F ig. 3 the
increase appears to be 4.5 and not 5. The discrepancy is due to the fact that the information in

the graph is plotted every 1000 iterations. The difference is the amount the load has decreased,

10



from the time the load is input to the time the data is updated. The increase at node 4 increases
the time it will take for this node to reach zero.
6. Mesh Configuration

In the mesh configuration of Fig. 4, the nodes are extended in the vertical and horizontal
directions forming a five by five mesh. In practice any m by n mesh is possible. There are 25
nodes (N), 20 inverse links speeds (z) in the horizontal directions, and 20 inverse link speeds (v)
in the vertical directions. This mesh processes loads the same as the linear daisy chain, with an
extra dimension added. The process is governed by nine equations that will work for any m by n
mesh. However for the equations to work properly the mesh must be labeled as shown in Fig. 4,
Other labeling schemes are possible, but result in somewhat different equations. In the nine
equations that describe the process of transferring loads between nodes, m is the number of rows

and n is the number of columns. The equations are numbered (7) through (15).



Fig. 4. A'5 by 5 mesh configuration, composed of 25 nodes, 20 horizontal links, and 20 vertical
links, here N is the total number nodes, m is the number of rows, and n is the number of
columns,

For the mesh configuration:

i: the number of processors from 1 to n

Where n is the number of columns and m is the number or rows
fori=il =1

dL1(i) = dt ~—-—1—,— + 1“ sgn(L(i + 1) - L{(i)) + ——Lsgn(lj(i +n) - L(n)) (7)
w(i)  z(i) v(i)

fori=i2=2ton-1, increments of 1



. 1 1 ) . 1 ' o
dL2(i) = dt {—m + Z(i)sgn(L(z +1) - L(1)) + i 1)sgn(l,(z 1) = L(7))
1 .
+ @sgn(L(z +n)— L(n))]
fori=i3=n
. 1 1 , . .\ |
dL3(i) = dt {~ o) + o 1)SQ7Z(L(Z — 1) = L{z)) + msgn(L(z +n) = L(z))

fori=i4 = n+1to (N-n+1) = n, in increments of n

ALAG) = dt | ~—— + ——sqn(L(i + 1) L)) + ——sgn(L{i + n) — L{i)
B RO o)™

1

+ sgn(L(i —n) — L(i))]

v(i —n)

rows =m-2
forg=0torows-1
i=i5=[(n+2):inincrementsof 1:to (2n-1) ] +gxn

dL5(i) = dt [——L + i——Sgn(L(i +1) = L(i)) + sgn(L{i — 1) = L(1))

1
w(i)  2(i) 2{i—1)

+ b%sgn(ll(i +n)~L(i)) + oG i my sgn(L(i —n) — L(i))]

fori=i6 = 2n:in increments of n: to (N-n)

4L (i) = dt [-wé) 7 L (Ll =1~ 1) + ;%sgn(L(i <) = L(i)
1

sgn{L(i — n) — L(i))]

v(i —n)
fori=i7 = (N-n) +1

L sgnLi - n) - L(i))

i) .x

dL7(i) = dt [-l—b;%z—) + —;(%sgn([,(i +1) = L{i)) +
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for i=i8 =(N-n}+ 2:inincrements of 1: to (N-1)

dL8(i) = dt
fori=i9=N
dL9(1) = dt |-

The mesh in Fig. 4 is described by nine structures shown individually in Fig. 5. Each equation
corresponds to a structure, and each structure has one or more components. Furthermore
each component has a center node. In Fig. 5 only the center node of the first component is
shown when there is more than one component. In the 5 by 5 mesh of Fig. 4, there are a total

of 25 components. The equation numbers {7) to (15) correspond to the structure numbers (7)

to (15).

respectively, and the lower left and right hand corners (13} and (15) respectively each have one
component, which is composed of three nodes and two links.

components corresponding to the number of nodes (columns) between the first and last node

—1—”%5 + z(lz_)sgn(L(z' +1) = L{(1)) +
——n(Lli =) = L)
1 1 ,
V] + e 1)sgn(L(N -1} = L{(N)) +
L(i1) = L(i1) + dL1(i1)
L(i2) = L(i2) + dL2(i2)
L(i3) = L(i3) + dL3(i3)
L(id) = L(i4) + dLA(i4)
L(i5) = L(i5) + dL5(i5)
L(i6) = L(i6) + dL6(i6)
L(i7) = L{(i7) + dL7(i7)
L(i8) = L(i8) + dL8(i8)
L(i9) = L(i9) + dL9(:9)

ot L Se(Lli - 1) - L(9)

