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wplications of Gene ized Tnverses in the
Solution of Linear Equqticng and Functlion Minindzatloms

R. P. Tewarson

Abstract.

A method dg given for deriving the formula for the VeW generelized
inverse of a mabrix. A similsr techoique is then used to generolize the
method of demped lzast sqguares for the golution of linear eguetions. The
V-V generalized inverse l1s ﬁtilizﬁd to extend the wesk method of stecpest

degconl and to generalize the expression for the basic Jeast squarcs solution

of linear eguations. Technigues for improving the computation of V-U

-

generalized inverse and some of the epplicationg to the unconstrained function

minimizetion problenm sre slso gilven.
1. Introduvction.

Let Abe anmx n matrix of rark r. Then it ig pogsible To conplruct
20,0257 en m x v matrix X and an v x n matrix L such that
(1.1) A =XKL,
By direct substitution in the following four defining relstions for the
generslized invars. métrix given by Pénroge 191

.7

(1.2) ata = a, o= AT, T = (ar") ana 200 = (270

it can be easily verified that [12]

i

(1.3) A=t =) T ) TR,

where / denotes the transpose. It is well knom [QOj'that the solutions
of the linear equation

(11) | A = Db

are given by

% This research was supported in part by thc Halticnal Aevonasubics
‘and Space Adminigtration Grant No. NGR-33-015-013.
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, N ] +
(1.5) x = Ab+ (I~ A Ay,
where x anud b are colwan vectors with n and r elements respectively, v io

an arbitary n element colwm vector a

c.a
,,.,-

¥l In 5 the identity matrix of order n.

Any x given by (1..5) mininizes wa}&:x.: » Vizn., the Fuclidean length of the

residusl, and out of all such x S, X = A'b hes the least Euclidean length

viz., |l is minimuwn. In other words, x = A b is the unique minimnn

norm least squares solution of (1.l). Anslogus to (1.3) we define [137, [147,.[15]

+ " Rt N SR e
(1.6) Ay = VLTV ) T (RIVK) TRV,
W : ,
where V and W are nonsingular symumetric matrices of order m and n respobively.
- s +, I
It is shom in [15] that if we replace A by A,_. in (1.5), thenthe resulting
V,W .
valus © inimizes |[b-fxll  and out of 21l such x's, x = A_ _-b has the least
v v,W
-1 . . . eyt
W o les “Zey Hx]‘. J*l is minimum. The V (orW) length H i of row vector
L v,
E is do vy |[g]l" = gV €.
v
I next section we will give en slternative way of deriving (1.6)
from t:  ove mentioned properties of AV o and ghow that the same techulque
I8
51
can be ¢ lied to the so called method of dsmpad least squares [167], [271],

i 2
b-Ax -

2

such thzi l]b~Ax1v * eHxHiI instead of

t elxl|2 is minimized. We will

also show that if W is replaced by I, then the resulting ‘AV I, can be used

to extend the wesk method of steepest descent [26]. If A is of full column
e

rark (r=n) than a simple application of ‘A“V W to the basic least squares
3

solution of linear equations is also given.
In gection 3, we consider the case when A has full row rank (r=n)
1. . o - .i‘ -
and 2 method is given to improve the conditioning of A_ . In section L,
3
several applications of the results (obtained in section 3) to the un~
constrained optimization of nonlinear functions are given.

+ .
2. Alt native derivation of A, - and applications when r=n.
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It is shown in [20] that for all x the solution x = A™b of (1.L)

satisfies either

(2.2) o - ), > o - &,
(2.2) b - &y = [b - £, and [l = [xgl, -

Let us consider the solution of the system

(2.3) (EAF)(F *x) = Eb

" where E and F are nonsingular watrices of order m and n respectively.
Then in view of (1.1) and (1.3), the minimum Euclidian length least

squares solution of (2.3) is

Flx = (EAF)?Eb = (EXLF)" Eb
= [(E)(IF)] Eo = @) /[ @E)LF) '] [ (EK) (BK)] " (EK)’ £n
- FL(LFFL) T (KEEK) KB B ’
or*
% = FR/L(LFF/LY) 7 (K/EEK) T K'E’ Eb

