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Onsager reciprocity. The standard theory is in disagreement, however, with

the results of phenomenological irreversible thermodynamics for the con-

ABSTRACT
ventional forms of fluxes and forces.

By an extension to the dense-fluid regime of a method first

exploited by Lewis to obtain the Boltzmann equation, kinetic equations

for one- and two-particle classical distribution functions are obtained.

For the hard-sphere potential, the kinetic equation of the revised

Enskog theory is obtained at the one-particle level, and a generaliza-

tion of the theory of Livingston and Curtiss is obtained at the two-

particle level. For a pair potential with hard-sphere core plus smooth

attractive tail, a new mean-field kinetic equation is obtained on the

one -particle level. In the Kac-tail limit the equation takes the form

of an Ens~og-Vlasov equation. The method, which is based upon the

maximization of entropy, yields an explicit entropy functional in each

case. Explicit demonstration of an H-theorem is made for the one-

particle theories in a novel way that illustrates the roles of the

reversible and irreversible part of the hard-sphere piece of the -

collision integral. The latter part leads to the classical form of

entropy-production density as described by linear irreversible thermo-
.

dynamics and so possesses many of the features of the Boltzmann collision

integral. The former part introduces new elements into the entropy

production term. It is noted that the kinetic coefficients of the

revised Enskog theory exhibit Onsager reciprocity in the linear regime.

Upon extension to the standard Enskog theory, in the linear regime, we

construct an entropy production J,cnsity and identify conjugate fluxes

and forces and also kinetic coefficients which are shown to exhibit

I



I. INTRODUCTION

1 2
The greatadvances made by Boltzmann and Enskog towardcon-

structing a kinetic theory of dilute and dense classical fluids,

respectively, were the products of brilliant intuition.
Boltzmann's

explicit construction of an entropy functional and demonstration of

its monotonic increase in time (H-theorem) is a landmark in the program

of relating microscopic dynamics and irreversible processes. Thus,

aside from their value in describing hydrodynamic and transport

processes, we have come to regard kinetic equations as a bridge between

the microscopic domain and the realm of macroscopic irreversible

processes.

Enskog's equation represents a generalization of the Boltzmann

equation to the dense-fluid regime for the hard-sphere potential

model. Construction of an explicit entropy functional has not yet

been done for the original Enskog theory (herein referred to as stan-

dard Enskog theory -- SET) though a recent result3 provides a pres-

cription for constructing an entropy functional. An explicit entropy

functional and irreversibility have been demonstrated for a revised

version (RET).4

Investigations over the last three and a half decades have sought

to elucidate the principles and assumptions inherent in these theories

in order to establish systematic techniques for the construction of more

general irreversible kinetic equations that are appropriate to dense

gases and liquids. A logical starting point for the description of

3

classical many-body dynamics has proven to be the BBGKY hierarchy,S

which connects the evolution of an s-particle distribution function,

Fs' to the distribution function for s+l particles, Fs+l'
Both

objects are unknown. To determine Fs exactly, therefore, requires

solution of the full many-body problem. Performance of this exceed-

ingly difficult task would yield a huge amount of superfluous infor-

mation, inasmuch as the physical quantities of greatest interest can

be expressed in terms of the lowest-order distribution functions,

typically s = 1,2. The approach is taken, therefore, to develop a

closed set of approximate equations for the evolution of these lowest-

order distribution functions.

Several schools of thought have arisen regarding methods that can

be used to close the hierarchy. Most efforts have been aimed at the

one-particle equation; not nearly as much effort has been devoted to

the two-particle equation though it is the two-particle distribution

function which contains the information of paramount interest to a

description of the dense-fluid state.

Closure in a manner that yields irreversibility seems to require

expression of Fs in terms of Ft' s > t, possibly in a non-local way

in general. Bogoliubov6 first introduced a scheme, which has been

developed and expanded by many workers,7 to describe the evolution of

Fl in terms of the dynamics of distinct groups of two particles (the

Boltzmann term), three particles (the Choh-Uhlenbeck term), etc. The

density of the fluid is regarded as the determinant of how many terms



one should include. The main assumption in these approaches is in

regard to the correlations among the particles of each group at some

distant time in the past. Closure is had by assuming no correlation

among part1cles in the far past when the members of a group are far

apart and not interacting.
Then Fs' s = 2,3,... is factorized into

a product of Fl's at some time in the past. Thereby indirect dynamical

correlations among members of a group through interaction with the

remaining fluid are neglected. With the exception of the theory of

Klimontovich [ref. 7c], theories of this kind have yet to be demon-

strated as irreversible, or, to have an entropy functional. Moreover,

they are not tractable at liquid densities.

8
Now Enskog'stheory extendsonly as far as the Boltzmannterm

in group dynamics but accommodates spatial correlation between the

two collidiDg particles via the two-particle spatial correlation

function of the dense uniform hard-sphere fluid at equilibrium. Van

Beijeren and Ernst9 have generalized this kinetic equation by using

instead the correlation function appropriate to a nonuniform fluid at

equilibrium. Resibois4 has shown that this RET does indeed have an

entropy functional and an H-theorem.

A natuTal basis for incorporation of the fluid structure, in

general, is had by recourse to the two-particle equation. A Markovian

kinetic equation is obtainedlO when the Kirkwood superposition approxi-

mationll (KSA) is applied to F3 for closure. Alternatives to this have

been consideredl2 but neither an entropy functional nor irreversibility

have been exhibited by such approaches.

5

Quite apart from the kinetic theory, the problem of the rela-

tionship of higher-order distribution functions to given ones of low

order has,been investigated from several points of view.

13
Mayer

has characterized the ensemble which exhibits maximum entropy subject

to a prescribed set of low-order distribution functions. An alternate

analysis to this end was given subsequently by McLachlan and Harrisl4

using Lagrange undetermined multipliers. A maximum "entropy" principle

was used by Ramanathan, Dawson and KruskallS to derive the KSA and

higher-order generalizations.

L
. 16 I d .. .

f b
. .

teWlS emp oye maXImIzatIon 0 entropy su Ject to constraIn s

to effect closure in a derivation of the Boltzmann equation. Here we

extend Lewis' method into a form suitable to application to dense

fluids. In particular, we recover the kinetic equation,9 entropy

functional and H-theorem4 of the RET assuming a hard-sphere repulsive

interparticle potential. By generalizing to a potential with hard-

sphere core plus smooth attractive tail we obtain a mean-field kinetic

equation, which is suited to liquid dynamics, such that the hard-sphere

fluid structure serves as a reference structure for the attractive tail

which appears linearly in the mean-field term. We show that this theory

also has an entropy functional and an H-theorem. When the tail strength

is set to zero, the RET is recovered, and when the Kac limit is taken

on the tail, an equation of the Enskog-Vlasov typel? is obtained.

(A number of other nice formal properties and applications of this

theory to liquid transport are described elsewhere.18) A new one-

particle kinetic equation for the square-well potential is also obtained
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and an H-theorem is proven for it.

The method is alsoused to obtain a closed equation for F2 for

the hard-sphere potential. This new equation goes beyond that of

Livingston and CurtisslO who applied the KSA to F3 for closure. The

new equation contains within F3 a three-particle phase-space correla-

tion function which manifests the possibility of long-range velocity

correlations. The reversible part of this kinetic equation is shown

to yield at equilibrium the correct two-particle member of the Yvon.

19
Born.Greenhierarchy. An explicitform for the entropyfunctional

is also obtained.

The maximum-entropy approach has great formal mathematical power. yet is

conceptually simple. It is a compact systematic technique for deriving kinetic

equations associated with entropy functionals as well as a formally

closed BBGKY hierarchy. Moreover. its basic principle. the maximization

of entropy, conceptually unifies equilibrium and nonequilibrium statist-

ical mechanics. The existence of a physical mechanism for closure is

not addressed in this approach. Rather. the method provides a mathe-

matical framework whose relevance to the physical problem is best judged

a posteriori.

In Section II the basic dynamical equation for the one-particle

theories is derived and in Section III the statistical procedure for

closure is set up. For completeness, a derivation of the Boltzmann

equation is given in Section IV, following Lewis,l6 to illustrate the

role of time smoothing. In Section V one-particle kinetic equations

for dense fluids are derived and II-theorems proven. and in Section VI

8

a two-particle kinetic theory for the hard-sphere fluid is discussed.

In Section VII properties of the RET hard-sphere theory in relation

to irreversible thermodynamics are developed. A local entropy pro-

duction density is constructed and forces and conjugate fluxes are

identified. The kinetic coefficients are shown to exhibit Onsager

reciprocity. (These formal results are shown to hold also for the

SET, although the forces and conjugate fluxes do not both take the form

expected on phenomenological grounds. Our general conclusion is that

the RET is superior to the SET in regard to its relation to irreversible

thermodynamics, although we differ in some specifics with van Beijeren

and Ernst.9) A summarizing discussion follows in the last section.



II. mB DYNAMICALEQUATION

The BBGKY hierarchy for the specific distribution functions Fs'

in the thermodynamic limit and for pair interparticle interaction, isS

s a a'_.I. o-F
L + ~i s+l ~+ s+l

i=l ari uPi
a~ Fs + {Hs,Fs} = n f dXs+l

+2
s Pi s N + + .

where H = I 2: + ~ <p.., n = _v' x = (r,p) and the Fare normal1zed
s i=l m i<j 1J s'
f s S. + +

so that d x Fs = V. For conven1ence we set m = 1 so that p = v.

