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Onsager reciprocity. The standard theory is in disagreement, however, with
the results of phenomenological irreversible thermodynamics for the con-

ABSTRACT
ventional forms of fluxes and forces.

By an extension to the dense-fluid regime of a method first
exploited by Lewis to obtain the Boltzmann equation, kinetic equations
for one- and two-particle classical distribution functions are obtained.
For the hard-sphere potential, the kinetic equation of the revised
Enskog theory is obtained at the one-particle level, and a generaliza-
tion of the theory of Livingston and Curtiss is obtained at the two-
particle level. For a pair potential with hard-sphere core plus smooth
attractive tail, a new mean-field kinetic equation is obtained on the
one-particle level, 1In the Kac-tail limit the equation takes the form
of an Enskog-Vlasov equation. The method, which is based upon the
maximization of entropy, yields an explicit entropy functional in each
case, Explicit demonstration of an H-theorem is made for the one-
particle theories in a novel way that illustrates the roles of the
reversible and irreversible part of the hard-sphere piece of the -
collision integral, The latter part leads to the classical form of
entropy-production density as described by linear irreversible thermo-
dynamics and so possesses ﬁany of the features of the Boltzmann collision
integral. The former part introduces new elements into the entropy
production term, It is noted that the kinetic coefficients of the
revised Enskog theory exhibit Onsager reciprocity in the linear regime,
Upon extension to the standard Enskog theory, in the linear regime, we
construct an entropy production density and identify conjugate fluxes

and forces and also kinetic coefficients which are shown to exhibit



I. INTRODUCTION

The great advances made by Boltzmannl and Ensk0g2 toward con-
structing a kinetic theory of dilute and dense classical fluids,
respectively, were the products of brilliant intuition. Boltzmann's
explicit construction of an entropy functional and demonstration of
its monotonic increase in time (H-theorem) is a landmark in the program
of relating microscopic dynamics and irreversible processes. Thus,
aside from their value in describing hydrodynamic and transport
processes, we have come to regard kinetic equations as a bridge between
the microscopic domain and the realm of macroscopic irreversible
processes,

Enskog's equation represents a pgeneralization of the Boltzmann
equation to the dense-fluid regime for the hard-sphere potential
model. Construction of an explicit entropy functional has not yet
been done for the original Enskog theory (herein referred to as stan-
dard Enskog theory -- SET) though a recent result3 provides a pres-
cription for constructing an entropy functional. An explicit entropy
functional and irreversibility have been demonstrated for a revised
version (RET].4

Investigations over the last three and a half decades have sought
to elucidate the principles and assumptions inherent in these theories
in order to establish systematic techniques for the construction of more
general irreversible kinetic equations that are appropriate to dense

gases and liquids. A logical étarting point for the description of

classical many-body dynamics has proven to be the BBGKY hierarchy,5
which connects the evolution of an s-particle distribution function,
F

c)!

to the distribution function for s+l particles, F3+1‘ Both
objects are unknown, To determine FS exactly, therefore, requires
solution of the full many-body problem, Performance of this exceed-
ingly difficult task would yield a huge amount of superfluous infor-
mation, inasmuch as the physical quantities of greatest interest can
be expressed in terms of the lowest-order distribution functions,
typically s = 1,2. The approach is taken, therefore, to develop a
closed set of approximate equations for the evolution of these lowest-
order distribution functions.

Several schools of thought have arisen regarding methods that can
be used to close the hierarchy. Most efforts_have been aimed at the
one-particle equation; not nearly as much effort has been devoted to
the two-particle equation though it is the two-particle distribution
function which contains the information of paramount interest to a
description of the dense-fluid state.

Closure in a manner that yields irreversibility seems to require
expression of Es in terms of Ft’ s > t, possibly in a non-local way
in general. Begoliubov6 first introduced a scheme, which has been
developed and expanded by many workers,? to describe the evolution of
F in terms of the dynamics of distinct groups of two particles (the

Boltzmann term), three particles (the Choh-Uhlenbeck term), etc. The

density of the fluid is regarded as the determinant of how many terms



one should include. The main assumption in these approaches is in
regard to the correlations among the particles of each group at some
distant time in the past. Closure is had by assuming no correlation
among particles in the far past when the members of a group are far
apart and mot interacting, Then Fs’ s = 2,3,.,.. is factorized into

a product of Fl's at some time in the past, Thereby indirect dynamical
correlations among members of a group through interaction with the
remaining fluid are neglected. With the exception of the theory of
Klimontovich [ref, 7c], theories of this kind have yet to be demon-
strated as irreversible, or, to have an entropy functional, Moreover,
they are not tractable at liquid densities,

Now Enskog's theory8 extends only as far as the Boltzmann term
in group dymamics but accommodates spatial correlation between the
two colliding particles via the two-particle spatial correlation
function of the dense uniform hard-sphere fluid at equilibrium. Van
Beijeren and Ernst9 have generalized this kinetic equation by using
instead the correlation function appropriate to a nonuniform fluid at
equilibrium. Resibois4 has shown that this RET does indeed have an
entropy functional and an H-theorem.

A natural basis for incorporation of the fluid structure, in
general, is had by recourse to the two-particle equation. A Markovian
kinetic equation is obtainedl0 when the Kirkwood superposition approxi-
mationll (KSA) is applied to F, for closure. Alternatives to this have

12

been considered ~ but neither an entropy functional nor irreversibility

have been exhibited by such approaches.

Quite apart from the kinetic theory, the problem of the rela-
tionship of higher-order distribution functions to given ones of low
order has been investigated from several points of view. Mayerl3
has characterized the ensemble which exhibits maximum entropy subject
to a prescribed set of low-order distribution functions. An alternate
analysis to this end was given subsequently by McLachlan and Harris14
using Lagrange undetermined multipliers., A maximum "entropy" principle
was used by Ramanathan, Dawson and Kruskal15 to derive the KSA and
higher-order generalizations,

Lew1316 employed maximization of entropy subject to constraints
to effect closure in a derivation of the Boltzmann equation. Here we
extend Lewis' method into a form suitable to application to dense
fluids., In particular, we recover the kinetic equation,9 entropy
functional and H-theorem’ of the RET assuming a hard-sphere repulsive
interparticle potential, By generalizing to a potential with hard-
sphere core plus smooth attractive tail we obtain a mean-field kinetic
equation, which is suited to liquid dynamics, such that the hard-sphere
fluid structure serves as a reference structure for the attractive tail
which appears linearly in the mean-field term. We show that this theory
also has an entropy functional and an H-theorem. When the tail strength
is set to zero, the RET is recovered, and when the Kac limit is taken
on the tail, an equation of the Enskog-Vlasov type17 is obtained.

(A number of other nice formal properties and applications of this
theory to liquid transport are described elsewhere.l ) A new one-

particle kinetic equation for the square-well potential is also obtained



and an H-theorem is proven for it,

The method is also used to obtain a closed equation for Fy for
the hard-sphere potential, This new equation goes beyond that of
Livingston and Curtiss'? who applied the KSA to F; for closure., The
new equation contains within F3 a three-particle phase-space correla-
tion function which manifests the possibility of long-range velocity
correlations. The reversible part of this kinetic equation is shown
to yield at equilibrium the correct two-particle member of the Yvon,
Born, Green hierarchy.lg An explicit form for the entropy functional
is also obtained,

The maximum-entropy approach has great formal mathematical power, yet is

conceptually simple. It is a compact systematic technique for deriving kinetic

equations associated with entropy functionals as well as a formally
closed BBGKY hierarchy. Moreover, its basic principle, the maximization
of entropy, conceptually unifies equilibrium and nonequilibrium statist-
ical mechanics. The existence of a physical mechanism for closure is
not addressed in this approach. Rather, the method provides a mathe-
matical framework whose relevance to the physical problem is best judged
a posteriori,

In Section II the basic dynamical equation for the one-particle
theories is derived and in Section III the statistical procedure for
closure is set up. For completeness, a derivation of the Boltzmann
equation is given in Section IV, following Lewis,l6 to illustrate the
role of time smoothing. In Section V one-particle kinetic equations

for dense fluids are derived and H-theorems proven, and in Section VI

a two-particle kinetic theory for the hard-sphere fluid is discussed,

In Section VII properties of the RET hard-sphere theory in relation

to irreversible thermodynamics are developed. A local entropy pro-
duction density is constructed and forces and conjugate fluxes are
identified. The kinetic coefficients are shown to exhibit Onsager
reciprocity. (These formal results are shown to hold also for the

SET, although the forces and conjugate fluxes do not both take the form
expected on phenomenological grounds. Our general conclusion is that
the RET is superior to the SET in regard to its relation to irreversible
thermodynamics, although we differ in some specifics with van Beijeren

and Ernst.g) A summarizing discussion follows in the last section.



