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ABSTRACT

A class of statistical-mechanical model of associating atoms or ions is described. Condi-

tions that must hold for them in the complete-association (confinement) limit are noted. In

the simplest version of the models considered, this is the pure-solvent limit, of fundamenta.l

importance in solution theory. It is shown that the confinement limit is much like a critica.l-

point limit, at which the direct correlation function assumes a very special long-ranged form.

Off-confinement (pa.rtia.lly-associated) states are then considered and a sequence of succes-

sively simpler approximations for the pair distribution functions are proposed on the basis of

an Ornstein-Zernike-type equation. Explicit expressions due to Zhou and Stell are given for

the simplest of these approximations, which is relevant both when the associating atoms are

uncharged or when the fully associated system is of high dielectric constant. In the complete-

association limit, these expressions apply to dipolar dumbbells with interpenetrating cores

over a continuous range of interpenetration.

I. INTRODUCTION

It is a privilege and pleasure to contribute to this festschrift. I stand in awe of the

courage and perseverance that Professor Holovko has shown in continuing to lead his research

group under conditions that seem almost unimaginably adverse to most American scientists.

I share his scientific goals and philosophy and value his scientific integrity.

In the Spring of 1985 I prepared a contribution to the Colston Symposium on Water

and Aqueous Solution, which was held at the University of Bristol, England, in April, 1985.

My lecture and manuscript had the same title as this contribution. I gave the lecture, had

a wonderful time at the Symposium, and deposited a draft of a manuscript to be published

as part of the Symposium Proceedings. Then back in the USA I began to see some things

in the manuscript that needed reassessment - an assumption here, an approximation there.

When deadline time came at the end of the summer, I reluctantly withdrew the manuscript
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because it still seemed to me to need more thought. Time passed, and a number of the

observations in the manuscript found their way into my subsequent journal articles with Y.

Zhou. But not all. When I looked at the manuscript a few months ago I found somewhat

to my surprise that

(i) the general picture given in the first three sections of the manuscript concerning "sticky"

models and on integral-equation method of assessing their structure had not been reproduced

comprehensively in any of my later articles, although various fragments of it had appeared,

(ii) the general picture was still worth summarizing,

(Hi) nobody else had looked at the same integral-equation method, and

(iv) there was now available some detailed algebra that could be used to implement the

integral-equation method.

In light of this, I have lifted from the manuscript its general introductory discussion,

annotated here and there with additional remarks and updated references. In particular Sec-

tions II through IV of this contribution follow nearly verbatim most of Section I through

III of the old manuscript. Then in the Appendices here I supplemented this material with a

more specific discussion of the properties of the ionic shielded sticky shell (SSS) model (espe-

dally its ionic valence) as a function of its parameter R/ L, as well as some algebra associated

with the SSS model. Among other things, the algebra gives in the complete-association limit

the site-site distribution functions for dipolar dumbbels with interpenetrating cores over a

continuous range of interpenetration, R/3 < L < R. [Rasaiah and Lee (1985a, 1985b)and

Lee and Rasaiah (1987) have already given the results for L/ R = *,n = 1 to 5 in an approxi-

mation that is different but shares the same mathematics as ours.] Since work I am currently

doing with Y. Kalyuhnyi of the Lviv group directly descends from the picture described in

the Bristol lecture, it seems to me especially appropriate for its revision to finally see the

light of day in this volume.
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II. THE MODELS

I shall discuss here a class of statistical-mechanical models of associating particles. Some

time ago H0ye and Stell (1977) observed that the interaction site model [ISM] of Chandler

and Andersen (1972) can be regarded as the complete-association (confinement) limit of

such a model of associating particles. Among other results, H0ye and Stell found that the

site-site correlation functions Chandler and his colleagues used to describe the ISM could be

simply related in that limit to the usual particle-particle distribution functions of a particle

mixture. Cummings and Stell (1981, 1982) then further investigated the confinement limit

in detail, on the basis of the H0ye-Stell observation and earlier H0ye-Stell work [H0ye and

Stell (1976)].

The initial work by Cummings and Stell (1984, 1985) on a model of association whose

particles associate into interaction-site dimers (the SSS model discussed below) was done

on the basis of an approximation scheme that borrowed and extended the mathematics

of Rodney Baxter's solution of the Percus-Yevick (PY) approximation applied to Baxter's

adhesive-sphere model. Baxter's mathematics is elegant and seductive, as is the sticky-

sphere model itself; Cummings and Stell were sufficiently engrossed in the mathematics not

to dwell upon the fact that it must be embedded in a scheme that is specifically tailored

to the dictates of association if it is to be faithful to the law of mass action in the limit of

vanishing density. The original work of Cummings and Stell and its subsequent extensions

by Lee, Ra.saiah, and Cummings (1985), and by Ra.saiah and Lee (1985a, 1985b) was not

done in the context of a relation between the strength of the association bond and the

degree of association (the parameters S and A below) that is faithful to the mass-action

limit. Our work here on the structure of simple associating models shows that association

gives rise to characteristic correlation length" such that the direct correlation functions Gjj

considered below in general have a different form for" r > 1 and "r < 1, where r is the

distance between particle centers. We find that only under certain rather special conditions,
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elucidated below, can one reasonably use Cij with a single functional form for a.ll r, as the

early work did.

I shall begin by considering the representative case of a binary mixture of particles

of species A and B, with pair potentia.l ~ij(l, 2) between particles centered at rl and r2,

i = A,B; j = A, B. The ~ij includes a highly repulsivecore term ~ZOREwhichfor technica.l

reasons I shall initia.lly take to be of the form, with r = Irl - r21,

{

(X) for r < Li.
CORE J

~ij = t:: for Lij < r < ~j
0 for r > ~j

In the ionic case we a.lso need a Coulombic term, Wij(r) = qi~/r. For simplicity I shall

restrict my attention here to the symmetric case qA = -qB = q with overa.llcharge neutrality

that implies PA = PB = P,where Pi is the expected number density of species Pi. In

addition we sha.ll need an associating or binding pair potentia.l ~t(12) that is responsible

for chemica.l or ionic association. Here we have many choices. A simple one is to let ~t
be defined by an attractive "stickiness" on an interaction shell defined by r = Lij so that

~t=Sij6(r - Lij)/47rL~j where 6 is a Dirac delta function and Sij is a strength parameter.