A formal solution of (1) in powers of n was obtained by Lewis:20

(1)

00 k fF (XS,t+T) = L n dXs+l ...dXs+k
s k=O

k k .
x r (-1) -J T(j+s) F (k+s t)

j=O jl(k-j)1 -T k+s x ,

(j+s) ( O+s) j+s (1) (1» )where T F
k

= F
k S x, S x.. 1, ..., S Xk ' t-T +s +s -T -T J+s+ -T +s

and S(j) = exp T{H., }. Equation (2) demonstrates that there are-T J

(2)

two parameters at our disposal, nand T.

For s = I, we obtain

(1)
J {

(2)
Fl(xl,t+T) - T-T Fl(Xl,t) = n dX2 T-T F2(xl,x2,t)

(1) } 2 f .

{I (3) 3
T-T F2(xl,x2,t) + n dX2dx3 2 T-T F3(x ,t)

(2) 3 1 (1) 3 }- T-T F3(x ,t) + 2 T-T F3(x ,t) + ... (3)

The integrands on the RHS do not vanish only when the particle con-

figurations are such that the multiparticle streaming operators induce

9 10

interaction among the particles.

Replace xl by s~l)Xl in (3), which is an identity in xl. The

LHS of (3) becomes equal to f; dr ddr Fl(S;l)xl,t+r); the integrand

of which is equal to (~1"Vl + it) Fl (S;1)sl't+r). Now the LHS of (3)

can be written

+ a-
T(vl .VI +at) Fl (4)

where

- 1 IT (1)

Fl =:r 0 drFl(Sr xl't+r).
(5)

The binary collision term on the RHS can be similarly transformed to

f { (2) (1) }n dX2 T-T TT F2(xl,x2,t) - F2(xl,x2,t) (6)

Similar forms can be obtained for the ternary and higher order terms

on the RHS of (3), but inasmuch as any high order term is O(nTnR~g)

times the preceding term6 (where R. is the range of the interparticle
cp

interaction and g is the mean relative speed of colliding particles)

we will not be interested in the ternary and higher order terms in the

sequel because we choose n or T such that these terms will be very

'I small. Combining (3) and (5) we obtain the result

Vl(XI,t) = Fl(xl,t) + 0(T1) ,m
(7)

2- -1
where Tm = (nnR<pg) . Therefore the time-smoothed and unsmoothed

one-particle distribution functions are approximately equal if T « 1m.



As we will see subsequently, the role of time smoothing is to establish

a time scale which captures a complete collision. As utilized here

time smoothing does not playa role per se in introducing irreversi-

bility.

The dynamical equation of interest in the one-particle theories

is comprised of (4), (6) and (7). . In anticipation of later results

we assume here that T « Tm and also define the correlation function

F2(Xl,x2,t)

g2(xl,x2,t) = Fl(xl,t)Fl(x2,t)

(8)

and introduce the notation

T(2)T(I)F (x ,x2,t) = F2(xl,xZ,t)-T T 2 1 (9)

where xl' xi are related to xl' x2 through the interparticle potential.

Combining (4), (6), (7), (8) and (9) we obtain the leading order result

(a<)t+ ~l . I]I)Fl(xl,t) =

* I dX2{g2(Xi,xz,t)Fl(Xl,t)Fl(XZ,t) -

g2(Xl,x2,t)Fl(xl,t)Fl(X2,t)} .

(10)

11 12

III. THE CLOSURE PRINCIPLE

To simplify the formulae in this and following sections we

replacethe specificfunctionsF by genericfunctionsf = nSF .s s s

The macroscopic fluid properties can be expressed in terms of fl and

f2,2l and, in particular, knowledge of fl is sufficient to describe

the state of a dilute gas. Generally, then, we assume that some

low-order function fs is known at time t.
Closure can be had13,14

by maximizing the statistical entropy functional S,22

S = -k I dNx W~n(WN/r),
(11)

where f dNx WN = 1 and r is a measure on the phase space whose value

is not pertinent to the following development so will be suppresssed,

subject to constraints of symmetry and that all known information (fs)

is reproduced precisely by contraction of WN'
The latter means

5 N!

I

N-s N
fs(x,t)= (N-s)! d X WN(X,t).

(12)

Formally, we express this problem via the use of Lagrange multipliers14

maximize the functional

I [DN] = S[DN] + kY[1- I dNx ENDNJ +

I

5 5 5
+ k d x A(X ,t)fs(x ,t)

-~
I

N s N
(N-s)! k. d x A(X ,t)ENDN(X ,t) .

(13)

Here for convenience we have split WN into a product of factors,

EN = EN(1N) which is assumed to have a known form, and DN = DN(xN,t)



which is not known in form and is the function to be varied in seeking

the maximum of S. The Lagrange multiplier function A is symmetric in

all xi' as are all fs' so the last term in (13) may be written

in the s~nmetric form

N,

f

N

-k. L. - d x A(xil'''',xis't)ENDN
11...lS-l

where the prime means no indices equal.

The operations allay = 0 and dl/[oA(x~,t)] = 0 yield the normali-

zation conditions 1 = J dNx WN and (lZ) respectively. The functional

variation with respect to DN yields

-+N

[

-+N N
= -kEN(rO) 1 + lnEN(rO) + lnDN(xO,t) + y

N,

J
+ I A(Xa. ,...,xo. ,t) .. .

1 11 1S
11...1S=

Provided that EN(;~) ~ 0, setting ol/[oDN(x~,t)] = a yields

-+N N N,
lnEN(rO) + lnDN(xO,T) = -y - 1 - I A(Xa. ,...,Xo. ,t) .

. . _ 1 11 1S
11...1S-

il
N

ODN(xO' t)

(14)

(15)

13. 14

IV. DILUTE GAS AND THE BOLTZMANN EQUATION

Here nvO « 1 where Vo '" volume of a particle.

EN = 1 and from (IS) obtain

Set s = 1 and

N -l-YnN -A(xi,t) -NnNWN(x ,t) =e e = N f1(x. ,t)i=l i=l 1
(16)

so that, (through (8) in generic function language), obtain

gZ(Xl,xz,t) = 1 .
(17)

In terms of the generic functions, (10) now takes the form

(;t + vI . ~1)fl(X1,t) =

~ J dXZ{fl(xi,t)f1 (xz,t) - f1(xl,t)f1(xz,t)} . (18)

The configurations for which the integrand of (18) does not

vanish permit a collision to occur upon backward streaming by T(Z)

after free streaming of both particles by T(l) [cf (9)]. This

situation is typified in Figure la, where Ra = :::Z- :::1' g = ~Z - ~1
-+ -+-+ -+-+-+ -+

and RT = Ra+ gT. Given r1' vI' vz' T then rZ must be so that:

(i)
. -+ + .
1f RO . g ~ 0, then RO ~ R<j>' where R$ 1S the

range of the potential

. :t -+ Z :t +Z 1IZ
1f KO. g < 0, then R<j>L (Ra -ltO. g ) and

. -+ -+
e1 ther RT ~ R<j>or RT .g > 0 and RT > R$'

The volume of this region of contributing::: 2' s is of order 7TTgR~

(ii)

...



(neglecting end caps). As already mentioned the ternary and higher

order collision terms will be negligible if

1
T « Tm = ~ .

ngITR~

Now regions A and C correspond to configurations which produce incom-

plete collisions in time T and their total volume is ~ nR~, which may

be neglected if T »~3t ~ T , the duration of a collision. Theg c
physical domain of applicability of our ultimate result is then char-

acterized by the relation

T «T« T
c m (19)

To the same order of approximation, based upon the first inequality

of (19), we may write

fB d;2 = f db bdE f:g dz

where db bdE is the differential cross section for scattering which

applies to both terms in the integrand of (18) due to microscopic

reversibility which is naturally built-in by the presence of T(2) .
To complete the analysis we make a smoothness assumption:

-+-t->- ->-->-
fl(r+~,v,t) ~ fl(r,v,t)

if 1!I'\.()tTg). Thereby, we obtain from (18) the Boltzmann equation

[ddt + ~l . \\)fl(Xl,t) = f
->-

f {
->-->- ->-->-

dV2 db bdE g fl(rl,vi,t)fl(rl,vz,t)

->- ->-

}- fl(xl,t)fl(rl,v2,t) . (20)

15 16

To complete the picture, we obtain from (11) and (16) the dilute

gas entropy functional

dOl

f511 = kNtnN - k dx fl(x,t)lnfl(x,t) . (21)

It is straightforward to showl that d~ 5~il ~ 0 using (20), equality

holding if fl is the Maxwellian distribution. As a final note here,

23
as shown already by Grad, (20) follows as an exact result from (3)

[given (17)] in the limit n ->- 00, R~ ->- 0 such that nR: = 0, nR~ =

constant. In our context this limit implies Tc ->- 0, Tm = constant,

and permits taking T ->-0+ while still capturing a complete collision

and conforming to (19).