II. THE DYNAMICAL EQUATION

The BBGKY hierarchy for the specific distribution functions Fe»

in the thermodynamic limit and for pair interparticle interaction, iss
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A formal solution of (1) in powers of n was obtained by Lewis:20
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two parameters at our disposal, n and T.
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The integrands on the RHS do not vanish only when the particle con-

figurations are such that the multiparticle streaming operators induce

__bi S <. :
) ¢ij' n =g x = (r,p) and the F_ are normalized

interaction among the particles.

Replace X, by S(l)xl in (3), which is an identity in Xy The

F,sWx

LHS of (3) becomes equal to f dr 1,t+r); the integrand

of which is equal to {v v +§~JF (S{ ) t+r)., Now the LHS of (3)

1’

can be written
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T
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The binary collision term on the RHS can be similarly transformed to

n [ @, {rO1Or, 0000 - Begpnl . ©

=T 1.'

Similar forms can be obtained for the ternary and higher order terms
on the RHS of (3), but inasmuch as any high order term is O(nTﬂRiéj
times the preceding term6 (where R¢ is the range of the interparticle
interaction and E is the mean relative speed of colliding particles)
we will not be interested in the ternary and higher order terms in the
sequel because we choose n or T such that these terms will be very

small, Combining (3) and (5) we obtain the result
. T
Flxp,t) = Fi(x;,t) + O[f;] , (7)

where Ty [nﬁRiﬁ)”l. Therefore the time-smoothed and unsmoothed

one-particle distribution functions are approximately equal if T << Tne

10



As we will see subsequently, the role of time smoothing is to establish
a time scale which captures a complete collision, As utilized here
time smoothing does not play a role per se in introducing irreversi-
bility,

The dynamical equation of interest in the one-particle theories
is comprised of (4), (6) and (7). In anticipation of later results
we assume here that T << L and also define the correlation function

Fz(xl ’xzntJ

g,(X,,x,,t) = (8)
2 1272 Fl(xl,t)Fl(xz,t)
and introduce the notation
(2)..(1) =
T_T TT Fz(xl,xz,t) = FZ[xi,xi,t) (9)

where xj, x} are related to x,, x, through the interparticle potential.

Combining (4), (6), (7), (8) and (9) we obtain the leading order result

] -+
[53-+ vyt V1]F1(xl,t] =
n
= I dxz{gz(xi,xi,t)Fl(xi,t)Fl(xé,t] -

gz(xl,xz,t)Fl{xl,t]Fl(xz,t)} . (10)

ITI, THE CLOSURE PRINCIPLE

To simplify the formulae in this and following sections we

replace the specific functions L8 by generic functions f5 = nsFS.

The macroscopic fluid properties can be expressed in terms of f, and

f2’21 and, in particular, knowledge of fl is sufficient to describe

the state of a dilute gas. Generally, then, we assume that some

low-order function fs is known at time t. Closure can be hadu’14
by maximizing the statistical entropy functional 5,22
N
Gou ok J N wnnym), an
where f d™x W, = 1 and T is a measure on the phase space whose value

N

is not pertinent to the following development so will be suppresssed,
subject to constraints of symmetry and that all known information (fs)

is reproduced precisely by contraction of W. The latter means

s N! N-s N
£L(,0) = Jd x ) (12)

N-s)1

Formally, we express this problem via the use of Lagrange multipliers14

maximize the functional
= S[D ky|1l dN E,.D +
I[DN} - [ N] + Ky - X N'N
+ k [ d5x A(xs,t)fs(xs,t)

= fﬁ?éTT'k J dx X(xs,t]ENnN(xN,t} ; (13)

Here for convenience we have split HN into a product of factors,

N
EN = EN[;N] which is assumed to have a known form, and DN = DN(x Jt)

12



13.

which is not known in form and is the function to be varied in seeking
the maximum of S. The Lagrange multiplier function A is symmetric in
all X;, as ave all fs, so the last term in (13) may be written

in the symmetric form

N

-k ) z'

N
I d'x }\(xil,...,xis,t]ﬁ D
11...15 =1

N'N

where the prime means no indices equal.
The operations 31/3y = 0 and 51/[6X[xg,t)] = 0 yield the normali-
zation conditions 1 = [ aNx Wy and (12) respectively. The functional

variation with respect to DN yields

e -kENGg) [1 + L () + £nDN(xg,t) vy
SDN(xo,t)

N,

+ )

S |

Provided that E (Fy) # 0, setting §1/[aD(x),t)] = 0 yields

A[xﬂil"."xois’ti] . (14)

: N
. 2N N _ '
EnbN(rO) + EnDN(XU,T) Finyis 1 o= Y

1peeedg =1

l(xuil,...,XUis,t} .

(15)

IV. DILUTE GAS AND THE BOLTZMANN EQUATION

Here nv, << 1 where Vo v volume of a particle, Set s =1 and

EN = 1 and from (15) obtain

N -)\(Xi,t

N -1-y ) SND
WN{x ,t) = e [Te =N ] fl{xi,t) (16)
i=1 i=1

so that, (through (8) in generic function language), obtain
gz(xl,xz,t] =1 . (17)

In terms of the generic functions, (10) now takes the form

[ﬁa? k- i vl]fl(xl't) =
%I dx,y () (], 0 ) (x3,t) = £ (x), )€ (x5, )} . (18)

The configurations for which the integrand of (18) does not

. : (2
vanish permit a collision to occur upon backward streaming by 1( )
after free streaming of both particles by T(]) [ef (9)]. This

-+ -+ -+ +*

situation is typified in Figure la, where ﬁh = ?2 =T, 8= Vy-V

¥ -+ -+ 7 -+ -+ -+ > .
and Rr = Rg-rgT. Given Tis Vi Vo, T then r, must be so that:

(i) if ﬁ -E > 0, then RG 5_R¢, where R¢ is the

0
range of the potential

2.1/2
(ii) if Ry+g < 0, then Ry ;{R%-KO-E 342 i

-+ -+
i v g > 1 FRiW
either RT 5_R¢ or RT g 0 and R_r "

; 2
The volume of this region of contributing ;2'5 is of order nTgR¢

14
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(neglecting end caps). As already mentioned the ternary and higher
order collision terms will be negligible if

T << T = — .

ngﬂR¢

Now regions A and C correspond to configurations which produce incom-
plete collisions in time T and their total volume is 2 ﬂRi, which may
be neglected if T . E? ol s the duration of a collision. The
physical domain of applicability of our ultimate result is then char-

acterized by the relation
T, oS8 T8 T 6 (19)

To the same order of approximation, based upon the first inequality

of (19), we may write

g
J d?z = [ db bde J dz
B 0

where db bde is the differential cross section for scattering which
applies to both terms in the integrand of (18) due to microscoﬁic
reversibility which is naturally built-in by the presence of T(ZJ.

To complete the analysis we make a smoothness assumption:
£,8,9,8) = £,(F,V,0)

if |K|10{r§]_ Thereby, we obtain from (18) the Boltzmann equation

a3 -+ 5 -+ -+
[3t i Vl]fl(xl,t] = J dvz J db bde g{fl(r LLE)f (rl,v 1)

s fl{xl,t)f1(¥1,¥2,t)} . (20

To complete the picture, we obtain from (11) and (16) the dilute

gas entropy functional

dil
9

It is straightforward to show that 5t S

]

= kNEnN - k I dx fl[x,t)fnfl(x,t]

dil

(21)

> 0 using (20), equality

holding if fl is the Maxwellian distribution. As a final note here,

as shown already by Grad,23 (20) follows as an exact result from (3)

[given (17)] in the limit n » o,

constant, In our context this limit implies L M. 0, T

R, + 0 such that nR

¢

3
¢

2

= 0, nR, =

¢

= constant,

and permits taking T - 0% while still capturing a complete collision

and conforming to (19).

If instead of relation (19) we impose T + 0, down through Tes

onto (3) and use (8), (17), then we obtain the Vlasov equation

which is completely reversible.

3 > ] 3
+ v, » VIf (x,,t) = = £ (x,,t) J dx
[ﬁt 1 1{711 e 171

2 YiPppfptKpetd »

(22)
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V. DENSE GAS AND SIMPLE LIQUIDS

V.1. Kinetic Equations

Here nv, < 1 and for a general potential the strong inequality
(19) cannot hold. To simplify matters we model the repulsive part
of the potential by a hard-sphere repulsion. The duration of such a
collision is T, = 0 so that an inequality like (19) can be maintained
while taking T + 0%, Also in this limit the ternary and higher order

terms in (3) vanish and, from (7), ?} = F, holds exactly. In this

1

framework we distinguish several cases.