We are often more interested in the Boltzmann factor et = exp - p~t associated with

~t than in ~t itself, where p-l = kBT, kB = Boltzmann'sconstant and T = absolute

temperature. It is thereforeoften moreconvenientto directly parameterise et with a strength

parameter Sij such that et = Sij6(r - Lij )/47r L~r I shall refer to a model that includes such

a et as a sticky shell (88) model. Alternatively we can let ~t (or equiva.lentlyet) be

dependent on the relative orientation {}of a pair of particles, so that ~tor et is given

by sticky areas on the interaction shell corresponding to certain relative orientations. I

sha.ll refer to a model with such ~t as a selectively sticky shell model. Analytically the

et can be represented as Sij~j({})6(r - Lij)/47rL~j in this model. (A particularly useful

specia.l case is the sticky-point limit, in which the sticky area. is reduced to a single point of

infinite stickiness.) For either version of the 58 model, the special case in which the binding
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attraction is present only between different species (i.e, cP1B= cP~A= 0) proves a particularly

interesting one to consider. I refer to this as the AB version of the model. Another special

case of interest, which I shall call the AA version, arises when the A and B particles are

identical (so cPAA= cPAB = cPBB with cP1A = cP1B = cP~B). For Lij = ~j the uncharged

AA version of the SS model becomes Baxter's well-known adhesive-sphere model, while the

uncharged selectively SS model, which was used by HS?lyeand Stell (1977) as an example, is

a variant of a model used by Boltzmann (1898), who introduced it as the basis for his theory

of chemical association. For Lij < ~j, things are a bit more subtle. Consider making the

repulsive core term arbitrarily repulsive by letting f become arbitrarily large. One might

think that the effect of stickiness would be entirely "hidden" by the resulting hard pair-

potential core of diameter ~j as one takes this limit. But if one thinks about taking the

limit slowly enough to have equilibrium at all times (arbitrarily or "adiabatically" slowly)

then in fact one must expect a certain number of associated particles to be found stuck

together in this limit. And in a purely equilibrium description, the magic of the partition

function and its children (virial coefficients and the like) is such that one expects them to

faithfully reflect this number when accurately evaluated. For the moment let ~j = Rand

Lij = L for all i, j for further simplicity. It is not hard to see that when L < R/2 the

hard core forces saturation or association such that only dimers can form (i.e., three or more

particles stuck together is sterically impossible). In the AA case, Cummings and Stell (1985)

found that only a very special class of n-mers (whose atoms form the centers of regular n-

gons) is possible when R < L/2. On the other hand, the AA and AB versions of selectively

SS model can saturate even for L > R/2 (in particular, for R = L) if one has a small enough

"sticky spot". We shall refer to the uniformly sticky SS model in the f = 00 limit as the

"shielded sticky shell (SSS)" model and the sticky point model in this limit as the "shielded

sticky point" model.
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Let us now considerone more limit, letting Sij = S and Pi= Pfor continued simplicity.

We hold T and p fixed and increase S, first looking at a model with saturation (say the

AB model with L < R/2) or with relatively low n-mer formation, n > 3. More and more

particles dimerize as .we increase S. At infinite S we expect to reach a point at which no

free particles (monomers) are left. At this point we have confinement. [H instead we are

looking at a model in which n-mers can readily form for all n (e.g., the AA or AB models

with L > R/2). As we increase S we might expect to first reach instead a value Sp at which

infinite clusters of stuck-together particles appear - a gelation of polymerization point which

can be regarded as a (correlated) percolation point.]

III. CONFINEMENT

At confinement (but only at confinement) one can unambiguously identify the molecules

(i.e., dimers) to which each pair of particles belong, so that one can use not only the lan-

guage of particle-particle correlation functions but, alternatively, molecule-molecule correla-

tion functions and site-site correlation functions. But to use any of these languages, we must

introduce some technical terminology. On or off confinement the Ornstein-Zernike equation

in particle-particle language for our 2-species models can be written in matrix notation as

(I + pH) (I - pC) =I (3.1)

where I is the unit matrix with elements Dij,P is species density p = Pi' i = 1,2, and H

and C are matrices, the elements of which are the Fourier transforms Hij(k) and Cij(k) of

the usual pair correlation function and direct correlation function Hij(r) and Cij(r) between

particles of species i and j in a mixture. Hj1jyeand Stell (1977) [whose "particle-mixture

picture" of the ISM is reviewed in Stell, Patey and Hj1jye(1981) and in Cummings and Stell

(1982)], noted that in confinement one can relate these functions to the site-site or atom-

atom pair correlation function hij(r) and direct correlation function Csj(r) (that refer to the
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intennolecular correlation between atoms in different molecules) and the intramolecular

function 8ij(r) (that refers to the pair correlation between atoms within the same molecule).

One breaks up pHij into its intramolecular and intermolecular part

piIij(k) = sij(k) + phij(k) (3.2a)

Adding a self-correlation Kronecker-b term bij to both sides, with

Wij(k) = bij + 8ij(k) (3.2b)

we have

bij + piIij(k) = wij(k) + phij(k) (3.2c)

or in matrix notation

piI =s+ ph, (3.3a)

I + piI = ~ + ph, (3.3b)

w=I+s (3.3c)

Suppose one then similarly introduces an intramolecular function ~j by writing

bij - pCij(k) = [~-l(k)]ij- p~j(k) (3.4a)

I CA A -1 A- P = l.J) - pc (3.4b) I

or in matrix notation

where W-l is the matrix inverse of~, with elements [~-l(k)]ij' The ~-1 is the contribution to

Cfrom intramolecular (and self) correlation while c is the remaining contribution that arises