If instead of relation (19) we impose T ->- 0, down through Tc'

onto (3) and use (8), (17), then we obtain the Vlasov equation

[i[ + ~l . Vl)fl(Xl,t) =~ fl(xl,t) . J dX2 Vl$12fl(x2,t) ,
(22)

which is completely reversible.



v. DENSEGASANDSIMPLELIQUIDS

V.I. Kinetic Equations

Here nvO <1 and for a general potential the strong inequality

(19) cannot hold. To simplify matters we model the repulsive part

of the potential by a hard-sphere repulsion. The duration of such a

cOllision is Tc = 0 so that an inequality like (19) can be maintained

while taking T ~ 0+. Also in this limit the ternary and higher order

terms in (3) vanish and, from (7), PI = Fl holds exactly.

framework we distinguish several cases.

In this

A. Hard-sphere core, diameter a, no attractive tail potential

The configurations which contribute to binary collisions are

shown in Figure lb. In terms of generic distribution functions, (10)

becomes the exact result

(a ~ ) 2 I ~ I ~ ~

at + vI . VI fl(xl,t) = a dV2 d66.g8(8.g)

{ ~~, ~ ~I ~ ~I ~ ~I
g2(rl,vl,rta8,v2,t)fl(rl,vl,t)fl(rl+a8,v2,t)

~~~ ~ ~~ ~ ~

}- g2(rl,vl,rl-a8,v2,t)fl(rl,vl,t)fl(rl-a8,v2,t) , (23)

where e(x) is the Heaviside function.

The EN = e, which is the overlap function

e = 1
~ ~

if Ir. -r.1 > a1 J
. I

~ ~

IIf r. - r. < a
1 J for any pair i,j

for every i F j

e = 0

17 18

In this case ENlnEN = 0 always, so, interpreting {x~} in (15) to yield

e = 1, when s = I (15) yields

N

ON = e-Y-ITTe->'(Xi,t)
i=l

whereby

WN= e-y-l eTr-e->'(Xi,t)i=l .
(24)

This function is identical in form to the N-particle equilibrium

distribution function for hard-sphere particles in an external field.

In particular it renders

~ ~

f2(xl,x2,t) = g2(rl,r2Inl(t))fl(xl,t)fl(x2,t) (25)

+
J

+

where nl(rl,t) = dVlfl(xl,t) and g2 is that functional of the density

field which reduces to the equilibrium radial distribution function

for the hard-sphere potential if the density nl is constant; g2 has

h h
.

I .. f 24
t e same grap 1ca structure as Its un1 orm-system counterpart except

that each field point is weighted by the appropriate value of the number

density field instead of a constant number density.

Insertion of (25) into (23) yields the kinetic equation of the

revised Enskog theory9

[a ~

)
~ ~

at + VI' VI fl(rl'vl,t) =CE(fl'fl)

2 [
+

[
~ +

=a dV2 d86.g8(8.g)

{
~ +

I + ~I + ~

g2(rl,rl+o8 nl(t))fl(rl,vl,t)fl'(rl+o8,vz,t) -



I

+ +

}- g2(rl,rl-a8 nl(t))fl(rl,vI,t)fl(rl-a6,v2,t) (26)

The only difference between (26) and Enskog's equation lies in the

form of dependence of g2 on density: in the original formulation g2

was treated as a uniform-equilibrium function evaluated at the density

at the point of contact. As far as the linear transport properties

of the one-component hard-sphere fluid are concerned, the revised and

standard Enskog theories are identical in prediction.9 However, the

revised theory appears to be superior when applied to hard-sphere

mixtures; the standard-theory thermodynamic driving force for diffusion

does not exhibit the form expected on phenomenological grounds25 whereas

the driving force of the revised theory does9 (see Section VII).

B. Square-well potential

Any smooth potential can be approximated by a sequence of step

functions with the result that "collisions" occur instantaneously and

only at the discontinuities. The square-well potential

(27)

is the simplest such representation of a real potential. An exact

dynamical equation for the potential (27), analogous to (23), follows

from analysis similar to that above.26 Closure of this equation is

had by setting EN = e which makes g2' as in (25), dependent only upon

19
20

the hard-core repulsion. The square-well kinetic equation is obtained:

where

(a + )
2 f + f + +

at + vI .VI fl(xl,t) = 0 dV2 d66.g6(6.g)

{
+ + + I , +"", + +

.g2(rl,rl+o 8 n)fl(rl,vl,t)fl(rl+o6,vz,t)

+ + +
I

+ +
}- g2(rl,rl-a 6 n)fl(xl,t)fl(rl-a6,v2,t)

+ R2a2 f d~2 f d66.g6(6.g)

{
+ + -

1

+ +" + +
g2(rl,rl+Ro 6 n)fl(rl,vI,t)fl (rl+Ra8,v2,t)

+ + +
1

+ +

}- g2(rl,rl-Ro 8 n)fl(xI,t)fl(rl-Ro8,v2,t)

22

J

+

J
+ + ~

+ R 0 dV2 d66.g6(8.g - r4e:)

{
+ + + I

+ + +
g2(rl,rl-Ro 8 n)fl(rl,vl',t)fl(rl-R08,v2' ,t)

+ _
I

+

}- g2(rl,rl+Ro 8 n)fl(xI,t)fl(rl+Ra6,v2,t)

22
J

+

J

+ ....

+ R 0 dV2 d88'g6(8.g)6(14£ - 8.g)

{
++ _

I
+ ....

g2(rl,rl-Ro 8 n)fl(rl,vi,t)fl(rI-Ro8,vi,t)

-
,

+

}- g2(rl,rl+Ro 8 n)fI(xl,t)fl(rl+Ro8,v2,t) (28)

~, - ~ = 88.+g1 1

cp(r) = 00 r < a

= -e: a < r < Ra

= 0 Ra < r

+ + I +
v" - V = - 8[8.g - .; 8 + 2 ]I I 2 ( .g) + 4e:

+ + I +
vl'- vI = 2 8[8.g - 1(8.g)2 - 4e:1 .

(29)



Though g2 obtained from (25) is continuous for 1;2-;11 > 0, distinc-

tion is made in (28) between points just inside and just outside the

well edge. This distinction is used in the subsequent discussion of

irreversibility. This equation differs formally from that of Davis,

Rice and Sengers (DRS)27 in the pair correlation function g2.
These

authors assume a form of f2 like that of (25), but give g2 an equi-

librium form dependent upon the full square-well potential. Our (28)

does n~t satisfy detailed balance at equilibrium, whereas DRS theory

does.

C. Hard-core repulsion plus smooth attractive tail

In the limit T ~ 0+ we obtain from (3) and (8) in this case the

exact equation

(

a ~

)

a.ptail

at + vI . VI fl(x,t) =J
dx ~
2 ,,~

orl

a
. .--:;-[g2(xl'x2,t)fl (xl,t)]fl (x2,t)

aVl

2

J

~

J

~ ~

+ 0 dV2 d66.ge(6.g)

{
~ ~ ~ +~, ~ ~ ~ ~

g2(rl,vi,rl+o 6,v2,t)fl(rl,vi,t)fl(rl+06,vz,t)

+++ +~ +~ + +

}- g2(rl,vl,rl-o 6,v2,t)fl(rl,vl,t)fl(rl-06,v2,t) .

(30)

N

Recognizing that e = IT e.. may be interpreted as a product
i<j=2 1)

of Boltzmann factors for the hard-sphere potential suggests that a

21 2.

way to generalize the Ansatz WN = eON for more general potentials is

N tdl
to let EN = IT e.. . e such that lne.. ex .p.. .

i<j=2 1) 1) 1)

Choosing again {x~} to correspond to a nonoverlap configuration,

several cases of interest may be distinguished for (15).

1. At low density the mean particle separation is much greater

than the range of the potential, so that lnEN is zero except on

a set of relatively small measure [see discussion above Eq. (19)].

Then (16) is recovered.

2. When the potential has a weak long-range attractive tail,

e.g., the Kac potential, each particle sits in a mean field

produced by all the others which is sensibly the same for each

particle, hence lnEN = O(N). Sincealso ~noN=O(N)

-l-y N -X(xi't)
say ENON = e e1T e

1=1
whichby (15),at best we can

implies g2 given in (25), so that more general a priori factori-

zation does not produce here a more general form of g2.

co 3. When the potential has a short-ranged strong attractive tail,

e.g., a Lennard-Jones type, the lne.. is appreciable only among1)

near neighbors so that lnEN = O(N) and is of order lnDN. Again

-l-y TIN -X(xi,t)
ENDN= e e. e andg2 as givenby (25)follows.1=1



~

At the one-particle level, this closure principle will give the

dense fluid a hard-sphere structure at most, if the potential has a

hard-core repulsion. There is no velocity correlation manifested in

gz in any case. So, using for closure the result (25), we obtain from

(30) in generic-function language the kinetic variational equation18

(

a ~

)

a
~ + vI . VI fl(Xl,t) = ~ fl(xl,t)

aVI

f

~

(

tail

)

~ ~