A. Hard-sphere core, diameter ¢, no attractive tail potential
The configurations which contribute to binary collisions are
shown in Figure lb. In terms of generic distribution functions, (10)

becomes the exact result
[;t- + ?1 . Vl]fl (o t] = o? I d¢2 J d66-26(6-g)
{gz('El,é’i,?lma,?-z,t)fl (?1,17; JEXE (?lma,?i,t}
-gz(?l,?l,?l-oa,ﬁz,t)fl(?l,Gl,t)fl(¥l-aa,$z,t}}, (23)

where O(x) is the Heaviside function.

The EN = 0, which is the overlap function

6]

(N -?j| >0  for every i # j

B=40 if !;i wityl] BF for any pair i,j .

J

In this case ENﬁﬂEN = 0 always, so, interpreting {xg} in (15) to yield

0 =1, when s =1 (15) yields

N o -(xy,t
A I 1.t)
i=1
whereby
anpe N o oa(xg,t
Wy = e Vo e ) (24)
i=1

This function is identical in form to the N-particle equilibrium
distribution function for hard-sphere particles in an external field.

In particular it renders
+ &>
£5(x,5%08) = 8, (T, T, [n) (1D)£, (x,, ) (x,,t) (25)

where n1{¥1,t} = f d?lfl{xl,t) and g, is that functional of the density
field which reduces to the equilibrium radial distribution function
for the hard-sphere potential if the density n is constant; g, has
the same graphical structure as its uniform-system counterpart24 except
that each field point is weighted by the appropriate value of the number
density field instead of a constant number density.

Insertion of (25) into (23) yields the kinetic equation of the

revised Enskog theory9

L. 1 Y
3t * V1 1 l(rl,vl,t) £ CE(fl,fl)

m

o’ I av, ] 46826 (8+8)

-+ > 74 *
{g2(¥l,¥l+oa[n1(t))fltrl,vi,t3f1(r1+03,V5,t) -

18



- gz{?l,?l-ualn,(tnfl(?'1.?1,05(?1-06.32.0} . (26)

The only difference between (26) and Enskog's equation lies in the

form of dependence of g, on density: in the original formulation g,
was treated as a uniform-equilibrium function evaluated at the density
at the point of contact, As far as the linear transport properties

of the one-component hard-sphere fluid are concerned, the revised and

standard Enskog theories are identical in prediction.g

However, the

revised theory appears to be superior when applied to hard-sphere

mixtures; the standard-theory thermodynamic driving force for diffusion

does not exhibit the form expected on phenomenological grounds25 whereas

the driving force of the revised theory doesg (see Section VII),

B. Square-well potential

Any smooth potential can be approximated by a sequence of step

functions with the result that "collisions'" occur instantaneously and

only at the discontinuities, The square-well potential

¢(r)=w r<cg
= - 0 <r < Ro
=0 Ro < r

is the simplest such representation of a real potential.

dynamical equation for the potential (27), analogous to (23), follows

from analysis similar to that above.26

had by setting EN

(27)

An exact

Closure of this equation is

= @ which makes 8y, as in (25), dependent only upon

19

the hard-core repulsion, The square-well kinetic equation is obtained:

where

[{-’E % ?1 . ?l)fltxl,t) - o? J dv, J d68-30(8+8)
{gz{ﬂjlw*sln)fl(?l}i,t)fl (,+8,V3,t)
; 32(?1,?l-o*sln)fl(xl,t)flﬁl-oejz,t]}
+ R%? J v, J 6826 (8+2)
- -+ -+ -+
{32(;1,;1+Rc G[n}fl[r],vg,t}fl(r1+R06,v5,t)
. g2(¥1,¥1-na*6!n)fl{xl,t] £ (?1-Rc8,32,t)}
22 > -+ >
+ R0 J dv, J dB6B-go (8-g - Vde)
-+ -+
{gz{;l,?1-Rc+6|n]fl(;l,vg',t]fl(;l-ﬂoﬁ,vg‘,t)
= g2(¥l,¥l+no'e|n)fl (xl,t)fl(?lmoa,‘ﬁz,t)}
+ R%2 J &, J 408+30 (8- 3)0 (VAT - 8°3)
{gzﬁl,?l-no'a|n)fl(¥l,${,t)fl(I-'l-Roﬁ,ﬁé,t)

+  + - -+ >
- gy(r),r +Ro 6|n}f1{x1,t)f1(rl+R06,v2,t}} , (28)

1 2 (B=g)" + 4c
m_ ¥ =lg8g -2 29
M=V B 000 Nigigy® - el )
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Though g, obtained from (25) is continuous for |;2-;1| > o, distinc-
tion is made in (28) between points just inside and just outside the
well edge. This distinction is used in the subsequent discussion of
irreversibility, This equation differs formally from that of Davis,

Rice and Sengers [DRS]27 in the pair correlation function gye These
authors assume a form of f2 like that of (25), but give g, an equi-

librium form dependent upon the full square-well potential. Our (28)
does ndt satisfy detailed balance at equilibrium, whereas DRS theory

does.

C. Hard-core repulsion plus smooth attractive tail
In the limit T+ 0% we obtain from (3) and (8) in this case the

exact equation

it

] + >
[5? iy Vl]fl{x,t} = J dx2 o2
LY |

3
i it lxy amga £, Ungs OV1E (i)

+ 02 J d?z I 6620 (8+g)
{gz[?l,?i,¥l+c*3,¢5,t}fl{?l,ﬁi,t)fl{?l+oe,¢5,t)
ENCRA R ARSI R AR AR R0
(30)

N
Recognizing that @ = [ | may be interpreted as a product

0.,
i<j=2

of Boltzmann factors for the hard-sphere potential suggests that a

way to generalize the Ansatz WN = GDN for more general potentials is

N .
. = e tail
to let Ey iijlz ®j 0O such that Eneij ¢ij E

" : N
Choosing again {xO} to correspond to a nonoverlap configuration,

several cases of interest may be distinguished for (15).

1. At low density the mean particle separation is much greater
than the range of the potential, so that £HEN is zero except on
a set of relatively small measure [see discussion above Eq. (19)].

Then (16) is recovered.

2. When the potential has a weak long-range attractive tail,
e.g., the Kac potential, each particle sits in a mean field

produced by all the others which is sensibly the same for each

particle, hence £nEN = O0O(N). Since also EnDN = 0(N)
-1-y N -A(Xi,t]
by (15), at best we can say ENDN =e 0T Te which
i=1

implies ) given in (25), so that more general a priori factori-

zation does not produce here a more general form of g,.

3, When the potential has a short-ranged strong attractive tail,
e.g., a Lennard-Jones type, the Lneij is appreciable only among

near neighbors so that £nEN = 0(N) and is of order £HDN. Again

-A(x4,t)

N
iy e .
ENDN =e" Vo l:l e and g, as given by (25) follows,
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At the one-particle level, this closure principle will give the S?en = kfl‘lehY -k j dx fl(x,tjﬂﬂ'fl(x,t)
dense fluid a hard-sphere structure at most, if the potential has a N N N
+ k I dr nI(r,t}£nal(r,t) (33)
hard-core repulsion. There is no velocity correlation manifested in
g in any case. So, using for closure the result (25), we obtain from where
- . . . R— I
(30) in generic-function language the kinetic variational equation al[?,t) - ex(x’t)fl(x,t] (34)
a > _ 9 . . A : oL da L
T Vl fl(xl,t} = g:~ fl{xl,t) is a functional of fl' This form was obtained by Resibois. Similarly,
Y1
. tail N 5 each has an H-theorem which will be demonstrated explictly. From (33)
o | dr, |V.¢ n (r,,t)g,(r ,r,|n (t))
211712 142 22 ;
we have
' Cﬁ(fl’fl] ) S 9 _.den 1-y 3 1+y af1
_ 3 'a—t-sl = ke 'a"f‘e —dex—gf'—(tﬂfl +]}
By imposing the Kac limit, ¢12 = lim y'V(yr), which can be effected
y+0 + k J d?lg%-nl]inal + k I dr n ;%-Enal. (35)
equivalently by setting o = 0 in the mean-field-term integral, the
result is obtained In all three theories (26), (28), and (31) the relation holds
9 LV, « ¥ |f0x,t) = 2 £ (x,t O n (F,t) = -V« | dv VE (F,V,t (36)
L TR | 1}E1(xg00) = 53; 1(x1’ ) gz-nl[r,t] = - v vf (r,v, )
’ J d¥2v1V(r12)“1(;2’t} + Cp(f,£)) . (32) whereas from (24) and (33) there follow
N_ A(xi,t) 3 -A(xp,t)
In form this equation has the appearance of an Enskog-Vlasov equation g% e1+Y =N J aNxe [T e 1 g%-e b (37)
i=2 3
and differs in detail from the equations in ref, [17] only by the
and
specific form of g, which appears in C_.
2 E 5 N -A(xj,t)
s 1 N-1 “A (x4,
g%-fna{r,t] L g% eV 4 J d™ 7 x0 ! L e %
1=
N ox(x:,t)q-1
V.2. H-Theorems " [J dN—1x§TﬁT"e i ] —
i=2
Each of the three theories, (26), (28), (31) is accompanied 5
- ot k] B
so that ke 1<y g%-e1+Y + k I dr nl(r,t] Ei—ﬂna(r,t) = 0,