..
~
~
,.{

,i

j.,
1
'I"

because of correlation between atoms in different molecules. In our simple AB SS model, for

example,
l.J)11= '-"22= b(r),811 = 822 = 0

l.J)12= 812= 8 = b(r - L)/41rL2, (3.5)

W12= (kLt1sin kL,Wll = W22= 1,

8



and the confinement condition is

Js(r)dr =1
(3.6)

The properties of ~-1 immediately follow from those of~:

"-1 1 1 + "2 + "4W.. = = s s +... ,
I. 1 - 82

"-1 -8 ""3
W12 = 1 "2 = -s - s ,-s

(3.7a)

and one can see that

wjil(r) has a c5(r)contribution at r =0 and a discontinuity of 1/81rL2r
at r =2L but is otherwise continuous. It is strictly positive, wjil( r) ~

3/41r L2r as r ~ 00

(3.7b)

Wi"21(r)has a -c5(r - L)/41rL2contribution at r = L but is otherwise
continuous. It is strictly negative with Wi"l~ -3/41rL2r as r ~ 00

(3.7c)

Hf/Syeand Stell (1977) noted that from (3.1), (3.3) and (3.4) it follows that

it = ~c[1 - ~C]-I~ (3.8)

This is precisely the equation Chandler and Anderson (1972) introduced for the interaction

site model (ISM) in conjunction with the equation

Cij(r) = -fJwij(r) + -fJqilJj/r, r>~j (3.9a)

to supplement the exact core condition of that model,

hij(r)= -1. (3.9b)

We see that (3.8) can be regarded as an exact equation (by definition) and (3.9a) as an

approximation that we shall call the interaction site approximation (ISA). Using their exact
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result for a fluid of ISM moleculeswith dielectricconstant", (with ~j = R not necessarily

imposed, but with a single L)

[
A A A A

] 2 2 [ -I ]9p hll - hl2 - h21+ h22 = k L ('" -1)(y",) - 3 , (3.10a)

where

y = 47rfJp(qL)2/9, (3.10b)

Hf/Syeand Stell (1976) had earlier shown that in any approximation in which the site-site

direct correlation function has the form

~j(k) = -47rqif/j/k2 + a + bP + O(k3) (3.11)

(as it does in the ISA), a fluid of ISM molecules will have a dielectric constant given by

CJ)- 1 = 3y. (3.12)

Equation (3.12) implies

Cjj(r) -+ -(3qiqj/r as r -+ 00 (3.13)

or through (3.4) and (3.7), as r -+ 00

. pCij(r) -+ -pfJqiqj/r - [",-I)ij
(3.14)

-+ -pfJqiqj/r - 3(-It+i /47rL2r

As pointed out by Cummings and Stell (1981,1982), it follows from (3.1) (and some algebra)

that to be consistent with (3.10) one must instead have, for r -+ 00,

pCij -+ -pfJqifb/r - Bij[",-I)ij (3.15a)

where

Bij = B = 3y / (f - 1) (3.15b)

From (3.7) [and some trivial algebra using (3.10b») (3.15a) can be rewritten as

pCij -+ -A;jpfJqif/j/r

10
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where

A.j = f/(f - 1) (3.16b)

Equivalently

pGij ~ P{3qi(jjIr - P{3qi(jj I(f - l)r (3.16c)

These exact asymptotic results, used for all r > ~j, generate interesting new approxi-

mations which to our knowledge have not been fully explored. For example

pGij = -pfJqi(jjlr - B[",-l]ij for r > ~j (3.17)

is an approximation that reduces in the uncharged case, qi = 0, to the RISA for homonuclear

diatomics (Rij = R). In this case B = 1. For the more general case Ru # R12 # R22, B

does not become 1 when qi ~ 0 and the RISA is no longer asymtotically faithful to (3.15),

while (3.17) is by construction. (In this case, f - 1 ~ 3yp, so B ~ p-l, where p is given in

Eq. (29) of H~ye and Stell (1976) and discussed by them.) An even simpler asymptotically

faithful approximation is obtained by using (3.16) for all r > ~j. The equivalent expression

pGij = -P{3qi(jj Ir - 3( -1 )i+j B I 47rL 2r, r> ~j (3.18)

clarifies the form of this approximation in the qi = 0 case. Eq. (3.17) and (3.18) can only

be reasonably used if Lij < ~j/2, because of the discontinuity in (",-l(r)]ii at r = 2L. Even

then, it will only give a good approximation to Gij as long as p is not too small, because any

error in (",-l]ij will appear as an error in pGij rather than Gij itself. This yields an error in

Gij that becomes unbounded as p ~ o.

We note the following points:

(i) Although Cummings and Stell (1982) nominally base their analysis on a somewhat

different assumption than (3.15a), stronger than (3.15a) for the models we consider here, the

actual assumption on which their analysis rests - their Eq. (46) - is exactly equivalent to

(3.15a) for our models. The usual assumption,

Gij- ~ -{34>ij, (3.19)
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which is consistent with known results for a wide variety of Hamiltonians off singular points is

inappropriate on the basis of the consideration which which we are dealing here, Eq. (3.19)

is clearly too restrictive to deal with the models with a short-ranged 4>+at confinement.

[H one stays within the class of models in which 4>~is short-ranged by construction, then

(3.19) is inconsistent with (3.15) or (3.16) because for large r, -/34>,j= -/3q,q;/r.] This

is because the confinement limit is a singular point much like a critical point. One cannot

reach confinement with a short-ranged e~ except when its integral becomes infinite.

(ii) Suppose s is not 6-like but is allowed to be smeared out (e.g., Gaussian) in the

vicinity of r = L to accommodate internal degrees of molecular freedom. This generalization,

considered by HfI}yeand Stell and others in detail in the context of dielectric theory [see Stell

et al. (1981) and references therein], does not change our asymptotic analysis of G,j here in

any basic way.