I

. dr2 Vl$12 nl(r2,t)g2(rl,r2 nl(t))

+ CE(fl,fl) .
(31)

By imposing the Kac limit, $~;il = lim y3V(yr), which can be effected
y~O

equivalently by setting a = 0 in the mean-field-term integral, the

result is obtained

[

a ~

)

a
at + vI . VI fl(Xl,t) = ~ fl(xl,t)

aVI

f

~ ~

. dr2VIV(rI2)nl(r2,t) + CE(fl,fl) .
(32)

In form this equation has the appearance of an Enskog-Vlasov equation

and differs in detail from the equations in ref. [17] only by the

specific form of g2 which appears in CEo

V.2. H-Theorems

Each of the three theories, (26), (28), (31) is accompanied

by the same entropy functional, namely, from (11) and (24)

23

S~en = kinel+y - k f dx fl(x,t)in'fl(x,t)

f

~ ~ ~

+ k dr nl(r,t)inal(r,t)

where

~ >. (X t)
al(r,t) = e ' fl(x,t)

24

(33)

(34)

is a functional of fI' This form was obtained by Resibois.4a Similarly,

each has an H-theorem which will be demonstrated explictly.

we have

a Sden~I f

at
-l-y a l+y I

ke ~ e - k dxat (infl + 1)

+ k J d-;[-k nl)inal + k f d-; nl it inal .

In all three theories (26), (28), and (31) the relation holds

a ~

J

~ ~~

at nl(r,t)= -v' dv vfl(r,v,t)

and

-l-y a I+y
f
dN-l0 a,.!;- ->.(xi,t)= -e - e + X - - I I e

at at i=2

[f

N-I N ->'(Xi,t)

J

-l

x d xGfT e
i=2

-l-y a I+y
f

a ....

so thatke ~ e + k dr nl(r,t)arina(r,t) = o.

a
at ina(r,t)

From (33)

(35)

(36)

(38)

whereasfrom (24) and (33) therefollow

a l+y f N IT ->'(Xi,t) a ->'(Xl,t)
(37)ate =N dx0. e ate1=2



The equations (26), (28), and (31) are abbreviated

afl +

:f1t + vl.Vlfi = Mfl + C(fl,fl) (39)

where M = 0 for (26), (28), and yields the mean field term in (31).

The C(fl,fl) is the collision integral.

The third term of (35) becomes, using (36) and rearranging

f

+

f

+- + +

k dr dv[-v.V(fltna) + flv.vtnaJ . (40)

The first term can be transformed to a surface integral which vanishes

by boundary condition assumptions.
+ +

Now a(r,t) depends on r only through e,

+

Vltna(rl,t) =
(N-l) f d-:2~ll'J(rI2-cr)f dN-2reTIpi

f

N 1 N
d - reTTp.

i=2 1
+ +
r -r

~12= +1 +2 . This simplifiesto
Irl - r21

+

f

+ + ++
1

Vltna(rl,t) = dr2~12o(r12-cr)nl(r2,t)g2(~I,r2n)

+ -A'
where p. = f dv. e 1

1 1
and

(41)

where g2(-:1'-:2In) is the same g2 in (25).

(40) becomes

Hence the last term of

f

+

f

+ + + +
1k dXlfl(xl,t)vl. dr2?12o(r12-cr)nl(r2,t)g2(rl,r2n) .

(42)

Recently, Grmela and Garcia-Colin3 gave a prescription for constructing

25 26

a term like (42) for the SET.

Substitute (39) into the second term of (35). The K J dx ;'Vfl(~nfI+I) =

k J dx ~.V(fltnfl) which vanishes via boundary condition assumptions.

Also -k J dx Mfl(tnfl + 1) = O. Thus it remains to evaluate

-k f dx C(fl,fl)tnfl' since J dx C(fl,fl) = 0 because there is no

mass transfer at collision. The approach we take, different than

that of Resibois4 and first described in an earlier report,28 is

particularly enlightening in relation to discussion of irreversible

thermodynamics. We break the hard-sphere collision term [RHS of (26)J

into two pieces, denoted

:I: 1 2

f

+

f

+ + +

CE =2cr dV2 d66.g[8(6.g):I: 8(-a.g)J x

+ +
I

+ +, + +,
[g2(rl,rl+cr6 n)fl(rl,vl,t)fl(rl+cr8,v2,t)

++
1

++ + +

- g2(rl,rl-cran)fl(rl,vl,t)fl(rl-cr6,v2,t)J.
(43)

Similar forms for the standard Enskog collision term have been termed

"reversible" and "irreversible" by Gross and Wisnivesky. 29

+ +

Then aSe/at = -k J dXlcEtnfl is transformed to
+

aSe 1 2

f

+

f

+ + +

:f1t =+ 2 kcr dXldv2 d6a.g[8(a.g):I: 8(-a.g)J

++
1

++ + +

g2(rl,rl-cr6 n)fl(rl,vl,t)fl(rl-a8,v2,t)

+ +

fl(rl'vl't)
x tn

fI(;l,tl,t)

(44)



....

by the changes of variable: (vl,v2)"" (vi,vl) such that dvidvl =
d ,."" ,."" " " d . .""""

dVldv2 an v'g = -vog', v -v and rop prImes. SWItch vI ++ v2'
....

d -8 and change rl variable to obtain the alternate form.
+

as-e l k 2
J J

.....
:at: = 2 a dXldv2 da8.g[6(80g)! 8(-80g)]

....
g2(rl,rl-a8In)fl(rl,vl,t)fl(rl-a8,v2,t)

....
fl(rl-a8,v2,t)x in

fl(;1-a8'~z,t)

which is averaged with (44) to yield

+

aSe 1 2

J J
....

~ =4 ka dXldv2 d660g[8(80g) i 6(-80g)]

I ....

g2(rl,rl-a8 n)fl(rl,vl,t)fl(rl-a8,v2,t)

....
fl (xl' t) fl (rl- a8,v2' t)x in ....

fl(rl,vi,t)fl(rl-a6,vl,t)

(45)

We want to point out that only velocity independence of g2 has been

used to this point. Thus these manipulations are valid also for the

SET, and it is worth noting that by setting g2 = 1 and imposing
..........

smoothness on fl -- fl(r-a6,v,t) = fl(r,v,t) -- we find that
+ -

a/at Sc = 0 and a/at Sc becomes precisely of the form of the entropy

production function given by Boltzmann theory.

Now apply x in ~ ~ x - Y to the integrand, where x = fl(xl,t) x
....

fl(rl-a8,v2,t) and y = fl(rl,vi,t)fl(rl-a8,vl,t), to obtain

27 28

+
aSe 1 2

f f

....

irt:~4 ka dXldv2 d8aog[8(80g)! 6(-80g)J

I

........

g2(rl,rl-a8 n) [fl(xl,t)fl(rl-a8,v2,t)
....

- fl(rl,vi,t)fl(rl-a8,vz,t)J (46)

Transforming away primes as befo£e yields
+

aSe 1 2

f f

....

irt:~4 ka dXldv2 d880g[e(aog)! 8(-&og)J

I

........

[g2(rl,rl-a8 n)fl(xl,t)fl(rl-a8,v2,t)

I

........

- g2(rl,rl+a8 n)fl(xl,t)fl(rl+a8,v2,t)J

which after rearranging becomes

as!c 1 2
J J

....

irt:~4 ka dXldv2 d880g6(80g)

{
I

........

g2(rl'rCa8 ~)fl (xl,t)fl (rCa8,v2,t) [I! lJ

I
}- g2(rl'rl+a8 n)fl(xl't)fl(rl+a8,v2,t)[1 !lJ

(47)
as-

So atC ~ 0, which demonstrates that the "irreversible" part of CE'

C~, has irreversible character similar to the Boltzmann collision
as+

integral 0 Rewriting atC as
as+

atC L4 ka2 J dXldx2 J d8aog8(Oog)

Ig2(rl,r2 n)fl (xl,t)fl (x2,t)

........

x [o(r2-rl+a8) - o(r2-rl-a8)]



or

+
asc 1 2 f f + + +
ar-.?2"ka dXldx2 dMogo(r2-rl+a&)

+ +
Ig2(rl,r2 n)fl(xl,t)fl(x2,t)

1 f + + +
1= 2" k dXldx2 f120g g2(rl,r2 n)

fl(Xl,t)fl(X2,t)o(r12-a)

1 f + + + +
1= 2" k dXldx2(~12ov2 + ~2lovl)g2(rl'r2 n)

fl(Xl,t)fl(X2,t)o(r12-a)

f + + +
Ik dxldx2 ~2lovl g2(rl,r2 n)

fl(Xl,t)fl(X2,t)o(r12-a) . (48)

No use was made of the functional dependence of g2 on n to arrive at

(48) so that a result of similarformholds for the SET as well.

Though the sign of (48) is indeterminate, this quantity is the negative

a den.
of (42). Thuswe haveshownfor (26) and(31) thatat Sl ~ 0,wIth

equality holding when

0 0+ + 0+ + 0+ +
fl (xl,t)fl (rl-a&,v2,t) = fl (rl'vi,t)fl (rl-a6,v2,t) (49)

+ + + 4b
for all rl' vI' v2 and 60g ~ O. Resibois has shown that (49) holds

also for 80g ~ O. This condition (49) is not sufficient to make CE =0

but it does make C~ = 0, as can be seen from (43) by changing 6 to -8

in the terms governed by e(-8og). Taking Resibois' approach4b we find

0 + +
that the Fourier transform of lnfl(r,v,t) has the form

29

++ 0++ ++ ++
~(k,v,t) = F[lnfl(r,v,t)] = a(k,t) + ~(k,v,t)&+-k,O

whereby we find f~ has the form

0 + + + +
fl(r,v,t)= R(r,t)V(v,t) 0

Using (51) we can determine the summational invariants of C~o

Consider

I = f d~l ~(~l)C~

where ~(~l) is any function, vector or scalar, of ~l' Using (43)

and performing the usual transformations obtain

1 2 f + + f + + + +

I = 2" a dVldv2 d860ge(60g)[~(vi) - ~(vl)] x

f + + +

dr2 fl(xl,t)fl(x2,t)g2(rl,r2In)

+ + + +

X [o(r2-rl+a6) + o(r2-rl-a6)]

Switching ~l ++ ~2 and 6 + -6 yields

1 2 f + +

J
+ + + +

I = 2" a dVldv2 d66oge(80g)[~(v2) - ~(vz)]

J

+ + + + + + + Idr2 fl(rl,v2,t)fl(r2,vl,t)g2(rl,r2 n)

+ + + +

X [o(r2-rl+a6) + o(r2-rl-a6)] .

Use (51)and add (53,a,b) to obtain