by the same entropy functional, namely, from (11) and (24)
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The equations (26), (28), and (31) are abbreviated

of
1 -+
wE Tl OME R OE) (39)

where M = 0 for (26), (28), and yields the mean field term in (31).
The C(fl,fl) is the collision integral.

The third term of (35) becomes, using (36) and rearranging
k f dr J AV[-V-V(f,Lna) + £ VeVena] . (40)

The first term can be transformed to a surface integral which vanishes

by boundary condition assumptions. Now a(;,t} depends on T only through 0,

. N
(N-1) I df 2,8 (x) ,-0) I i zre’]_ri=2 oy

Mo TT
i=2 i

g
Vlina(rl,t)

ki LY
where p. = f dv. e ' and £, = . N . This simplifies to
1 1 1'1-1'2|

vltnaﬁl,:) = I d?ze”a(rlz-o)nl [;z,t]gz{;l,;zh} 41)

where 32(;1';2|") is the same g, in (25). Hence the last term of

(40) becomes

-+ -+ >
k J dxlfl(xl,t};l . J d;z?lzﬁtrlz-a]nl(rz,t]gQ{rl,r2|n] .
(42)

Recently, Grmela and Garcia—Colin3 gave a prescription for constructing
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a term like (42) for the SET.
Substitute (39) into the second term of (35). The K I dx $‘Vf1{2nf1+1} =
k I dx ;-V{flfnfl] which vanishes via boundary condition assumptions.
Also -k f dx Mfl(ﬂnfl + 1) = 0, Thus it remains to evaluate
-k f dx C(fl,fl}ﬂnfl, since f dx C(fl,fl} = 0 because there is no
mass transfer at collision. The approach we take, different than
that of Resibois4 and first described in an earlier report,28 is
particularly enlightening in relation to discussion of irreversible
thermodynamics. We break the hard-sphere collision term [RHS of (26)]

into two pieces, denoted
cé = %02 I dv, J d68-g[6(8+g) * 0(-8+g)] x
+ > + - + *
[gz(rl,r1+cﬁ|n)fl(rl,vi,t}fl[rlﬁcﬁ,vi,t]

- g2(¥l,?1-03|n)f1(?’l,Gl,t)fI(?l-os,”\Fz,t)] . (43)

Similar forms for the standard Enskog collision term have been termed

"reversible'" and "irreversible" by Gross and Wisnivesky.29
+
Then BSé/Et = -k f dXICE£“f1 is transformed to
+
BSE 1 2 -+ -+ -+, -+
i % i-kc dxldv2 d6B-g[B(B+g) * 0(-8-g)]

> » +> > -+ -+
gz[rl,r]-aﬁln}fl[rl,vl,t)fl(rl-uﬁ,vz,t)

+ >
(v ¥qt)
2y el (44)

£,(F),V],0)
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by the changes of variable: (Gl,ﬁé) +—(¢i,¥5) such that d;id? =

d¢1d¢2 and B-E = -8-g', 8> -8 and drop primes. Switch ;l v,

2
¢ + -8 and change ;] variable to obtain the alternate form
*
aSC 1 2 -+ B -+, B3
=t = 7 ko I dx dv, J d88+g[08(8°g) *+ 0(-8-8)]
+ - + + -+
gz(rl,r1-06|n)fl(rl,vl,t]fl(rl-cﬁ,vz,t)
+ -+
f (r,-08,v,,t)
x Ln ._1__}1__:_2..__
fl{rl-oﬂ,vé,t]
which is averaged with (44) to yield
B > s -
e z-ko’ I dxldv2 I d88-g[6(8-g) * B(-8+g)]
+ - + > -+ -+
gz{rl,rl-cﬁln]fl(rl,vl,t}fl(rl-cﬁ,vz,t)
-+ -+
fo(x,,t)f, (r,-06,v,,t)
O i i 2 (45)

£,(F), V], f (F,-08,73,t)

We want to point out that only velocity independence of £, has been
used to this point., Thus these manipulations are valid also for the
SET, and it is worth noting that by setting By 1 and imposing
smoothness on fl -- fl(;»UB,;}t) = fl(?,;,t) -- we find that
a/a3t SE = 0 and 3/3t SE becomes precisely of the form of the entropy
production function given by Boltzmann theory.

Now apply x £n ;-g_x - y to the integrand, where x = fl(xl,t] X

> - +  + > -+ .
fl[rl-oé,vz,t) and y = fl(rl,vi,t)fl(rl-oﬁ,vé,t), to obtain
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3Sé 1 2 -+ -+ -+, <+
‘5{'3-2'k0 dxldvz d68eg[B(Bg) + 6(-B-g)]

s »* -+
g,(r,,1,-08|n) [f, (x), 1) £, (r;-08,v,,t)
+ -+ -
- fl(rl,vi,t]flfrl—oﬁ,vi,t)] . (46)
Transforming away primes as befo.e yields

+
a5¢
15? 2.%-k02 J dxld¢2 I dﬁﬁ*E[B{ﬁ-E} + G(-G-E}]

+ + 2.3
[gz(rl,rl—cﬁ|n)f1(xl,t]fl[rl-oﬁ,vz,t)
- gz[;l,;1+cﬁ|n)f1[x1,t)fl(;1+06,;é,t)]
which after rearranging becomes
ast
-at—c > i- ko2 I dx, dv, I 46836 (8+3)

{gzﬁl,?l-aeh)fl (xy,t) £ (¥,-08,V,,t) [1 £1]

- 85(r), T +08[m) £; (x},0) £, (F,408,V,,t) [1 11]} .

(47)
as&
So -sg-g_o, which demonstrates that the "irreversible' part of Cp»
CE, has irreversible character similar to the Boltzmann collision
3st,

integral. Rewriting 3¢ 28
3s .

C 1 2
-t 27 ko J dx,dx, J dB8-go (8+g)

. -+ >
8 (r 5Ty M f) (x ), O F) (x,,1)

x [a(¥2-?l+oa) . a(}’z-?l-ca)]
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or

ko? I dx,dx, J d88+g6 (T, - T, +08)

o =

It 2

205 |t L SO B (o )

B =

-+ -+ >
k J dx, dx,, flz-g gZ[rl,rZIn]

fl(xl,t)fl(xz,t)é(rlz-c)

-

- + > >
>k J dx dxy (R} ,7V, + £,V )8, (F) 7, )

fl(xl,t)fl(xz,t]6(r12-0)

+ -+ +
k J dx, dx, 921'v1 gz(rl,rzln)
fl(xl,t]fl(xz,t)é(rlz—ﬂ) : (48)

No use was made of the functional dependence of g, on n to arrive at
(48) so that a result of similar form holds for the SET as well,