IV. OFF CONFINEMENT

In Section II we considered only confinement (complete dimerization) which in our AB

SS model is given by the condition

J s(r)dr = 1

Suppose we lower the parameter S to a finite value so that the probability of AB pairs

sticking at r =L is less than unity. That probability is then given by A, the amplitude of a

delta-shell probability density, s(r, A), where

s(r, A) = A6(r - L)/41rL2
(4.1)

s(k,A) = AsinkL/kL

and we can regard the s(r) of Section III as the confinement limit, s(r,l), of s(r,A). The

lowering of A will occur as one lowers the stickiness parameter S from infinity, which will

follow in turn raising the absolute temperature from zero for a. given degree of intrinsic

stickiness. We comment further on the relation between A and p and /3 through S in Section

v.
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Since all particles can no longer be regarded as atoms unambiguously associated with

molecules when A < 1, we no longer have atom-atom functions Cjj(r) and hij(r), although

we can easily define into existence off-confinement generalizations of these functions by using

(3.1) - (3.7) with s(r) and s(k) everywhere replaced by s(r,A) and s(k,A). Since we still

have Cij(r) and Hij(r) this will be unnecessary for our purposes. The replacement of s(r, 1)

by s(r, A) yields a (",-l(r.A)]ij that is now damped,

(",-l(r, A)]ii -+ 3e-&r/47rL2r, as r -+ 00
(4.2)

(",-l(r, A)]12-+ -A3e-&r /47rL2r, as r -+ 00

where

,,2= 3(1-A2)/A2L2

In k-spa.ce, for k -+ 0
(~-l(k,A)]ii -+ 3/L2A2(,,2+ k2)

(4.3)
(~-l(k, A)].2 -+ -3/ L2A2(,,2+ k2)

Thus we can expect (3.15) with ",-l(r, 1) replaced by ",-l(r, A). This is now consistent with

(3.19), which we expect to hold off confinement (as long as we are off a critical point). But

the value of B in (3.15b) must be reassessed off confinement. It seems reasonable to continue

to use (3.15b) if we interpret f to be fv, the dielectric constant of the fully associated dipolar

solvent of density pv, which will always be less than p for a partly dissociated fluid of diatoms.

We thus have

pOij -+ -P{3qiqj/r - B[",-l(r, A)]ij (4o4a)

(4o4b)B = 3Y/(fv -1), Y= 47r{3Pv(qL)2/9

Under this assumption pCij looks like pfJqilbfv/(fv - l)r for r" <: 1 but goes over to

-pfJqilb/r for r" ::> 1, which provides us with a means of understanding the way in which

(3.19) is lost right at confinement. The approximation that is most immediately suggested

by these considerations is obtained by using for all r > ~j the asymptotic form given by

(404):

pCij = -pfJqllb/r - B(",-l(r,A)]ijfor r > ~j

13
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As in the confinement limit, we can either use the full ",,-1here for all r or, for analytic

simplicity, its asymptotic form, as long as Lij < Raj/2 and p is not too low. Using (4.3), we

have, for r > Raj
pCii = -pfJqiqj/r - 3Be-""/47rL2r

(4.5)
pC12= -pfJqi9i/r + 3ABe-"" /47rL2r

When we use (4.4b), this can be rewritten as

pCii = -pfJqiqdr - PvfJqiqie-""/(f.v -1)r
(4.6)

pC12= -PfJqlq2/r - ApvfJqlq2e-""/(f.v -1)r

As they should, (4.5) and (4.6) satisfy ( 3.14) - (3.16) in the confinement limit A ~ 1.

The remarkable aspect of (4.6) - (4.7) is that they give rise to an approximation that, while

highly nontrivial, appears to be manageable analytically with known techniques. Near the

full association limit (where" <: 1, A ~ 1, and pv ~ p). Eq. (4.7) will be only negligibly

different from the much simpler approximation

Cij = -fJqifJjf./(f.- 1)r, r > Raj (4.7)

where f. is the pure solvent dielectric constant at density p rather than pv. This result will

in fact be close to (4.6) as well as the simpler

Cij = -fJqilb/r (4.8)

for all degrees of association as long as f. ~ 1. For the uncharged case in which qi = O,the

valueof Bin (3.4)reducesto 1.

It is useful to re-express these results in terms of the correlations associated with density-

density, charge-charge, and charge-density correlations. In the symmetric case, Raj = R, this

is particularly convenient. The density-density term is

Hs = (Hu + H12)/2, (4.9a)

the charge-charge term is

HD =(Hu - H12)/2,

14
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and the cross term vanishes. We have decoupled OZ equations for Hs and HD. Eq. (4.6)

then yields

pGD = -p{3q2/r - (1 + A)p{3q2e-"r/2(fv -1)r (4.10a)

pGs = -(1 - A)p{3q2e-"r/2(fV :-1)r (4.1Ob)

while (3.9b) with (4.1) yields

HD =A6(r - L)/87rL2p for r < R (4.11a)

Hs = -1 + A6(r - L)/87rL2pfor r < R. (4.11b)

In the uncharged case, (4.10) reduces to

pGD = -3(1 + A)e-"r /47rL2r (4.12a)

pGs = -3(1-A)e-"r/47rL2r (4.12b)

All of these results starting with (4.5) reduce to (3.18) with (3.15b) in the confinement limit.

H we include only a 6-shell e~, then any treatment in which (3.19) is satisfied will

be missing the ",,-l(r, A) term in (3.17). At confinement, we then satisfy (3.16) but with

A = 1, so that when we evaluate f from (3.16b) we find f =00. All standard approximations

(PY, HNC, MSA, etc.) will give (3.19) and thus will give f = 00 for short-ranged 4>~ at

confinement. As long as we don't try to use (3.16b) as a means of computing f, this is not

a serious problem in terms of the error that will result in Hij. H we are dealing with model

parameters that would yield a large f if f were computed correctly (say f ~ 80) then we are

rea.lly talking about a Gij that is off by about 1% at confinement for large r (where Gij is

undetectable by direct means in the first place).

v. CONCLUDING REMARKS

The approximations of Section IV remain to be quantitatively assessed at the time of

this writing. Eq. (4.4c) requires numerical solution; [U}-l]is not a simple enough function
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to handle analytically. On the other hand, Eqs. (4.5) and (4.6) in principle ca.n be handled

analytica.lly,using the same techniquesrecently employed by Blum and his coworkers to

treat sticky-charged spheres. Zhou and Stell (1989) have already done the mathematics

associated with (4.7), (4.8) and (4.12) for a wide continuous range of core interpenetration,

R/3 < L < R. We give their results in our Appendices. The rest of this section will

be devoted to comments concerning the meaning of the mathematics of Section IV when

. contemplated for L > > R/2, for which one no longer has the steric restriction to dimerization

in the SSS model.