30

(50)

(51)

(52)

(53a)

(53b)

0 1 2 f + + f + + + + + +

I = 4 a dVldv2 d660ge(6og)[~(vi) + ~(v2) - ~(vl) - ~(v2)]

f + 0 0 + +
1dr2 fl(xl,t)fl(xz,t)g2(rl,rZ n)

+ + + +

X [o(r2-rl+a8) + o(r2-rl-a6)] . (54)



Clearly 10 vanishes for ~ = 1, ;, v2. Thus inf~ is a linear combina-

0 -+- -+- + 2

tion of these only, of the general form infl = a(r,t) + b(t)v + c(t)v .

That is, f~ has a gaussian form. The usual definitions of density,

f
-+-. +

f
+-+-

n = dv fl' of average veloc1ty, u = dv vfl' and of temperature,
3

f
-+- 1 -+-+ 2 f

" -+-

b d d h "f" f2 nkT = dv z(v-u) fl' 1X a, ,c an ren er t e speC1 1C orms

(2 k )-3/2 -v2/2kT . "b
"

hR =n =constant, V = uTe at equ1l1r1um. Note t at

C~ alone cannot determine R. For this, c; comes into play. 30 Also,

there is no inconsistency here between the vanishing of ~ s~en and

the nonvanishingof c;. Equation(49) merelycharacterizesthe most

general condition under which a~ s~en = O. This does not mean that

f~ is achieved and then relaxation proceeds around that form. A

similar conclusion was reached by Grad31 in regard to the Boltzmann

theory where the analog of our f~ is the local Maxwellian. Put

h
a
S
den O . b ff' . d. "

anot er way, at 1 = 1S a necessary ut not su 1C1ent con 1t1on

for equilibrium. As a last note, (51) precludes the precise local

Maxwellian form which is used as a zeroth approximation to fl in

the asymptotic expansion employed in the Chapman-Enskog development.8

To complete the picture for (28), we analyze the remainder term

by term, denoted C2' C3' C4' respectively. By manipulation similar

to that for -k f dXl CE infl above, we obtain

I

122

1 I

-+-

I

-+- -+-

k dxlc4infl=+ Z kR a dXl dV2 d88.g6(6.g)

-+- -+--+- _

I

-+- +

8(14'£ - 8.g)g2(rl,rl+Ra 6 n)fl (xl,t)fl (rl+Ra6,v2,t)

+ -+-

fl(xl,t)fl(rl+Ra8,v2,t)

x in -+- + -+- + .

fl(rl,vi,t)fl(rl+Ra6,v~,t)

(55)

31 31

Also

I

22

I I I

-+- -+-

- k dXlcz!nfl=- kR a dXl dV2 d66.g6(6.g)

x infl(Xl,t){g2(~I'~I+Ra-6In)fl(~I,tl,t)

-+ -+- +
Ix fl(rl+Ra8'V2,t) - g2(rl,rl-Ra 6 n)

-+- +

}x fl(xl,t)fl(rl-Ra8,v2,t)

transforms to

I

22
I

-+-

I

+

- k dXlcz!nfl=- kR a dXldV2 d68.g

{

-+- -+--+- _

I

-+- -+-

x 6(6.g -l4£)g2(rl,rl+Ra 6 n)fl (rl+Ra6,v 2,t)

+ -+- -+- -+- -+- +

1x infl (rl'vl' ,t) - 8(6.g)g2(rl,rl-Ra 8 n)

-+- +

}X fl (xl' t) fl (rl-Ra6,v 2' t)infl (xl' t)
(56)

" " . -+- -+ +-+-

under the change of var1ables 1n the f1rst term (v l'v 2) + (vI ,v 2)

+ + -+- ++....

such that 8.g"dvldv2 = 6. gdv 1dv 2 and by use of (29).

- k I dXlc~nfl transforms to

Similarly,

f

22
f

-+-

I

+

- k dXlc~nfl = - kR a dXldV2 d68.g

{

+ -+- + +

Ix 6(8.g)g2(rl,rl-Ra 8 n)fl(xl,t)

+ + + -+-

x fl(rl-Ra8,v2,t)lnfl(rl,vl,t)

+ 1:r;:-. + + -"
I- 6(8.g - Pt£jg2(rl,rl+Ra u n)fl (xl,t)

+ +

}x fl(rl+Ra8,v2,t)lnfl(xl,t) .

(57)



+ +

Add (56) and (57), exchange vI ,-",v2' change 6 + -6 and rearrange to

get

J
I 22

f
+

f
+- k dXI (C2+C3).lnfl = "2 kR a dXldV2 d660g

{

+ ++ +
1

+ +

X 8(60g)g2(rl,rl-Ra 6 n)fl(xI,t)fl(rl-Ra6,v2,t)

\

+ +
fl(rl-Ra6,v2,t)fl(xI,t)

x .In ... ... ... ....
fl(rl-Ra6,vz,t)fl(rl,vy,t)

+ ++ _ I + +

- 8(60g -/4E)g2(rl,rl+Ra 6 n)fl (x1,t)fl (r1+Ra6,v2,t)

+ +

f1(x1,t)f1 (rl+Ra6,v2,t)

}
x .In .

f (+ +", ) f (+ .. +", )I rl,vI ,t I rl+Rau,v2 ,t
(58)

Apply dn ~ L x - Y to the integrands of the sum of (55) and (58) toy

get ,

J
I 22

J

+

J
...

- k dXI(C2+C3+c4).lnfl~"2 kR a dXldV2 d660g

{
+ TA7 + + + - Ix 8(60g)8(v4£ - 60g)g2(rl'Tl+Ra 6 n)

+ + + + + +

X [fl(xI,t)fl(rl+Ra6,v2,t) - fl(rl,vi,t)fl(rl+Ra6,v2,t)]

+ + + +
1

+ +

+ 8(60g)g2(rl,rl-Ra (} n)[fl (xI,t)fl(rl-Ra6,v2,t)

- fl(tl'~l,t)fl(~I-Ra6'~2,t)]

+~ ++ -
,

+...
+ 6(60g - v4£)g2(rl,rl+Ra 6 n) [f1 (xI,t)fl (r1+Ra(},v2,t)

+ + + +

}- fl(r1,vl' ,t)fl(rl+Ra6,vz' ,t)] . (59)

32 33

Transform primed velocities as before to obtain

J
122 f

+

f
+

- k dX1(C2+C3+c4).lnfl L~ kR a dXldv2 d660g

{
+ +...+ _

Ix 8(60g)8(14E-(}og)[g2(rl,rl+Ra 6 n)fl(xI,t)

+ + + + +
1x fl(rl+Ra6,v2,t) - g2(rl,rl-Ra (} n)

+ +

X fl(xI,t)fl(rl-Ra6,v2,t)

+ + + + +
1+ [8(60g) - 8(60g -/4E')]g2(rl'rl-Ra 6 n)

+ +

X fl(xI,t)fl(rl-Ra6,v2,t)

+ + + + - I+ [8(60g -14E) - 8(60g) ]g2(rl ,rl +Ra 6 n)

+ +

}x fl(xI,t)fl (rl+Ra6,v2,t)

122
f

+

f + + r=..+
= 1" kR a dXldv2 dMog8(60g)8(y4£ -uog)

+ +

X fl(xl,t)fl(rl-Ra6,v2,t)

++ +
1

++ -
,x [g2(rl,rl-Ra 6 n) - g2(rl,rl-Ra 6 n)] (60)

Because g2 from (25) is continuous at ~2-~1 = Ra8, the RHSof (60)

vanishes identically. Note that only at this point have we used the

form of g2 from (25) except for lack of velocity dependence.
In

particular, had we used the DRS Ansatz for g2' (60) would be indeter-

minate since the bracket becomes g2(~I'~I-Ra+a;n)[1 - e8£]. With the
aSden

vanishing of the RHS of (60) we have established that ~ ~ 0 for

(28).



VI. TWO-PARTICLE HARD-SPHERE KINETIC THEORY

The attractiveness of the one-particle dense fluid kinetic

theories is their mathematical tractability, particularly for

eliciting transport coefficient formulae. However, it is clear that

the dense fluid state cannot be characterized in general by just the

one-particle distribution function since the dominant contributions

to the fluxes of momentum and energy are described in terms of the

two-particle distribution function. Herein we discuss a new two-

particle hard-sphere kinetic theory.

Two-particle hard-sphere dynamics can also be developed from

(2) for s = 2, wherein

(2)
F2(xl,x2,t+T) - T-T F2(xl,x2,t)

= n f dX3 {T~~)F3(X3,t) - T~;)F3(X3,t)}

2
f {

I (4) 4 (3) 4
+ n dX3dx4 2 T-T F4(x ,t) - T-T F4(x ,t)

1 (2) 4
}+ 2 T_1: F4(x ,t) +....

(61)

Change xl' x2 as above (4) to obtain for the LHS of (61)

(1) (2) (1)
T+T F2(xl,x2,t+1:) - T-T TT F2(xl,x2,t)

(62a)

and similarly for the first term on the RHS of (61)

J {

(3) (1) (2) (I).
}n dX3 T-T TT F3(xI,x2,x3,t) - T-T TT F3(xl,x2,x3,t)

(62b)

34 35

Nonvanishing contributions to the integrand occur for those configu-

rations of particle 3 which lead to collision with 1 or 2 within time

T. Similarly the four-body-term integrand does not vanish only if

particles 3 and 4 can collide with 1 and 2 within time T. Hence this

term and higher ones vanish in the limit T -+ 0+. Because collisions

between 1 and 2 do not contribute to (62b) it may be rewritten

J

.

{

(3) (I)

}n dX3 T-T TT F3(xI,x2,x3,t) - F3(xl,x2,x3,t) .
(62b ')

Again, since interaction between 1 and 3 or 2 and'3 only is admissible

in the limit T -+0+, (62b') reduces to a form similar to the mfS of

(23). Hence we obtain the exact two-particle equation:

2
f f

-+ -+

{
-+ -+, -+ -+, -+ -+,

ncr dV3 d66-g13e(6-g13) F3(rl,vl,r2,v2,rl+6cr,v3,t)

-+-+-+-+-+

}- F3(rl,vl,r2,v2,rl-cr6,v3,t)

2
f

-+

f

-+ -+

{

-+"", -+ "", -+ -+,

+ ncr dV3 d66-g236(6-g23) F3(rl,vl,r2,v2,r2+cr6,v3,t)

-+-+-+-+-+ -+

}- F3(rl,vl,r2,v2,r2-cr6,v3,t)

_CI -+-+-+ 2-+ 211. CI
- at F2(rl,vI,r2,v2,t) + I vo-V.F 2 - I -+ - ~ F2 .

i=l 1 1 i=l Clri ClVi

, (63)

In (63) we note that if 1-;1- -;21 < 2cr then particle 3 cannot occupy

all positions denoted by 6 on the precollisional hemisphere, but only

-1 rtl - 121
thoseoutsidethe cone whoseangle 6c is givenby ec =cos ~

This excluded volume is manifest implicitly in F3'



For closure we return to (14), set EN = 0 and obtain

-l-y..,-,- -A (xi ,xJ',t)W=0e lie
N .~.
. lrJ

(64)

This WN has the identical form of a canonical equilibrium N-particle