Though the sign of (48) is indeterminate, this quantity is the negative

9 den

of (42). Thus we have shown for (26) and (31) that 5;—51 > 0, with

equality holding when
0 0+ -+ 0+ =+ 0 -+ =
fl{xl,t)fl(rl-aﬁ,vz,t) = fl(rl,vi,t]fl{r1~66,vi,t] (49)

for all ;1, ;1, ;2 and O-E > 0. Resibois has shown4b that (49) holds

also for 6°§ < 0. This condition (49) is not sufficient to make Cp =0

but it does make C_ = 0, as can be seen from (43) by changing 8 to -8

E
in the terms governed by B(—G*E). Taking Resibois' approach4h we find

that the Fourier transform of tnf?(?,?,t] has the form

o(K,v,t) = FIne)(7,9,0)] = a(k, D) + 9(K,V,008  (50)

whereby we find f? has the form

£)E,7,0 = REDVE, L) . (51)
Using (51) we can determine the summational invariants of CE_
Consider
» -+ -
Ia J dv, ¥(v)Cg (52)

where w{il} is any function, vector or scalar, of ?l. Using (43)

and performing the usual transformations obtain
1 2 <> > -+ + > -»
I= 70 J dvldvz J dﬁﬁ-gﬁ{ﬁ-g){¢[vi) - w(vl}] x
— >
I dr, fl(xl,t}fl(xz,t)gz(rl,r2|n]
x [6{?2-?l+ca) + §(F,-1,-08)] . (53a)
-+ + z
Switching vy <V, and 8 + -8 yields

[ =210 J dv,dv, J d68-g0 (688) [¥(V3) - ¥(¥,)]

M| =

J dr, fl(?1,32,t)f1(?2,3l,t)g2(¥l,?2|n)
+ > > >
X [G(rz-r1+06) + G{rz-rl-aﬁ}] . (53b)
Use (51) and add (53,a,b) to obtain
1 = 30 f dv, dv, J d66+30(8+3) V() + ¥V - v(¥)) - (V)]

-+ 0 0 -+
J dr, fl(xl,t)fl[xz,t)gz(rl,r2|n)

x [6[?2-¥1+06) + 6(F2~?l—56]] , (54)

30
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Clearly 1% vanishes for Y =1, ;.rr, vz. Thus £nff is a linear combina- Also
tion of these only, of the general form fﬂf? = a[;,t] + g{t); + c{t}vz. 2 2 B 5 i
-k I dxlczfnfl = - kR0 J dx, I dv, j dB6eg0(B-g)

That is, f? has a gaussian form. The usual definitions of density,

n=[dv f,, of average velocity, u=[dv ;fl, and of temperature, x £”f1(*1't3{32(¥1’;l*na_6|“)flt;l'g?'t)

(2]

= nkT = f dv %{;;E]zfl, fix a, g, ¢ and render the specific forms
-3/2 -v2/2KT

L]

-+ b -+ +
x £ (r,+RoB,v",t) - g,(r,,r,-Ro"8|n)
R = n = constant, V = (2nkT) at equilibrium, Note that 11 2 21071

C. alone cannot determine R. For this, CE comes into play.30 Also, x fl(xl’t]fl(;l-nca,?z,t]}

B
2 : ¢ s d .den
there is no inconsistency here between the vanishing of % S1 and

transforms to
the nonvanishing of CE. Equation (49) merely characterizes the most

o d oden i 22 -+ -+
eneral condition under which S = 0, This does not mean that - = - dv .
8 3t °1 k I dx C,tnf) = - kR0 I dxdv, | d68e¢
£0 is achieved and then relaxation proceeds around that form. A

1

x {0(8°p - VAE) g (T, , T, +Ro"8|n) £, (¥, +R0B,V ,,t)
similar conclusion was reached by Grad3! in regard to the Boltzmann { e i | =4 2

0 . " - T A S |
theory where i:e :nalog of our fl is the local Maxwellian. Put x tnfl(rl'VT"t) 2 B(G'E)EZCTI,TI“RU 8|n)
another way, gz_slen = 0 is a necessary but not sufficient condition
-+ -+
x £ (x,,t)f, (r,-Rob8,v,,t)Lnf, (x t)} 56
for equilibrium. As a last note, (51) precludes the precise local 1%, 0, (1 Vo IERE) (%), (56)
. s s T . -+ T -
Maxwellian form which is used as a zeroth approximation to fl in under the change of variables in the first term [“1';2) 3 E“T’”E
the asymptotic expansion employed in the Chapman-Enskog deveIOpment.8 such that G'Ehded$3 - 3.§d;1d;2 and by use of (29). Similarly,
To complete the picture for (28), we analyze the remainder term s J 3y Cslnf transforms to
1 1

by term, denoted Cy, C3, 64, respectively. By manipulation similar
2 2 s *
to that for -k [ dx; Cg £nf1 above, we obtain - k J dx1C3£nf1 == kR'0 J dx,dv, J do-g

-+ + & +
-k I dx C lnf) = + %-kRzuz J ax, J dzz J 4668+ 30(8+3) x {G(G.E}gz(rl,rl-Ro Bl £) (x,1)

-+ > >

o -» i £ "
O(/AE - 8+2)g,(F) 7, *R06 ) £ (x,,t) £, (¥, +R9B,V,, t) R gL R0, M50 ) by (2p T t)
+ +
flfxl,t]fl(r1+ﬂaﬁ,vz,t] " g(a.g__/ngg2(¥l,?l+Ra'e|n)fl(xl,t)

x £n . (55)

£, (F,,V],t) ) (F| +Ra8,V}, 1) . N
x fl{rl+ﬂce,v2,t)£nfl(xl,t)} . (57)
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Add (56) and (57), exchange v -h*;z, change 6 + -8 and rearrange to

1
get

Z. + -+
? kR o J dx,dv, J 4663

i J dx, (C,+C4)enf
x {a (82 g,(r), 7 -Ra"B[n) £, (x,,t),; (¥, -RoB,V,,1)

fl[r -Rc&,vz,t)fl(xl,t)

£, (r;-R0, VY, t) £; (Tp, VY, t)

. 3(8-3-J&E)gz(?l,}'lmo'e|n]f1(x1,t)f1(r +R8,V,,t)

x £n

£, (x,,t) £, (T, +R00, V., t)
R i R | 2 } ) (58)

+ -+ + -
fl[rl,vf',t)fl(rl+R06,v§',t)

Apply xﬂn.§ 2 x-y to the integrands of the sum of (55) and (58) to

get
-k | dxg(CprCoc )ene, > - kr%e? | dxjav, | d86e%

) R Mk S Rl W= 192 £

x {e(e-'g)a(./ﬁ -8+g)g,(T,,T,+Ro"6|n)

> ->
x [fl(xl,t)fl(r1+R00,v2,t) - fl(?i,?},t)fl(¥l+noc,§5,t3]
-+ + +

+: a(a'g)ngrl,rl-RU ﬂfn)[fl(xl,t]fl(rlhﬂoﬁ,vz,t]

- fl(rl,vl,t)f (r -Raﬁ, 2,t)]

+ e(s-‘é-/&agzﬁl,?lma'a]m 8 xy £ 07y +R08,v2, )

- fl(rl, 1'HtE (r +Ro8, v" t)]} . (59)

Transform primed velocities as before to obtain

2.2
I dx, (€ +CS+C4)£nf z-kR o J dxld?2 I d66+g

x {G(B-EJG(/EE- 8+8) [g, (¥}, T, +Ro™8 )£ (x,,t)

X fl(r +R06,v2,tj - gz{?1,¥l-kc+8}n]
x fl(xl,t)fl{r —RUB,VZ, )

+ [0(8°8) - 0(8E - /AE) 1g, (¥, 7, -Ro "8 |n)
x £ (x;,)£) (F)-R08,V,, 1)

+ [0(8°g - VAE) - 6(8+R)]g, (¥

171 *R078n)

x £ (x;,t) ) (r +R06, 2,t)}

7 kro? J dx, dY, J 6656 (8+3)0 (VA€ - 8+7)
x £ (x;,t)f, (¥, -R08,7,,t)

x [gz(rl,r -Ro 8|n} - gz(rl, -Ra78|n)] .

(60)

Because g,y from (25) is continuous at ;2-?1 = Rof, the RHS of (60)

vanishes identically, Note that only at this point have we used the

form of £,y from (25) except for lack of velocity dependence.

In

particular, had we used the DRS Ansatz for g (60) would be indeter-

minate since the bracket becomes gZ(rl,rl—RU G,H}[l - eBE]
agden

vanishing of the RHS of (60) we have established that _-sf

(28).

With the

> 0 for

33
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VI. TWO-PARTICLE HARD-SPHERE KINETIC THEORY

The attractiveness of the one-particle dense fluid kinetic
theories is their mathematical tractability, particularly for
eliciting transport coefficient formulae. However, it is clear that
the dense fluid state cannot be characterized in general by just the
one-particle distribution function since the dominant contributions
to the fluxes of momentum and energy are described in terms of the
two-particle distribution function. Herein we discuss a new two-
particle hard-sphere kinetic theory.