First of a.lleq. (4.4c) is the result appropriate to the shielded sticky point model (not

the SSS model) for the whole range L < R. The sticky point model is sterica.llyrestricted

to dimerization over this whole range. Its complete-association limit is simply the ISM-

approximation result, first proposed by Chandler and Anderson (1972), for the fused-core

dipolar dumbbell model. Thus it can be regarded as the natural extension of that result into

the realm of partially associated dipolar dumbbells.

Eqs. (4.5) - (4.12) have a less obvious meaning when contemplated for L > R/2, but

they appear to be relevant to the SSS model, at least over some range of L /R values. This is

an intriguing issue, especia.lly in light of the fact that when q =0 (which leads to B = 1) and

L =R the equations have exactly the structure of the Percus-Yevick (PY) approximation as

applied to the model of a hard-sphere mixture of species1 and 2 with a "sticky" attraction

only between unlike species. (This is a mixture version of Baxter's "sticky sphere" model

[Baxter (1968a)]).

For q =I 0 andL = R our equations have the same form as the hybrid PY/MSA

equations considered by R.a.saiahand Lee (1985a, 1985b) in their investigation of the ionic

version of the same mixture model. We note however that our treatment of the p and {3

dependence of A through our parameter S is in general different from that which comes out

of a PY /MSA treatment.

In order to help illuminate the meaning of (4.7), (4.8), and (4.12) for 2L > R, it is
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worthwhile considering briefly the expected behavior for L > R/2 of the ionic SSS model

that defines our dissociative dipolar dumbbell fluid when L < R/2. For L > R/2 the model

remains well defined but no longer describes particles that can only associate into dumbbells.

For all L, the model is defined by the pair potential

-
{

kTln[l + fij(r)], r < R
tPij(r)- (_1){i+Hl}q2/r, r > R (5.1)

where

fij(r) = fHS(r) + 6(r - L)6ij/121rL2T (5.2)

with

fHS(r) = {
-1 for r < R
0 for r > 0 (5.3)

Here fHS(r) is the hard-sphere Mayer f-function that describes the repulsive core of the

interaction, the 6-function term of strength l/T describes the attractive "shielded sticky

shell" and the q2/r term describes the Coulombic interaction. Thus our stickiness parameter

is here being expressed in terms of l/T, which it equals except for a trivial factor.

For L < R/2 the shielding of the repulsive core prevents any association except dimer-

ization between particles of species 1 and 2. In this regime, the recent approach of Zhou and

Stell (1992b) can be expected to give a satisfactory description of the relation between A

and the T of Eq. (5.2). From the earlier work by Cummings and Stell (1984) and Lee et al.

(1985) it is clear that this is not true of the PY closure (for q =0) or the PY/MSA closure

(for q =I 0). In particular, those closures violate the law of mass action at low densities.

The "simple interpolation scheme" developed by Stell and Zhou (1989a) and Zhouand Stell

(1992a, 1992b) satisfies the law of mass action but will not give a satisfactory quantitative

description of the relation between R and T in this regime. For L slightly larger than R/2,

the model describes particles that ca.nassociate into chains of alternating species 1 and 2. As

L/R further increases, a greater variety of branched chain configurations becomes possible.

In this regime the spatial deca.yof Cij seems difficult to assess for small T outside the core,

and (A1.4b) may well be too simple to be a.reasonable approximation. Moreover the relation
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between A and T has not been investigated in this regime. For L still larger, so that L /R

is slightly less than 1, the system describes particles that ca.n freely vulcanize into a wide

variety of clusters. Here (A1.4b) may offer a useful approximate description of the model,

since the special steric constraints that must be embodied in Gij for smaller values of L /R

in order to account for chain formation are no longer present for these larger values of LfR.

When considering the general case of (5.1) in which q 1- 0 it is natural to take, in

equation (A1.4b),

r = pq2, (5.4)

whichfollowsfrom (4.8) for L > R/2, since the factor f./(f.-I) of (4.7) loses its relevance when

one loses the steric constraint that assures that association only produces dipolar dimers for

L < R/2, while (A1.4b» with (5.4) is consistent with (3.19) off the complete association

limit.

With (5.4) and (4.8) instead of (4.7), one is back to the simple MSA closure for r > R.

One must continue to choose a closure condition for r < R to determine A as a function of

T. For L/R less than (but close to) unity, the PY closure

C;j (r) = lij (r )[hij (r) + 1)/[/ij (r) + 1] (5.5)

appears to remain sensible for r < R.

On the mathematical side, we can continue to solve the set of equations of Appendix

I, for all R/2 < L < R and for this range we give the solution in Appendix III. In light of

our discussion here, the solution appears likely to offer a useful approximate description of

the SSS model only when L/ R is a bit less than 1, although further work will be necessary

to elucidate this question.