distribution function for a potential that is the sum of one body

and two body terms, with a hard-sphere two-body core but otherwise

arbitrary form. Thus we have32

3 f2(xl,x2,t)f2(xl,x3,t)f2(x2,x3,t)
f3(x ,t)= f.(x--tH.(L.tH.(L.t) Y3(xl,x2,x3,t)

(65)

where Y3 is the same functional of f2 and fl as its equilibrium

counterpart: Y3 has a formally exact cluster expansion of the form

Y3(X3,t) = 1 + I dX4 fl(X4,t)h2(Xl,x4,t)

x h2(X2,x4,t)h2(X3,x4,t) + ... , (66)

fZ(xl,xz,t)

where h2(xl,xZ,t) = fl(xl,t)fl(X2,t) - 1. We note that, though the

equilibrium h;q(;l';Z) must go to zero in order to insure thermody-
->- ->-

namic stability as Irl - rzl ->- 00, the nonequilibriumfunctiondoes

not a priori have a similar spatial cluster property and the expansion

(66) may not converge. Clearly it manifests the possibility of long

range velocity correlations. We also note that (65) by itself may

be regarded as a means of defining Y3' as Livingston and CurtisslO

point out. The closure principle provides an explicit form for this

function, whereas the latter authors set Y3 = 1, which is the Kirkwood

Superposition Approximation (KSA). It is worth noting that the form
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(65) is not peculiar to the hard-sphere potential, but is consistent

with any form of two-body potential.

Combining (8) and (63) (in generic function language) with (65)

we obtain the two-particle kinetic equation

[

a 2 Z alb a )">('::"t + L V.oV. - L -:-:r 0 -:;:- fz(xl,x2,t)
O~ i=l 1 1 i=l ari aVi

z

I I

+ ->-

=a dV3 d88og3l6(8og3l)x

{
+"", ->- +.. + +,

fl(rl,vl,t)fl(xz,t)fl(rl+o8,v3,t)gZ(rl,vl,xz,t)

+ ->-,+"', ->-...
x gZ(rl,vl,rl+o8,v3,t)g2(xZ,rl+o8,v3,t)

-> + ->-

x Y3(rl,vi,xz,rl+o8,v3,t)

+ +

- fl (Xl,t)fl(XZ,t)fl (rl-08,v3,t)gZ(Xl,xz,t)

+ + +...

x gZ(xl,rl-08,v3,t)g2(x2,rl-o6,v3,t)

+ +

}x Y3(xl,xZ,rl-08,v3,t)

2

I f

->- ...

+ a dV3 d88.g3Z6(8og3Z)x

{
->-, +"", ->- "",

fl(Xl,t)fl(rZ,vz.t)fl(rZ+o6,v3,t)gZ(xl,rZ,vz,t)

+ ->- ->-,+ +
X gZ(xl,rz+o8,v3,t)gZ(r2,vZ,rz+o6,v3,t)

+, ->- .. ->-, )x Y3(xl,r2,v2,rZ+ou,v3,t

->- ....

- fl (Xl,t)fl (xz,t)fl(rZ-08,v3,t)gZ(Xl,xz,t)

+ + +->-

x gZ(xl,rz-06,v3,t)gZ(xz,rz-o8,v3,t)

+ ->-

}x Y3(xl,x2,rZ-06,v3,t) .

(67)



From (11) and (64) we obtain the two-particle entropy

den D l+y 1 f 0

S2 = k~ne - 2 k dXldx2 f2(xl,x2,t)~nf2(xl,x2,t)

+ }k f dXldx2 f2(xl,x2,t)£'na(xl.x2,t) (68)

2A(xl,x2,t) '. ,
where a2(xl,x2,t) = e f2(xl,x2,t). We wrIte the kInetIc

equation (67) in the abbreviated form

f
a 2 21t. a

)at +.r Vi. Vi - ,r . -:;- f2(xl'x2,t)
1=1 1=1 ari aVi
+ - + -

= C13 + C13 + C23 + C23 (69)

where for example

! 1 2 f
""

f
....

C13 =20 dV3 d~~.g3l[6(6.g3l)! 6(-8.g3l)J

{
+, """", +

}f3(rl,vl,x2,rl+a6,v3,t) - f3(xl,x2,rl-06,v3,t).
(70)

For convenience we choose to use f3 instead of carrying all the

factors shown in (67). Take the LHS of (69) to be at equilibrium,
. eq eq

,

""""

Iat WhICh f2(xl'x2,t) = fl (Vl)fl (V2)g2( r2-rl)'

/ / -..
dVl dV2 Vz on this LHS to get

Impose

equil LHS = n2(kTV2g2 + g2VZ~) . (71)

For the RHS we find

J
+ -

dVl (C13 + C13) = 0 (72a)
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and by the usual transformations

J

""

f +""! l2

J

""

J

+

f
""

dVl dV2 v2C23 = "20 dVl dV2 dV3

I
+

d66.g32(vZ - v2)[6(6.g32) ! 6(-6.g32)J

....
f3(xl,x2,r2-06,v3,t) .

Interchange ~2 ++ ~3' impose the equilibrium form f3(xl,xZ,x3)
eq eq eq .............

fl (vl)fl (v2)fl (v3)g3(rl,rZ,r3) to obtain

f d~l

J d~l

f
-

dV2 v2C23 = 0

f + 23 f
............

dV2 v2CZ3 = 0 n d86g3(rl,r2,r2-a8).

Combine (71) and (72) to get

kTllZg2(1-;2--;11) + g2V2~

2

f
....

= nO d66g3(rl,r2,r2-a6)
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(72b)

(72c)

(73)

which is the two-particle member of the YBGhierarchy19 for the hard-

sphere potential, but in (73) we know already the form of g3 from (65)

and (66):

, I
........

g3(rl,rZ,r2-o6) = gz( r2-rl )g2(a)gz(lr2-a6,rl')

....
x Y3(rl,rZ,rz-a8) .

This result shows the importance of the reversible part of the collision

operator in two-particle kinetic theory for defining the form of equilibrium



integro-differential equations.

similar role in one-particle kinetic theory.

Wisnivesky30 had investigated a
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VII. CONNECTIONS WITH IRREVERSIBLE THERMODYNAMICS

From the Boltzmann equation (20) and the entropy functional

(21) it is straightforward33

density s, such that s~il =

to obtain the equation for the entropy

f
-+ -+

dr s(r,t),

a -+ -+-+ j -+ -+

at s(r,t) + V . [su(r,t) + sCr,t)] = a(r,t) (74)

-+ . . -+

f
-+ -+ -+ .

where u 1S the local average veloc1ty, Js = -k dv (v-u)flinfl 1S
-+

the entropy flux and the entropy production density o(r,t) is given

by

-+

f

-+

a(r,t) = -k dv inflCB(fl,fl) ~ 0 (75)

where CB is the Boltzmann collision integral. Clearly

a dil
J

-+ -+

at Sl = dr o(r,t) (76)

since the flux term of (74) vanishes when integrated, by boundary

condition assumptions.

. . h f d 33
1S stra1g t orwar .

Generalization of these formulae to mixtures

By applying the Chapman-Enskog development8 to

the mixture version of (20) an expansion of fl. to linear order in
-+ 1

gradients of ni,u,T is obtained whereby an explicit expression for

Ta, Ta = L J.X., is obtained from the mixture version of (75). From
j J J

To can be identified forces, Xj' (gradients) and conjugate fluxes, Jj ,

and demonstration made of the Onsager reciprocal relations for the

kinetic coefficients L.. in the linear relations J. = L L. .X..

1J 1 j 1J J

embodies the sole kinetic theoretic support .for the phenomenological

This



theory of linear irreversible processes.

We note that the Boltzmann theory is readily amenable to a purely

local formulation since the Boltzmann collision term is purely local.

In the dense fluid, collisions are not spatially localized and so the

transport, which is dominated by collisional transfer, embodies non-

local effects- So too the production of entropy is not localized and

indeed the H-theorems demonstrated earlier are global results. It is an

open question to what degree the program outlined above can be carried

through for the dense fluid. A fundamental difficulty, in general, is

In our discussion here, atten-defining a consistent local entropy density.
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tion is limited to the pure hard-sphere theory for which some partial results

have been described elsewhere.3,4,9 A number of new features arise when

the attractive tail is included and so discussion of this more general

case will be made in a separate article.34

Utilizing results in the development between Eqs. (35) and (48)

we obtain

a Sden a
I

-+ -+

at I = at dr s(r,t)

I

-+

I

-+

I

-+ +

= dr (ac+ ao)+ k dr'V- dv vfl(r,v,t)

+ k l+y
J

+ +

X !n[fl(r,v,t)/a(r,t)]-N I/,ne dr'V-nu

where

+ k l+y

J

+ .....

s(r,t) = ~(r,t)l/,ne - k dv fl(r,v,t)l/,n[fl/a]

reduces to the dilute-gas form when low density is imposed,

+

f

+Q ++
ac(r,t) = -k dv ~nfl(r,v,t)CE(fl,fl)

(77)

(77a)

(77b)
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and

+

f

-+ -+

f

+ + +-+
,aO(rl,t)= k dv flv- dr2 }l12(HrI2-a)nl(r2,t)g2(rl,r2 n).

(77c)

Now the last term on the RHS of (77) can be written

- I d-; 'V - (s~ + j s)
(77d)

where