-sgn(L(N - n} = L(N))
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The structures representing the upper left and right hand corners, (7) and (9)

Structure (8) has three



of the first row. Each component is made up of four nodes and three links. Structure (14) is the
complement of (8). This structure is found in the last row of the mesh, and contains the same
number of components, nodes, and links as (8), for the same reasons. Structure (10) and its
complement structure, (12) contains three components, based on the number of nodes (rows)
found between the first and last rows of the mesh. They have four nodes and three links. The

final structure, (11) has nine components each composed of five nodes and four links.
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Fig. 5. The nine structures describe any m by n mesh. The structure’s number corresponds to
the equation’s number. For a5 by 5 mesh as in Fig. 4, the structures (7), (9), (13}, and(15) each
have one component. The structures (8), (10}, (12), and (14) each have three components and
structure (11) has nine components. The center nodes mark the position of the first
component of each structure.

Once the derivative of a load at a particular node is found it is added to the current load of

that node. This produces a new value for that load. This process is seen in (16) through (24).



The load at each node in the five by five mesh is plotted versus load as a function of time,

versus the node position, Fig. 6.

Frve by Five Mest Confiourat o
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Fig. 6. Plot of the loads versus the loads as a function of time versus the node position. The x-
axis gives the nodes position, the y-axis the load as a function of time, and the z-axis the load in

mega bytes.

The rows in Fig. 6, starting at j equals one represents the initial input loads on the nodes of
the 5 by 5 mesh in Fig. 4. The 5 by 5 mesh has been transformed into an array of length 25, and
each element of the array 1 through 25 corresponds to the node number and load of the 5 by 5
mesh. Every 1000 iterations of (7) through (24} produces a new row, until all load reach zero at
j = 7841. At j = 5000, the load at node position 22, L(j x 10} is set equal to 10. This node

rapidly approaches zero because there are no load bearing nodes adjacent to it. Equation (14)

governs this process.
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Fig. 7. Displays the 5 by 5 meshes as time increases. The y-axis shows the number of columns,
and the x-axis the rows, listed every 1000 iterations.

With the nodes adjacent to node 22 being zero, the four terms of (14) are negative, generating
a large negative number. When dL8(i8) is subtracted from L(i8) in (23), the load goes to zero
within 2000 iterations.

A geometrically clearer picture of the surrounding nodes can be seen in Fig. 7. After the
initial 5 by 5 mesh is plotted, with one on the x-axis marking the last row of the 5 by 5 mesh.
The mesh is plotted again after 1000 iterations. This process continues until all nodes in the
mesh are zero.

Programming the given equations has generated the previous graphs. For the one-
dimensional daisy chain (1) through (6) were used, and for the two-dimensional mesh {7)
through (24). The two dimensional m by n mesh can be extended into three dimensions by an
arbitrary length p, producing an m by n by p mesh. A S by 5 by 5 mesh would require one
additional parameter, the link along the z-axis h. This cube would be composed of the following
structures. Eight corner structures each consisting of one component having three links and

four nodes. Twelve edge structures, where each structure has three components made of four



links and five nodes. Six face structure comprised of nine components consisting of five links
and six nodes. The last structure is for the internal nodes of the cube. This structure has 27
components, each having six links, and seven nodes. The center nodes of the components do
not lie on the edges or surfaces of the cube.
7 Simulation Evaluation

For equal loads, processors speeds and link speeds, the methodology works as would be
intuitively expected. Also, if the processor speeds and the link speeds are chosen such that the
processor speed is one third that of the link speed, and the loads are chosen randomly, the
equations work as expected. The number of links dictates how fast the load decreases. The
structure with the most links decreases the fastest. This decrease is imperceptible in graphs
such as Fig. 6 and Fig. 7. However a decrease in the second and third decimal place is readily
seen in the numbers used to generate the graphs, when the parameters are changed to
observe smaller steps, i.e. when the values for the loads are listed every 10 iterations, instead
of in increments of 1000 iterations.

8 Conclusion And Extensions

The data derived from the equations demonstrates that the equations perform as intended.
in other words the loads tend to be balanced over time.

It should be noted that this methodology can be used to model other protocols involving
thresholds for allowing load transfers, different speeds for different amounts at the loads, and
time varying processor and link speeds, and opening and closing multiple data pipes on each
link as time evolves. Many systems and cycles not normally considered as being networks can

be modeled as networks. Thus the nearest neighbor transfer heuristic used here is of interest



in other applications, such as modeling chemical diffusion through cells and across the cell

walls.
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