Two-particle hard-sphere dynamics can also be developed from

(2) for s = 2, wherein

Fz(xl,xz,t+r) - Tfi)FZ{xl'KZ’t]
=n J dx3 {Tfi)Fs(XS,t) - TEE)FS[xs,t)}

- I dxgdx, { E:]F4(x4,t] 2 Tff)F4(x4,t)

% %-Tff)F4{x4,t}} $eee . (61)

Change Xy» Xy s above (4) to obtain for the LHS of (61)

TEiJFz(xl,xZ,t+T} - Tfi]Til}FZ(xl,xz,t) (62a)

and similarly for the first term on the RHS of (61)

(3)..(1)
n J dx3 {T TT F3(xl,x2,

(2)..(1) .
i xs,t) - T_T TT Fsﬁxl,xz,xs,t)} .

(62b)

Nonvanishing contributions to the integrand occur for those configu-
rations of particle 3 which lead to collision with 1 or 2 within time
T. Similarly the four-body-term integrand does not vanish only if
particles 3 and 4 can collide with 1 and 2 within time 1. Hence this
Because collisions

term and higher ones vanish in the limit T + ot,

between 1 and 2 do not contribute to (62b) it may be rewritten
) R |
n J { ( ) .E ]F3{x]’x2’ S’t) # Fs(xlszﬂ‘sat)} . (62b")

Again, since interaction between 1 and 3 or 2 and 3 only is admissible

in the limit T *—ﬂ‘, (62b') reduces to a form similar to the RHS of

(23). Hence we obtain the exact two-particle equation:
2 - + -+ il e
J dv, J dﬁﬁ-gl38(6-g13]{F3(r1,vi,r2, r1+80,v§,t]
+ -+ > > -
- Fs{rl,vl,?z,vz,rl-aﬁ,vs,t)}
21 av, | 46630068 6
+ no d\'3 d B23 ( 323} 3(I‘1, 1’r2' Z’r +0 9V3s t)

-+
- Fs(rl,vl, 2’"2' 2-68 vs,t)}

2
B ] + > >+ -+ 99 3
Rl Pt e e W ) v.*V.F, - — Bx %
5t F2(TVps¥eY, izl i°ViF2 '21 A AR

. (63)

S i
In (63) we note that if lrl -r2| < 20 then particle 3 cannot occupy

all positions denoted by 8 on the precollisional hemisphere, but only
>
r]-r

those outside the cone whose angle ec is given by Gc = cc»s-1 l—lia—gl

This excluded volume is manifest implicitly in Ego

35



For closure we return to (14), set E, = © and obtain

N

W, =0 e W B Rk e il (64)
. i#j

This WN has the identical form of a canonical equilibrium N-particle
distribution function for a potential that is the sum of one body

and two body terms, with a hard-sphere two-body core but otherwise

arbitrary form. Thus we have3?2
. £y (%X 1) E ) (X}, X5, ) £, (X5, X5, 8) VT 5005
3 2 fl(xl,t}fl{xz,t}fi(XS,t) 31T R

(65)
where Yq is the same functional of f2 and f1 as its equilibrium

counterpart: Y3 has a formally exact cluster expansion of the form

3.4 =
Ys(x ,t) =1 + I dx4 fI(x4,t)h2(x1,x4,t)
x hy(xy, X, ) hy (x5, %,5t) + oue , (66)
fz{XI,Xz,t)
A0, 000650
equilibrium h2 [rl,rz} must go to zero in order to insure thermody-

where h (xl,xz,t] We note that, though the

. - . o = = * 3
namic stability as [rl —rzi -+ o, the nonequilibrium function does

not a priori have a similar spatial cluster property and the expansion

(66) may not converge. Clearly it manifests the possibility of long

range velocity correlations. We also note that (65) by itself may

be regarded as a means of defining Yz, as Livingston and Curtiss10

point out. The closure principle provides an explicit form for this
function, whereas the latter authors set Y3
Superposition Approximation (KSA). It is worth noting that the form

= 1, which is the Kirkwood

36

(65) is not peculiar to the hard-sphere potential, but is consistent
with any form of two-body potential,

Combining (8) and (63) (in generic function language) with (65)
we obtain the two-particle kinetic equation
B? 9

[3+§$-v- °—-]f[xxt)
Ot gl T L ) e

=
e | V]

"t

2 [ .-
=0 Idﬁs J d66+¢ 0 (885,) X

{flcil,ﬁi,t)fl(xz,t)fl(r +08,V%, ), (), V], %,,t)
x gz(;l,¢i,?l+08,v3,t]gz(x2,¥1+08,¢3,t)
x Y3[¥l,?i,x2,?l+08,¢i,t)
- £ () F) (x, ) £} (F)-08,V 5, 8)8, (x,, X, t)
X g,(x),F)-08,V5, )8, (x,, T, -08,V5, 1)
x Ys{xl,x2,¥l~uﬁ,¢3,t]}
+ o? [ dv, I d66+¢.,0(8°g,,)
{fl(xl,t)fl(?2,¥5.t)fl(?2+ca,$3,t)g2(xl,?2,¢é,t}
x gz(xl,r2+ua,v3,t)gz(?2,35,?2+cﬂ,¢3,t)

x Ys{x +08 v st

> -+
- fl(xl’t)fI(XZ't)fl(rz'UG’VS't)gZ[xl’xz’t)
> >
5] gz[xlnrz‘c'&""3nt)gz(x2’r 'UO;VS; )

x Ys(xl,xz,r -Uﬁ,vs,t]} . (67)

37
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From (11) and (64) we obtain the two-particle entropy and by the usual transformations
den _ Iy 1
S2 = klne - j‘k J dxldx2 fz[xl,xz,tjﬂnfz[xl,xz,t] I d;I J d¢2 ¢2c§3 = %-02 ! d;l J d;z J d¥3
1
+5k J dx,dx, £,(x),x,,t)lna(x;,x,,t) (68) J d88+E, (V) - V) [0(8°85,) * 8(-8+2;,)]
2)\(2(1,)(2,'[’.] % 7
where az(xl,xz,t) = e fz(xl,xz,t}. We write the kinetic fs(xl,xz,;2-06,¥3,t) h

equation (67) in the abbreviated form
* + iy gy
Interchange V, ¢ Vg, impose the equilibrium form f3(x1,x2,x3] =

[il.+ f v. oy 4 5, 0 ol
ot 3] VitV - iZl a;i ‘ 331 fz(xl,xz,t) f?q{vl]f;q(vz)fiq(vs}gs(rl,rz,rs) to obtain
= Cps*+ Cls * Co5 + Cog (69) l 2 I d, VCo3 = 0 =)
where for example J d?l J d;Z 32c;3 = 02n3 I dOﬁgs(?l,;z,?z-cﬁ] . (72¢)
CTS = %‘02 J d;3 I d63'§31[9(8°§311 + B[—G'Esi}] | Combine (71) and (72) to get
{f_,’(?l,?i,xz,?lma,}‘%,t) ” fs(xl,xz,?l-os,ir’yt)} ; KTV,g, (|7, - 7)) + 89,0
(70) = ng° J dﬂags(?l T, ,-08) (73)

For convenience we choose to use f3 instead of carrying all the

% , 1
factors shown in (67). Take the LHS of (69) to be at equilibrium, which is the two-particle member of the YBG hierarchy 2 for the hard-

at which f,(x,,x,,t) = ffq(vl]fiq(vz}g2[|¥2.‘?1|], Impose sphere potential, but in (73) we know already the form of g, from (65)

[ 4V, [ 4V, ¥, on this LHS to get and (66)
-
equil LHS = n*(KTV,g, + g,¥,0) . (71) 85 (F),7,,7,-08) = g, (T, - T |)g,(0)g,(|Tp-08:T, |)

. -
For the RHS we find X Yj{rl,?z,?znoej 5

I d¢1 (CIS * CIS] =0 (72a) This result shows the importance of the reversible part of the collision

operator in two-particle kinetic theory for defining the form of equilibrium



integro-differential equations, Wisnivesky30

similar role in one-particle kinetic theory.

had investigated a
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VII. CONNECTIONS WITH IRREVERSIBLE THERMODYNAMICS

From the Boltzmann equation (20) and the entropy functional

(21) it is straightforward®® to obtain the equation for the entropy

density s, such that Sgil = f dr s(?,t}.
] + + -+ -+
§€-s(r,t] + ¥V » [su(r,t) + js(r,t)] =:gfrit) (74)

where U is the local average velocity, 3 = -k f dv (;wﬁ)flﬁﬂfl is
. s
the entropy flux and the entropy production density 0(?,t} is given

by

-+ -+
o(r,t) = -k I dv £nf1CB{fl,fl} >0 (75)
where CB is the Boltzmann collision integral. Clearly

9 odil _ +
x5 °© I dr o(r,t) (76)

since the flux term of (74) vanishes when integrated, by boundary
condition assumptions. Generalization of these formulae to mixtures
is straightforward.33 By applying the Chapman-Enskog deve10pment8 to

the mixture version of (20) an expansion of fl to linear order in
i

-+ - =
gradients of ni,u,T is obtained whereby an explicit expression for

To, To = z Jij, is obtained from the mixture version of (75). From
i
To can be identified forces,xj,(gradients} and conjugate fluxes, Jj'

and demonstration made of the Onsager reciprocal relations for the

kinetic coefficients.ij in the linear relations Ji = Z Linj. This
]

embodies the sole kinetic theoretic support -for the phenomenological
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theory of linear irreversible processes.