+ +

I

+ + ++

Js(r,t) = -k dv (v-u)fl(r,v,t)lnIfl/a]. (77e)

+
Using the definition of u, (77e) reduces to the dilute gas form below (74).

From (77) and (77d) we can extract the local equation

a + -+ j - +

at s(r,t) + 'V - (su + s) = ac + ac + aO
(78)

where the decomposition

+

f

-+ ++ +

a~ = -k dv[!nfl(r,v,t)]CE(fl,fl)
(79)

has been employed. Clearly we have

a :t

(It Sc f

+ +

dr a~

and the H-theorem proved earlier showed that

f
d; a- > 0

c -

and

f

+ +

dr (ac + aO) ~ 0 .

Using (45) it is straightforward to show that



- +

°c(r,t) ~ 0 (80)

holds at each point, however we also obtain

+ 1

I
+ ++ ++

°c + 00 ~2 k dr2 ~12 0 [u(r2,t) + u(rl,t)]

+ + ++
1

+

X nl(rl,t)nl(r2,t)g2(rl'r2n)cS(r12-a) .

(81)

Though the RHS is indeterminate in sign, we note that f d;l RHS = O.

The quantity a; + 00 therefore appears to manifest a combination of

entropy production and entropy flux. Explicit demonstration of this

feature is readily achieved for linear perturbations from equilibrium

for which [superscript (1) denotes linear regime]

f~l) = f~O)[l + ~]
(82)

where f~O) is a local Maxwellian and ~ is linear in gradients of ~,T

as described by the Chapman-Enskog development~ We find

+ + + 1+ d +

g2(rl'r2In) '" g2(r12;n(rl'.t)) + "2 r2l 0 Vln dn g2(r12;n(rl,t))

when the full g2 given by (25) is expanded in n about ;1 and so

a~l)(;l,t) = - ~ 1Ta3k~ oVl[n2g2(a)] , (83)

equality holding through second order in gradients.

from the representation for a~ given by (45) we find

Similarl~ starting

a(l)+(;l,t)c
21T 3 2 + 2 3 2- "3 g2(a)a kn VI .u + 3" 1Ta kn g2(a)

0 0

x
{

=+ =+ 5 k (n')' )
2

}bO Vu : Vu - "2" iii al -Y.,f- (84)

0
~ 1 + + T 1 +++ ++ . .

where Vu = 2 [Vu + (Vu) ] - 3 V'U I and I is the unlt dyadlc.
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To achieve (84), the expansion of ~ in Sonine pOl~10mials8

00

J
+ + VT (r) m + + 2

~ = - (v-u) 0 T r~l arS3/2[2kT (v-u)

00

has been used.
We note that bO > 0 and al < 0 so that by combining

(83), (84) we find

a~l)+ + a~l) = -V 0 j(l)(;,t) + a'

+(1) 21T 3 2 + .

where j = + "3 a kn g2(a)u, and a' ~ 0 follows from (84). Nowa'

is not a complete entropy-production density in the sense of irreversible

thermodynamics33 since it does not manifest the leading orders of colli-

sional transport of energy and momentum and in particular omits bulk

viscosity altogether; on the other hand, we show below that 0(1)- can bec

regarded as such. This means that the local entropy equation in the

linear regime does not take the same form in the RET as that found in

Boltzmann theory, (74). For RET we find in the linear regime

~ s(l)(; t) + Vo[s(l)~ + j(l) + j(l)] = 0(1)- + a'at' s c (85)

The terms j(l) and a' have no analogin the Boltzmanntheory,but

do vanish in the low density limit. Furthermore, in the linear form of

(74), the j~l) =i jT,35 where!T is the dilute-gasheat flux. A similar

result cannot be identified within (85), though therein j(l) is so relateds

to the streamingpart of the heat flux. The collisional partof the heat

flux cannotbe so accountedby eitherJ(l) or a'.

To fully demonstrate the features of the 0(1)- necessitates workingc

with a mixture of L species for which the formal results for kinetic

equations, entropy functional and II-theorem go through in an obvious

way. In this case, 0- takes the formc



-1 L 2

J

++

J

+ + +

a = 4 k L a.. dVldv2 d8aog[6(8og) - 6(-8og)]
c i,j=l 1J

++
I

++ + +
X g.. (r l ,r l -a..8 {n})f. (r l ,v l ,t)f. (r l -a. .8,v 2,t)

1J 1J 1 J 1J
+ + + +

f. (r l ,v l ,t)f. (r l -a. .8,v 2,t)
x In 1 J 1J+ + + + .

fi(rl,vi,t)fj(rl-aij8,v2,t)

(86)

+ + + +

To achieve (86) requires symmetry gij(rl,r2) =gji(r2,rl) which is

exhibited by the RET and also the standard Enskog theory g. .'s. For1J

linear perturbations from equilibrium, wherein f~l) = f~O)[l + ~.]1 1 1
+

and ~i is linear in gradients of ni' u, T, Eq. (86) takes the form:

a(l)-
c

L 2
J

++

J

+ +

= k L a. .Y.. dVldv2 d68og6(aog)
i,j=l 1J 1J

(0) + + (0) + + + +
X fi (rl'vl,t)fj (rl,v2,t)~i (rl,vl,t)

++ ++ ++ ++

X [~i(rl,vl,t) + ~j(rl,v2,t) - ~i(rl,vi,t) - ~j(rl,v2,t)]

k L 4
J

++

f
+ +

+"2 L a..Y.. dVldv2 d66og6(aog)
i,j=l 1J 1J

(0) +... (0)'" + (0)'" +
X fi (rl,vl,t)fj (rl,v2,t)8oVlnfj (rl,v2,t)8.V

(0)'" ...
fj (rl,v2,t)

x In (0)
fj (~1'~2,t)

(86 ')

where Y.. is the contact value of the equilibrium g.. and expansion1J 1J

is made of all functions about ~l to linear order in gradients. The
. I . 8

convent10na expans10n

... ~ + + ~ + -t
~. = -A. 0 VlnT - B. : Vu + H.V 0 u - l D. 0 a

1 1 1 1 R.=l 1R. R.
(87)
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is made. The second term of 0(1)- can be evaluated explicitly sincec

m. ]3/2

f~O) (;,;,t) = ni (~,t) [21TkT(~ ,t)]
1

{

mi + + + 2

}x exp - + [v - u(r ,t)]
2kT(r , t)

and the first abbreviated by using the bracket notation of Chapman

and cowling:8

0(1) - = kn2{~ ,~} + ! ~ a~.Y.. v21rllijk.1i
(

1lT)
2

c 3 l 1J 1J
n.n. -

. . 1
1 J m. . T

1, J = 1J

8
I.
L 4 V21Tl.1.. kT ~+ - 1J + +15 a. .Y. .n .n . Vu.Vu

i,'j=11J 1J 1 J T .

4 L 4 121T~..kf
+ "9 l ai/ijnin. .;J (Vo~)2.. . 1

J
1,J=

(88)

Herem.. =m. + m. and ~.. is the reduced mass. The last three terms
1) 1) 1)

are related respectively to the collisional contributions to heat

flux, off-diagonal momentum flux (shear viscosity), and diagonal momen-

turn flux (bulk viscosity). Using the linearized integral equation

which is satisfied by ~26 it is straightforward to show that the mass

flux can be expressed as

n + 2 ++ 2 L + +

- - Jm. = n VlnT0 {A,D.} + n L dR. 0 {DR.,D.}, (89)
nimi 1 1 R.=l 1

the heat flux including collisional contribution is

2++ 2 L + + +

JT = -kTn {A,A} 0 VlnT - kTn l uR.' {DR.,A}R.=l

4 L 4 121T~~3T- _
3 L a..¥..n.n. 1) VT. . 1J 1J 1 ) m. . '
1,)=1 1)

(90)



and the momentum flux, including collision contributions, is

L
++ 4 \' 4 +++p = - _9 L a. .Y. .n.n. 121T!l..kT V.u I

1) 1) 1 ) 1)
i )'-1

8'L-4 ..:.- _
15 L ai ' Y. . n. n. 121T!l.. kT Vu

) 1) 1 ) 1J
i,j=l

L+ ++ ++ 2 ++ +- kTnV'u : { B, B} - kTn {H,H} I V.u (91)

Collecting (88) - (91) we find

(1)- 1 L n + it +a =-- 1 . VinT- k Y.- J . . d. - - : Vu. (92)c T T . n.m. m1 1 T
i=ll 1

This is precisely the form to be gotten by using the Boltzmann

equation. Though La. = 0 and L1m. = ~it is clear that not both. 1 . 1
1 1

conjugate mass fluxes and forces, represented in the combination

kT L~ 1m. . d., are linearly dependent.n.m. 1 11 1
Choosing the forces36 to be

L-l

-d., we eliminate dL = - L d. and obtain
1 i=l 1

Ta (1)-
c 1 ++ +

- T . VinT - p : Vu

L-l

(
+ +

) -t
- kT L ~ Jm. - ~ JmL . a. .

i=l nimi 1 nLIDL 1
(93)

Let the independent forces be -VinT, -V;, -d., i = 1...L-l, then the1

conjugate fluxes are obtained
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lIDi ( n+ n+ ) 2

~
kT - J - - J = -n kT VinT

nimi mi nLIDL mL
L-l

]+ R.~l dR. . {i\ -DR.,i\ -Di} ,
(95)

++ :t
{A, Di - UL}

+0+ ++ .
and Jp = p as glven by (91).

to (94), (95):

We note the following with regard

1. The coefficients of d. in (94) and of VinT in (95) for i = jJ

are equal because {A,D} = {O,A}, therefore these kinetic coeffi-
. h '

b
'

0
.. 33

C1ents ex 1 1t nsager rec1proc1ty.

2.
The coefficients of dj in (95) for i = k and of dk for i = j

are equal and also exhibit Onsager reciprocity.