As L increases from R/2, when it reaches the value R, a new complication arises,

since all steric shielding effects of the hard core relative to the sticky shell at r = L are

lost. This permits unbridled clustering or vulca.nization of such an extent that the system

will lose thermodynamic stability, as one of us has already discussed in detail elsewhere
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[Stell (1991»). We have two remarks in this connection. First, the PY /MSA approximation

defined by (2.17) and (2.18) may remain a reasonable description of a system in which the

6(r - L) of (2.14) is replaced by a narrow sharply peaked function of finite height, reflecting

a narrow well in the pair potential of finite depth. (This is the sense in which the Baxter

sticky-sphere model and its extensions are typically used.) Second, a novel alternative way

of giving thermodynamic meaning to the PY /MSA solution of the model for L = R is to

regard it as an approximation to the solution for L slightly less than R (given in Appendix

III) where the model is free of the instability that sets in at L = R. Finally, we note that

all the closures to the OZ equation given in Section IV become "improper" closures in the

sense of Chandler and his colleagues, in the confinement limits.
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APPENDIX I: GENERAL TREATMENT OF EQ. (4.7) AND (4.8)

Our equations using (4.7) or (4.8) can be decoupled into the sum and difference equa-

tions

h. = c. + 2pc. * h., (A1.1)

>'L
h.(r) = -1 + 24 6(r -L), r < R, (A1.2a)

c.(r)= 0, r > R, (A1.2b)

h" = c" - 2pc" * h", (A1.3)

>'L
h,,(r)= 246(r- L), r < R, (A1.4a)

19



--- - --- ---u-_u -- n up_n- - - _u--

r
Cd( r) = -, r > R,r (A1.4b)

with

h, = H12 + H~1, C, = C12 + Cu2 2

h H12- Hll C12 - Cu
d= , Cd=2 2

(A1.5a)

(A1.5b)

Applying Baxter factorization [Baxter (1968b,1970)], we have [Stelland Zhou (1989b)j

Lee et aI. (1985)j Rasaiah and Lee (1985a, 1985b)j Lee and Rasaiah (1987)]

rh,(r) = -q:(r) + 47rp 1R dtq,(t)(r - t)h,(lr - tl)

rc,(r) = -q:(r) + 47rp jR dtq,(t - r)q:(t)

rhd(r) = [q~(r)]'+ 47rp 100 dt[Ad + q~(t)](r - t)hilr - tl)

rc~(r) = [q~(r)]'+ 47rpAdq~(r) - 47rp 1R dtq~(t)[q~(t + r)]'

where we have defined

(A1.6a)

(A1.6b)

(A1.7a)

(A1.7b)

c~(r) = cd(r) - r e-z", z -+ 0,r (A1.8a)

q~(r) = qd(r) - Ade-zr, z -+ 0, (A1.8b)

and we also have [Stell and Zhou (1989b)j Lee et aI. (1985)j Rasaiah and Lee (1985a, 1985b)j

Lee and Rasaiah (1987)]

q~(r) =0, q,(r) = 0, r > R, (A1.8c)

Ad == -(2r )1/2. (A1.9)
1rp

Substituting eqs. (A1.2a) and (A1.4a) into eqs. (A1.6a) and (A1.7a) respectively, we have,

forO<r<R,

>'L2

[q,(r)]'+ v[q,(r + L) - q,(r - L)] = - 24 6(r - L) + ar + b

>'L2
[q~(r)]'+ v[q~(r - L) - q~(r + L)]= -6(r - L) + H + vAd[l - O(r- L)]24

(A1.10a)

(A1.10b)
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where

1rpAL2
V = ,6

a = 1 - 41rplR q.(r)dr

b = 41rplR rq.(r)dr

H = 41rpAdJiR) ,

(A1.ll)

(A1.12)

(A1.13)

(A1.14)

Jd(r) = 100 rhd(r)dr ,

and 8(r) = 0, r < OJ= 1,r > o. Both q.(r) and q~(r) are continueous anywhere except at

(A1.15)

r = L.
AL2

q.(L+) = q.(L-) - 24 .
AL2

q~(L+)= q~(L-) + 24 .

(A1.16a)

(A1.16b)

Integration of eq.(A1.7a) yields

Jd(r) = -qd(r) + 41rplR dtq~(t)Jd(lr- tl) + 41rpAdlr Jiy)dy + Ad/2
(A1.17)

where the condition 81rp1000 Jir)dr =1 is used. At r = 0,we have [cf.(A1.15), (A1.4a)]

li2 r A r
Jd(R)+ 24 = -q~(O)+ v 10 dtq~(t)- -f + [41rp10 dtq~(t)]JiR).

(A1.18)

These equations have been analytically solved for q.(r) and qd(r) for the case L =
R/n, n = 1,2,3,4,5. Analytical solution for R/3 < L < R is obtained in Sections IV and V

below.

Before closing this section, we point out that the parameter v is closely related to the

average relative concentration of dumbbells (i.e. degree of dumbbell association), which in

fact is given by A of our eq.(2.5):

1rpAL3 = 2vL = A
3 (A1.19) .

21



When v = 0,we have completely dissociated dumbbells (charged hard-sphere fluids). When

v = 1/(2L),so that A = 1,we have the complete-associationlimit (dipolar dumbbell fluids).

APPENDIX IT: SOLUTIONS FOR R/3 < L < R/2

A. The Diff'erence Equation

The mathematical method for solving eq.(3.10) for arbitrary L can be found in ref. 13

and is similar to the one used for the case of L = R/n. For R/3 < L < R/2, weneedsto

divide the hard-core region (0,1) into the five intervals (0,1-2L),(1-2L,L), (L,I-L), (I-L,2L),

and (2L,I). Here and below, we shall use R = 1 for convenience. Followingthe method of

Baxter (1968b,1970), the solution of eq.(A1.lOb) is

q~(r) = AIsin( .J2vr) + A2cos(.J2vr) + (H + ~Ad)r + A3, 0 < r < 1 - 2L,

= BIsin[v(r -1 + 2L)]+ B2cos[v(r-1 + 2L)]+ H, 1 - 2L < r < L,v

= .J2A1cos[.J2v(r- L)]- .J2A2sin[v2v(r- L)]- ~d, L < r < 1 - L,

= Blcos[v(r-1 + L)]- B2sin[v(r-I + L)]- H - Ad, 1- L < r < 2L,v

= -A1sin[.J2v(r - 2L)] - A2cos[.J2v(r- 2L)] + (H + ;Ad)(r - 2L) + A3 - ~,
2L < r < 1,

(A2.1)

Coefficients AI, A2, A3, B1, and B2 can be obtained from eq.(A1.16b) and the continuity

condition of q~(r) at r = 1 - 2L, 1 - L, 2£, and 1. Mter some algebra, we obtain

1 H
Al =A {-;[-1 + 3c, - 81+ v'2s182+ 381~ + .J282CI- 2Cl~ -v(l- 2L)(.J28182- 2Cl~)]

+ ~d[-1 + 3c, - 81+3C,81 + .J282CI+2.J28182 -4CIC, -v(I-2L)(.J28182 - 2CI~)]