We note that the Boltzmann theory is readily amenable to a purely

local formulation since the Boltzmann collision term is purely local.
In the dense fluid, collisions are not spatially localized and so the
transport, which is dominated by collisional transfer, embodies non-

local effects. So too the production of entropy is not localized and
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indeed the H-theorems demonstrated earlier are global results. It is an

open question to what degree the program outlined above can be carried

through for the dense fluid. A fundamental difficulty, in general, is

defining a consistent local entropy density. In our discussion here, atten-

tion is limited to the pure hard-sphere theory for which some partial results

have been described elsewhere.3’4’9

the attractive tail is included and so discussion of this more general

case will be made in a separate article.34

Utilizing results in the development between Eqs. (35) and (48)

we obtain
B gden _ 3 [ & _x o
s 8 =3¢ I dr s(r,t)
- ’ df (0_ + 0.)+ kI dr v. [ dv Ve, (F,7,1)
c 0
X £n[f1(;,3,t]/a{?,t)]-§-£ne1+YJd;V-ﬁﬁ
where

-+ k -+ -+ +
s(r,t) = N-n(r,t)knel+T - k’[dv fl{;,v,tJEn[fI/a]

reduces to the dilute-gas form when low density is imposed,

-+ -+ + >
Uc(r,t} = -k I dv Kﬂfl(r,v,t)CE(fl,flJ

A number of new features arise when

(77)

(77a)

(77b)

and

- -+ -+ -+ -+ +> >
oa(rl,tJ— k J dv flv-J dr2 ?lzé(rlz-G}nl(rz,t}gz(rl,r2|n).

(77¢)
Now the last term on the RHS of (77) can be written
= I dt v e (su+J) (77d)
where
F.@.e) = x I dv (V-U)f, (?,?,t)ﬁn-[flza}. (77€)

3 3 s =¥
Using the definition of u, (77e) reduces to the dilute gas form below (74).

From (77) and (77d) we can extract the local equation
] > -+ - *
ap S(X,t) + V - (su + js) =0, +0_ +0, (78)

where the decomposition

az = -k I d?[tnf1(¥,¥,t)]c§{fl,fl) (79)

has been employed. Clearly we have

3 _t i -
E-E—Scujdrﬁc

and the H-theorem proved earlier showed that
e
J dr 6 >0
c
and
-+ + >0
dr (oc + UG] >0.

Using (45) it is straightforward to show that
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o;(F.t) >0 (80)

holds at each point, however we also obtain

1 -+ + + +
o, + 0, g_i-k [ dr2 ?12- [u(rz,t} + u{rl,t]]

x ) (7,00, (F,,8)8,(F ), T, M6 (F;, - 0)
(81)
Though the RHS is indeterminate in sign, we note that f d;l RHS = 0.
The quantity a; + 0, therefore appears to manifest a combination of
entropy production and entropy flux. Explicit demonstration of this
feature is readily achieved for linear perturbations from equilibrium

for which [superscript (1) denotes linear regime]
£ = £ 4 0) (82)
(0)
f1

where is a local Maxwellian and ¢ is linear in gradients of K,T

as described by the Chapman-Enskog developmentq We find
HORADEFNCPHICHOE T AR -FACPEICHO)
when the full g, given by (25) is expanded in n about ;l and so
oD @0 = - 2o -V %, @] , (83)

equality holding through second order in gradients. Similarly, starting

from the representation for G; given by (45) we find

1)+ ~» _2m 3 25 .2 3 2
O {rl,t) = - —i-gz(c)o kn Vl u+ Mo kn gz(o]
o L k 2
= = 5k, (D }
x {b0 Vu:Vu - a7 (84)

Q
1 > R <=
where Vi = 5 [Vi + (Vi)'] - -_};v-ﬁ T and T is the unit dyadic.
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To achieve (84), the expansion of ¢ in Sonine polynomials8 !

0= -G - BT aslE 607
!z

[#+]
m b (abeeds: e .(r)
- T (v-u) (v-u) : Vu E brbsfz
r=0
has been used. We note that bD > 0 and a; < 0 so that by combining

(83), (84) we find
oélJ* + 051) = -7 . 3(1)(¥:t) + o

& 5 - %} Dsknzgz(o)ﬁ, and o' > 0 follows from (B4). Now o'

erej
is not a complete entropy-production density in the sense of irreversible

thermodynami(:533 since it does not manifest the leading orders of colli- !
sional transport of energy and momentum and in particular omits bulk !

(1)-

viscosity altogether; on the other hand, we show below that 9. can be '
regarded as such. This means that the local entropy equation in the i
linear regime does not take the same form in the RET as that found in

Boltzmann theory, (74). For RET we find in the linear regime

= sW@E,e) « vosMi+ I+ 7)o W= o (85)

The terms }(l) and o' have no analog in the Boltzmann theory, but |

do vanish in the low density limit. Furthermore, in the linear form of
(74), the jgll = %'3T’35 where jT is the dilute-gas heat flux. A similar
result cannot be identified within (85), though therein 3&1} is so related
to the streaming part of the heat flux. The collisional part of the heat

;(1) or o',

To fully demonstrate the features of the ogl]‘

flux cannot be so accounted by either
necessitates working

with a mixture of L species for which the formal results for kinetic
equations, entropy functional and H-theorem go through in an obvious

way. In this case, c; takes the form
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L
kK § ol J d¢1d$2 J d66+g[0(8+g) - 0(-8+2)]
J

i,j=1 1

- 1
o ==
c 4

- >
(rl,r -0y 6|{n})f (rl,v t}fj[rluoijﬁ,vz,t]
fi(rl,vl,t)fj{r1~cij8,v2,t]

x £n . (86)
+> > -+ -+
fi(rl,vi,t]fj[rl-cijﬂ,vi,t)

To achieve (86) requires symmetry g 2) g (r ) which is
exhibited by the RET and also the standard Enskog theory gij's. For
linear perturbations from equilibrium, wherein fgll = fgo)[l + Qi]

and ¢i is linear in gradients of n,, ﬁ, T, Eq. (86) takes the form:

L
(1)- _ 2 + . 2
oL =k . §=1 °ij"ij J dv,dv, J doB-g0 (B-g)
x £40) [?1,?l,t)f( RICIRARST N IRARS

x

+ -
[0i{r1,vl,t} + ¢j(r1,v ,t) - @, (rl,v ,t) - &, (rl,v st}

L
k 4 + -+ <>
+ §‘1 ? - o j ij J dvldv2 J dB8-g06 (8-g)

% ]( l,vl,t}fj“” (?ljz,t)e.vznfjm) (F).V,, )8+
OIS

x Ln —J{{}T*—T_ (86")
££9 9,0

where Yij is the contact value of the equilibrium Bij and expansion
is made of all functions about ;1 to linear order in gradients. The

conventional expansions

big * &, 7

Il 1~

®. = -A, « VT - B, :Va + H.V e U -
i i & i

=1
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(1)-

is made. The second term of 9 can be evaluated explicitly since

1

m, 3/2
£ D@00 =0 G0 [-—+—-:|
* e 21kT(* ,t)

m,
< oxp - —L— (¥ - ¢ .17
2kT(T ,t)
and the first abbreviated by using the bracket notation of Chapman

and Cowling:8

1)2 k3T 2
(1)_-kn{¢¢}+3~20 __EElLI?_;E]

c _11] 1J e | J mij

8 ; 4 Vi ..E E;

+ o— (o S8 (B, | 1 Vu : Vu
151,j=113 ij i) T

L 2mp T

4 4 2

+3 1 15Y35M0 T (Veu)“ . (88)

i,j=

Here mij =m, 4 mj and uij is the reduced mass. The last three terms
are related respectively to the collisional contributions to heat

flux, off-diagonal momentum flux (shear viscosity), and diagonal momen-
tum flux (bulk viscosity). Using the linearized integral equation