3. The analyses and results from Eq. (85) through (95) hold for

the revised Enskog theory, which is characterized by the mixture

analog of (25) and (26). By virtue of the developments made in

ref. [3], these also hold in form for the standard Enskog theory,
+ +

wherein gij(rl,r2) has the form proper to uniform equilibriuID

but with densities evaluated at (i\ + -:2)/2. Thus an entropy

production density of the form (93) permits identification of

forces and conjugate fluxes in the SET framework and the relevant

kinetic coefficients exhibit Onsager reciprocity as described in

items 1 an~ 2. In the context of (93), (94) and (95), the only

difference between RET and SET lies in the form of d..1

former we have showed26

For the1 + 2 ++ 4 L 4 121T!li.k3T
T = JT = - n kT{A,A} . VinT - '! L a. .Y. .n.n. J VT1J 1J 1 J ID..

. . 1 1JL-l 1,J =
2 L d + + +- n kT R. . {DR.- DL,A} . (94)R.=l



n'

{
IV )d~ET = : kT ( ~i T

m.
- -2: VP

pkT

4 L 3 . mi
)}-2!. I a..Y..n. ~m

3 j =1 IJ IJ J ij+ Vi [1 +

where ~i is the chemical potential per particle

. ~SET 1 4n ~ 3To obtun d. ,replace kT (V~1') T by Vinn. + _3 l. cr. .Y. .Vn. +
1 1 j =1 1J 1J JL

+ 23n I cr~.n.VY.. which differs from it (unless all diameters
j =1 1J J 1J

are equal) in second and higher order in density.9 We note with

van Beijeren and Ernst9 that d~ET conforms to the form expected1

on the basis of phenomenological treatments 33 whereas 'd?ET does1

not. This feature manifests itself, for example, in description

4.

of the diffusion coefficient in the critical region of a phase
. . 37

separat10n p01nt.

(I)_SET (l)_RET
Because CJ ~ cr , it is not possible to construct anc c

invariant linear transformation 33from the RET to SET description.

Thus it is not possible to use reciprocity of the RET kinetic

coefficients as a basis within transformation theory to investi-

gate the presence of reciprocity in the SET, as attempted in [9].

We leave open the question of whether an invariant linear trans-

formation can be applied to the SET to effect internal rearrange-

ment of forces to agree with those of the RET. If such is possible,

it is almost certain that the conjugate fluxes will no more each

be identifiable with a single conventional transport flux, as

depicted in (94) and (95). Furthermore, the maintenance of

reciprocity must be checked, since not every transformation will
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.
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preserve rec1proc y. (1) SET
In any case, the cr - would notc

exhibit the explicit form given by phenomenological irreversible

(I)_RETthermodynamics, whereas the cr . does.(' .

5. The RET entropy equation (85) does not conform to the result (74),

so that clearly even the RET, which must be regarded as the

superior theory, is at odds with certain phenomenological results.

Such phenomenological results that are of a form not satisfied

by the RET, however, may themselves bear an oversimplified struc-

ture -- adequate for rare gases but not for dense fluids -- rather

than bear clear evidence of RET deficiencies. In particular, the

terms crl and r(l) appearing in (85) vanish in the low density

limit. The disparity between the SET and phenomenology, on the

other hand, appears to be of a more fundamental sort.

6. That both the RET and SET should exhibit reciprocity is not

surprising since the main ingredient of the phenomenon, micro-

scopic reversibility, 39 is built into both theories at the outset

in the scattering cross section in the collision integrals.

7. Because of the reciprocity condition, Ta(l)- achieves a minimumc

f d d
" 40

or stea y-state con Itl0ns.



VIII. DISCUSSION

The closure principle we have employed yields more information

than is used to obtain a closed kinetic equation. . For example, in

(23) only g2 for two particles in "precollision" contact is needed.
+

The result (25) is obtained, however, for completely arbitrary rl and
+

r2' This might suggest that the method overcharacterizes the ensemble.

However, it is the entropy functionals that reflect the full character

of the ensembles. Note these developments could have been carried

out as well in the framework of the grand ensemble. We emphasize

that the H-theorems we have demonstrated are global and not local

properties of the theories. In this light, the Boltzmann theory is

seen as a degenerate case which readily permits a local interpretation

as well.

Closely related to the problem of closure is the problem of

chaos propagation. Expression of closure does not have a unique form

(cf. 17, 25, 65) but in all cases neglect of some higher-order cor-

relations is a common characteristic. The viability of a closed

kinetic equation hinges upon the propagation of this form, i.e., of

continued irrelevance of correlations at this higher order to the

description at hand. It is not at all clear that this requires

destruction of these higher-order correlations, a possibility advocated

13
by Mayer, for example. Thus, in a physical sense, closure of a

description may be a practical matter and chaos propagation a manifesta-

tion of the irrelevance of other degrees of freedom to the description.
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Mathematically there remains the problem of what constitutes

a proper framework to model these phenomena. The dilute gas case

has received the greatest attention.23,41 These analyses show the

possibility of persistence in time of g2 = 1 [cf. 17], almost every-

where. More generally, that (25) cannot be maintained indefinitely

(and that the theory is thus not an exact one for hard spheres) is

clear. Discrepancies in form and in numerical values of the transport

coefficients derived from the theory compared to results of more exact

approaches are evidence of this.

Clearly, one could generate a hierarchy of kinetic theories with

our approach by successively se~ting s = 2, 3, 4, ... . One would

expect a stage to be reached beyond which the added dynamics and

statistics becomes irrelevant to the questions one normally asks of

a kinetic theory. The two-particle kinetic theory we have introduced

offers the ingredients which appear to be minimal for a closed theory,

at least as evidenced by the Boltzmann theory. These are an entropy

functional, a kinetic equation which yields correct equilibrium forms,

and containment of fluxes within the level of description. The kinetic

equation (67) appears to be Markovian due to the appearance of one time

instant. However, the three-particle correlation function appearing

in the theory depends in a non-local way on the two-particle spatial

and velocity distribution and through velocity correlations "memory

effects" may be buH tin. This two-particle theory appears to be

unique in terms of the structure of the three-particle correlation



function, Y3 (66), which does not obviously show the cluster property

assumed by Green. 42 Such an assumption is not obviously necessary

in order for our formalism and the approximation that we propose to

be meaningful.
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FIGURE CAPTIONS

Precollision configurations for the Boltzmann equation.

sphere limit.

Geometry of precollision configurations in the hard-
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