+ 1;'1 [-1 + C,+ 2C,81+ .J282CI]}
(A2.2)
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---

1 H
A2 =A {-;[-h - 3s2 + hCl + 2S2Cl+ hC2S1 - 3S2S1+ h~Cl

+ 1/(1- 2L)( h - 2S2Cl - h~sd]

+ ~d [-2h + hCl - 3s2+ 4S2Cl+ 2h~SI - 3S2S1+ h~Cl

+ 1/(1- 2L)(h - 2S2C1- h~S1)]

- 1;'1[S2+ 2S2S1- h~C1]}

1 H
~ =A{-;[-3h - S2 + V2C1 + hC1C2 - S1S2 + 3h~S1 + 4S2C1

+ 1/(1- 2L)(3h - 3h~S1 - 4S2C1)]

+ ~d[-S2 + V2C1- 2h~ + 2hs1 - S1S2+ hC1~ + 1/(1- 2L)(3h - 3V2~S1 - 4S2C1)]

+ 1;'1(-S2 + V2cd}

(A2.3)

(A2.4)
1 2H In

B1 =A {-;-[S2 + hS1 - V2C1 + V2C2S1 + S2Cl - 1/(1 - 2L)(S2 - V2C1)]

+ Ad[2s2+ V2s1 - 2V2c1 + V2~S1 + S2C1-1/(1 - 2L)(S2 - V2C1)]

V21/

+ 12'1[1- ~ + 2stJ}

1 2H
B2 =A {-;-[-S2 - V2~ + V2s1 + V2C1+ V2C1~- S1S2-1/(1 - 2L)(V2s1 - V2~)]

+ Ad[-S2 + 2hs1 + v2C1 - 2J2C2 - S1S2+ v2C1~ -1/(1 - 2L)(v2s1 - v2C2)]

. + :'1 [-S2 + V2C1]}

(A2.5)

(A2.6)

where

A = -3h + v2~ - V2S1+ 3V2~S1 + 4S2C1 (A2.7)

C1= OO8[I/(3L - 1)], S1 =sin[I/(3L - 1)] (A2.8)

~ =OO8[V2I/(1 - 2L)], 82 = sin[V2I/(1 - 2L)] (A2.9)

1f:p

'1="3 (A2.10)

Substituting eqs.(A2.1), (A2.2), (A2.3), (A2.4) (A2.5) and (A2.6) into eq.(A1.18) we
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can solve for H [d. (A1.14)]

H = a1 + aa2 + "';a~ + 2aaa
24a4'1

(A2.11)

with a = -41rpAc, and

a1 = -6V2 - 2s2 + 2V2~ - 4V2s1 + 2v'2C1+ 6C1S2+ 4V2s1~ + (2s2 - 2V2c1)Y (A2.12)

v'2
a2 = - -[-8 + 6C1 - 4C2 - 3V2s2 + 6C1~+ 4s1~ + 4V2c1S2 - 3V2s1S2

11

+ (9 - 4C1 - 3s1+ 3C2+ 2V2s2 - 4C1~ - 9s1~ - 6V2c1S2+ 2V2s1S2)Y

+ (-3 + Sl - ~ + 3s1~ + 2V2c1S2)y2]

(A2.13)

aa = -.!.{[(4S1 - 24cDs~ + (-24s~ - 4s1)~ - 34V2c1S2S1~ - 6V2c1~S2 + 6V2c1S1S211

+ 34V2c1S2 + 16s~C2+ 48s1C2+ 8C~C2- 12s1 - 24]Y

+ [( -12c1 - 4)Sl + 24c~ - 12c1]S~ + [24s~ + 16c1S1 + 4s1 + 8C1]~

+ [(34J2C1- 16v2)Sl + 12v2c~ - 8v2s~ + 6v2c1 - 8v2]C2S2

+ 8v2s~S2 + 16V2s1S2 - 6V2c1S1S2 + 12J2c~S2 - 34v2c1S2 + 8v2s2

-16s~C2 + 8C1S1C2- 4SS1C2- SC~C2- SC1C2+ 12s1 - SC1S1-16c1 + 24}
(A2.14)

a4 = ~{(3V2 - V2S1+ v2~- 3v2s1~ - 4C1S2)y211

[-6v2 + 4v2c1 + 2V2s1 - 2V2~ - 4s2+ 4J2C1~ + 6v2s1~ + SC1S2- 4S1S2]Y

+ (4s1 - 4C1+ 4)S2+ (-V2S1 - 4v'2Cl + 3J2)~ + V2S1 - 4V2cl + 5V2}
(A2.15)

where Y = 11(1 - 2L). It is worth noting that the excessenergy satisfies fJEe~= aH /2 [Lee

et a1. (1985)]. (H used here is equal to -H used by Lee et al. (1985), Rasa.ia.hand Lee

(1985a, 1985b), and Lee and Rasa.ia.h(1987).

B. The Sum Equation
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The sum equation (1.10a) can be solved in a similar way. Results are shown below.

1 a . &; &;
q.(r) = '2ar2+ [b- 2v (1 - 2vL)]r + c + vsm(v2vr) + ucos(v2vr), 0 < r < 1 - 2L,

= -.!:.a(r- L) - ~ + a2(1 - 2vL) + qsin[v(r -1 + 2L)] + pcos[v(r -1 + 2L)],v v v

1- 2L < r < L,

= 2:2(1 - 2vL) - v2vcos[v2v(r - L)]+ v2usin[v2v(r - L)],L < r < 1- L,

= !(r + L) + ~ + a2(1 - 2vL) - qcos[v(r -1 + L)] + psin[v(r -1 + L)],v v v

1- L < r < 2L,

= ~ar2 + [b+ 2: (1 - 2vL )]r + (1 - 2vL)~ + c - vsin[v2v(r - 2L)] - ucos[V2v(r - 2L )],

2L < r < 1,
(A2.16)

The coefficients a, b, c, u, v, p, and q can be obtained from eq.(1.16a), the continuity condition

of q(r) at r = 1 - L, 1 - 2L, 2L, 1, and equations (1.12)and (1.13).