6

which is satisfied by ¢2 it is straightforward to show that the mass

flux can be expressed as

-+

_‘J.=n2V£nT'{AD}+n2 ): 3 -{DR,D}, (89)
ii =1

the heat flux including collisional contribution is

L
3T = -ktn’(&,A} - venT - kmn? y 4
)
2=1
L Vom: k3
4 4 TH; k9T
* 3, & Yty T (20)
i,j=1 ij
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and the momentum flux, including collision contributions, is I - kT[ 2 3 i 3' = —nsz VEAT - {K I <0 }
[I'Ii ‘ﬂimi mi anL IIIL o | L
4 i L= 3
a U Y . - - =
-3 }j 1j 1M / "1“1E'v u T + 221 Ii’g {ﬁL ﬁR,DL Ei}]. (95)
i,j=1 =
8 4 T s . :
- 15 ciJYljnan VI 1 KT Vu and JP = P as given by (91). We note the following with regard
i,F1

wh g % to (94), (95):
- kTn%a : B,“I_f} - anZ{}i,l-l}Tv-u . (91)

1. The coefficients of Ej in (94) and of VE€nT in (95) for i = j

falimcring £68) &0 e flu are equal because {A,D} = {D,A}, therefore these kinetic coeffi-

(1)- 1 : L n 1 g -+ cients exhibit Onsager reciprocity 53
o TEegdp e VT -k | =T o 3 - VL (92)

P |
ja* L

2. The coefficients of d, in (95) for i = k and of Ek for i = j
This is precisely the form to be gotten by using the Boltzmann J
are equal and also exhibit Onsager reciprocity.

equation. Though § 3i = 0 and z }mi = 0,it is clear that not both
i i

3. The analyses and results from Eq. (85) through (95) hold for
conjugate mass fluxes and forces, represented in the combination
the revised Enskog theory, which is characterized by the mixture

KL ) 3hi . ai’ are linearly dependent. Choosing the forces>® to be
11 ; analog of (25) and (26). By virtue of the developments made in
L-1
‘31' we eliminate EL -1 3 and obtain ref. [3], these also hold in form for the standard Enskog theory,
i=1

wherein gij[;l’;Z] has the form proper to uniform equilibrium

M- _ 3 - o
To =-J_ e+ VenT - P :V _
< T 4 " but with densities evaluated at {;i-r;z}IZ. Thus an entropy

o L-1 n_+ . 5 production density of the form (93) permits identification of
L Efﬁ;' mi " fomy JmL . (93)
i= 1

forces and conjugate fluxes in the SET framework and the relevant

-
Le i - - -d. i = o oli= L i 7z i £
t the'independent: forces her=VLNT; ~V¢; 3;, 1 = Lisialets Hhanithe kinetic coefficients exhibit Onsager reciprocity as described in

conjugate fluxes are obtained items 1 and 2, In the context of (93), (94) and (95), the only

3 2 i 7 4 ¢ o4 2wpi‘k3T diff bet RET and SET lies in the form of d,. For the
jT =J =-n KT{A,A} * VEnT - ¥ Y Uinijni“j __jﬁ_lﬁ“__vT ifference between i
i g ij 2
i,j=1 : former we have showed g

L-1
2 e -+
-n%kr § &, o B, -D A}, (94
2);1 % L7
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RET _ Mi g
d; {kT (Vi) " kT vp
+EI[ ¥ 3 '“‘i]}
T 3 j=1 1J 1] 3 m; §
where My is the chemical potential per particle

. SET 1
To obtain E. , replace T (?ui}T by Vﬁnni .05 z c Yo Un, +

je1 137137
* %? Z g, JnJVY ij which differs from it (unless all diameters
j=1
are equal) in second and higher order in density.9 We note with

9

van Beijeren and Ernst™ that E?ET conforms to the form expected

" 2 33 +SET
on the basis of phenomenological treatments ”” whereas d;" does
not. This feature manifests itself, for example, in description

of the diffusion coefficient in the critical region of a phase

separation point.

1)- SET

Because o, , it is not possible to construct an

RET
# cél)'
invariant linear transformation °° from the RET to SET description.
Thus it is not possible to use reciprocity of the RET kinetic
coefficients as a basis within transformation theory to investi-
gate the presence of reciprocity in the SET, as attempted in [9].
We leave open the question of whether an invariant linear trans-
formation can be applied to the SET to effect internal rearrange-
ment of forces to agree with those of the RET. If such is possible,
it is almost certain that the conjugate fluxes will no more each
be identifiable with a single conventional transport flux, as
Furthermore, the maintenance of

depicted in (94) and (95).

reciprocity must be checked, since not every transformation will
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(1)-SET

preserve reciprocity.38 In any case, the . would not

exhibit the explicit form given by phenomenological irreversible
(‘]—

thermodynamics, whereas the 0. does.

The RET entropy equation (85) does not conform to the result (74),
so that clearly even the RET, which must be regarded as the
superior theory, is at odds with certain phenomenological results.
Such phenomenological results that are of a form not satisfied

by the RET, however, may themselves bear an oversimplified struc-
ture -- adequate for rare gases but not for dense fluids -- rather
than bear clear evidence of RET deficiencies. 1In particular, the
terms o' and ?[l) appearing in (85) vanish in the low density
limit., The disparity between the SET and phenomenology, on the
other hand, appears to be of a more fundamental sort.

That both the RET and SET should exhibit reciprocity is not
surprising since the main ingredient of the phenomenon, micro-
scopic reversibility,39 is built into both theories at the outset

in the scattering cross section in the collision integrals.

(1)-

Because of the reciprocity condition, TU achieves a minimum

v 40
for steady-state conditions.
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VIII. DISCUSSION

The closure principle we have employed yields more information
than is used to obtain a closed kinetic equation, ' For example, in
(23) only g, for two particles in "precollision" contact is needed,

-+
The result (25) is obtained, however, for completely arbitrary T and
%5
r,.

However, it is the entropy functionals that reflect the full character

This might suggest that the method overcharacterizes the ensemble.

of the ensembles, Note these developments could have been carried
out as well in the framework of the grand ensemble. We emphasize
that the H-theorems we have demonstrated are global and not local
properties of the theories. In this light, the Boltzmann theory is
seen as a degenerate case which readily permits a local interpretation
as well,

Closely related to the problem of closure is the problem of
chaos propagation. Expression of closure does not have a unique form
(cf. 17, 25, 65) but in all cases neglect of some higher-order cor-
relations is a common characteristic, The viability of a closed
kinetic equation hinges upon the propagation of this form, i.e., of
continued irrelevance of correlations at this higher order to the
description at hand. It is not at all clear that this requires
destruction of these higher-order correlations, a possibility advocated
by Mayer,l3 for example. Thus, in a physical sense, closure of a
description may be a practical matter and chaos propagation a manifesta-

tion of the irrelevance of other degrees of freedom to the description,

Mathematically there remains the problem of what constitutes
a proper framework to model these phenomena. The dilute gas case

25,41 These analyses show the

has received the greatest attention,
possibility of persistence in time of gy = 1 [ef. 17], almost every-
where. More generally, that (25) cannot be maintained indefinitely
(and that the theory is thus not an exact one for hard spheres) is
clear. Discrepancies in form and in numerical values of the transport
coefficients derived from the theory compared to results of more exact
approaches are evidence of this,

Clearly, one could generate a hierarchy of kinetic theories with
our approach by successively setting s = 2, 3, 4, ... . One would
expect a stage to be reached beyond which the added dynamics and
statistics becomes irrelevant to the questions one normally asks of
a kinetic theory. The two-particle kinetic theory we have introduced
offers the ingredients which appear to be minimal for a closed theory,
at least as evidenced by the Boltzmann theory. These are an entropy
functional, a kinetic equation which yields correct equilibrium forms,
and containment of fluxes within the level of description. The kinetic
equation (67) appears to be Markovian due to the appearance of one time
instant. However, the three-particle correlation function appearing
in the theory depends in a non-local way on the two-particle spatial
and velocity distribution and through velocity correlations 'memory
effects" may be built in. This two-particle theory appears to be

unique in terms of the structure of the three-particle correlation
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function, YS (66), which does not obviously show the cluster property
assumed by Green. 42 Such an assumption is not obviously necessary
in order for our formalism and the approximation that we propose to

be meaningful.
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FIGURE CAPTIONS

Precollision configurations for the Boltzmann equation.

Geometry of precollision configurations in the hard-

sphere limit.
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