1 1- 2vL 1 - 2vL
(2+ 0_- )a+(I+ -- )b+C-C2U-82V=0

a
- - c + U+ S1P- C1q = 0v2

1 - 2vL 1 b &; &;[ + -]a + - - v2s2u+ v2~v - q = 02V2 V v

(1 - 2vL) b )'L2
a - - + ../zv + C1P+ 81q =-2v2 v 24

1 1 1 1
(- - L + - - -)a + (1 - 2L + -)b + c+ ~u + S2V- P = 02 2v V2 V

3 2
- ~ [(2L - 1)2V2 + 2L(1- 2L)v + 10L - 3]av

+ {I + 2'1 [(8L3 - 24L2 + 18L - 4)v - 6L2 + 6L - 3]}bv

- 12'1(1 - 2L)c - 6~[-(2V2Lv - V2)82+ (2L - 2)v~ + 2Lv]uv

+ 6~[-(2L - 2)V82+ (-2ViLv + V2)~ + 2V2Lv - Vi]vv
12'1

- -;-[(1 + LV)81+ (1 - 2Lv)C1+ (1- L)v -l]pv
12 .

+ --t[(2Lv -1)s1 + (Lv + l)c1+ (2L -1)v - l]q=0v

25

(A2.17)

(A2.18)

(A2.19)

(A2.20)

(A2.2l)

(A2.22)



{I + 2~ [(8L3 - 6L + 2)V2+ (-18L2 + 6L)v + 30L - 9]}av .

12q 12q
+ -[2L -1][(2L -1)v -1]b+ 24q(1- 2L)c+ -(1- ~)uv v

1~ 1~ 1~
- -82V + -(1 + 81- Cl)P+ -(1 - 81- Cl)q=1v v v

These seven linear equations can be solved by using matrix transformation.

When L = 1/2, ~ = 1 and 82 = o. When L = 1/3, Cl = 1, 81 ::;::o. At these va.lues of

(A2.23)

L, a.ll results presented here reduce correctly to results obtained in earlier work by Lee et a.l.

(1985), Ra.saiah and Lee (198580,1985b), and Lee and Ra.saiah (1987).

APPENDIX III. SOLUTIONS FOR R/2 < L < R

When 1/2 < L < 1, the hard core region (0,1) is dividedinto (O,I-L),(I-L,L),and (L,I).

Ana.lytica.l solution is shown below.

q~(r) = H + Blsin(vr) + B2cos(vr), 0 < r < 1- L,v

= (H + vAd)(r -1 + L) + AI, 1- L < r < L,

= - H - Ad + Blcos[v(r - L)] - B2sin[v(r- L)], L < r < 1,v

1 H V
Bl = 1 {-[Cl - 281- v(2L -1)81] + Ad[cl- 81- v(2L -1)81] - 12 8d (A3.2)

- 81 v q
1 H V

B2 = 1 {-[I - 81 - 2Cl - v(2L -1 )Cl]+ Ad[1- 81- Cl- v(2L -1 )Cl]- 12 cd (A3.3)
- 81 v q

1 H V
Al = {-[Cl- 81-1 - v(2L-1)] + Ad[cl-1 - v(2L-1)] - -}1 - 81 V . 12q

(A3.1)

(A3.4)

where Cl = cos[v(1 - L)], 81 = sin[v(1 - L)], and v, Aa, and q satisfy equations (A1.11),

(A1.9) and (A2.10) respectively. Besides, H still satisfies eq.(4.11) but with

al = -2 + Cl - Y (A3.5)

a2 = 1.[(1 + 81)y2 - (3s1 - 4Cl+ 3)Y - 281- 6Cl+ 6]v

a3 = -!.[-(C181 - Cl)Y + 2C181- 481 - 2c~- 2Cl+ 4]v

a4 = 2~2[(1 + 81)y2 - (481 - 4Cl + 4)Y - 8Cl+ 8]
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_H- - _HUH n_n-- n_---

where Y = v(1 - 2L).

For the sum equation, we have

q,(r) = -;r + ;2 [1- vL]- ~ + pcos(vr)+ qsin(vr), 0 < r < 1- L,
1

= -ar2 + br + U, 1 - L < r < L,2 - -
a a b-

= -r + 2(1 - vL) + - + psin[v(r- L)]- qcos[v(r- L)], L < r < 1,v v v

where a, b, u, P, q satisfies 5 linear equations.

1 1 1
[- + -(1- vL)]a+ -b+ SIP- Clq=0

V V2 V

1 V 1 1V
[- - -]a+ (- -L)b-u -q =--v2 2 v 24

v-I (1 - L)2 1
[-+ ]a+[(I-L)+-]b+u-CIP-slq=OV2 2 v

- 3'7[(4L3- 6L2+ 4L -1)v2 - 8L + 8]a2V2

+ {I - 4'7[(2L3 - 3L2 + 3L -1)v - 3L2 + 3L]}bv
12'7

+ 6'7[1- 2L]u - 2"""{-[(L - l)v - 1]81+ (1 - V)Cl+ Lv - l}pv
12'7

- -{[(L -1)v -1]Cl + (1- V)81+ l}q =0
V2

{I + 2~ [(2L3 - 3L2+ 3L -1)v2 + 6L(L -1)v -12L + 12]}a+ 6'7(2L-1)bv
, 12'7' 12'7

+ 12'7[2L-1]u - -[-81 + Cl-1]p + -[-81 - Cl+ l]q= 1v v-

(A3.9)

(A3.10)

(A3.11)

(A3.12)

(A3.13)

(A3.14)

When L = 1, and L = 1/2, our results reduce to the results obtained in earlier work

by Stell and Zhou (1989a); Zhou and Stell (1992a, 1992b); Lee and Rasaiah (1987); Baxter

(1968a).
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