WL/ (VL) Y (K'VK) K’V b, where FF = W and E'E = V, and from
(1.6), it follows that
' ~ +

(2.L) X = hpe Do

Since F '% is the least squares solution of (2.3), as in (2.1), for all
X, we have ||Eb - EAFF |, > ||[Eb - EAFF X, ,vkich implies that

(2.5) o - &y > [lo - &3, -

Similiarily, the minimuwm norm condition (2.2) gives

Eb - BAFF#||, and |[F ol 2 |F &,

im - EAFF x|, =

which yeilds
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(2.6 o -y = e -]y e > (7]

The @bove results can be stated as

Theorem 2.1. If % = A;;wt>is ¢k as the solution of (lmh); then
for all'x" either (2.5) or (2.6) holds

The above theorem was first give .y Greville [13], [1h] for either
W=1IorV=1Iand vas later extendec by Herring [15]. Bauer [3] has
- given an Algol Program for n = r and an espscially chosen matrix V. The
main advantage of our proof is that a similar tachniqua‘can be used to
extend the method of damped least squares [16], [27], such that the V
length of the residual vector and the W length of the solution wvector is
minimized, instead of the usual Buclidian lengths. We have the following

Theorem 2.2. If in equation (L.h), 4 has full colwm rank (n = r) and
(2.7) ¥= (A'Va+ W) AVD,
then for gll x

(2:0) B R = R

where ¢ is a small positive murber.

Proof. Consider the least squares soluticn of the system
EA b
(2.9) TF> x = (()), vhere 7 =/e > 0«

- Since A has full column rank (r = n) and E has rank m = n, therefore, in

view of (1.1) and (1.3), we have

e 2 g
:(T%) - [, TF’)(E?)J (A'E’, 7F’) = (A'E'EA + +?F'F) (A'E’, «F')

= (A'VA + W) " (A'E’, 7F’), since E'E = V and F'F = W ,

and - o
a (A'vA + ew) = (A'B', TF’)(;“F‘:

i

EA\ F/EA
TF) \1F

i}

(A7VA + W)~ (A/VA + W) = I

P S R

S iher el

. AT R S 2R AL K

B W
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Thue from (1.5) it follows that the solution of (2.9) is

~ . -1 ~ - -
¥ = (AVA + eW) " (A7EY, TF')(%)> v (T 4 In) |

(A'VA + ) AV b,

and X is the unique least squares solution of (2.9) viz., for all x
Eb EA 2 Eb EA >~ 12
H( O) - ('TFJ X Hg > ”(O> - (’l’F) x “.‘, ’
2 2 ~\p2 ~ 2
= 120 - &)+ REf > (B - S+ 2[5
2 2 ~ 2 2
= 1o - Ay elllyy > o - Ay - ellF

this completes the proof of the theoren.

For some of the uses and comments on the method of damped least
squares as well as the usual least squares method the reader is referreﬁ
to [L7, 57, [6], [117, [16]; [27] . We will now show how the A;’W can
be used in the weak methoa of steepest descent. To this end, ws will
need the following theorem, a constructive proof of which is given in
[26].

Theorem 2.3. The iterstive scheme

(2.10) u =(. -y A'A) u +y A'D
k+1 Iy - v x P

with arbitrary uo converges to.ﬁ = A+b + (In - AfA) uo , if
0< < 2/]2%).
In the above theorem ”A'Aﬂw denotes the usual maximum norm [10, p. 637,
which is easy to evaluate. Now we can prove the following
.-_ Theorem 2.L. The iterative scheme

- ' ’
(2.11) Uy (I - AVA) u +u ATV D

converges to u = A; Ib > if ug = A’y and O < < Z/HA'VAHm , where Yy is
,T

an arbitrary column vector with m elements.

B o S e R T e T
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Proof. Theorem (2.3) is certainly true if the matrix A and the vec-
tor b are replaced by EA and Eb respectively, since E is a non-singular

matrix. Now

(2.12) (EA)7(EA) = A’E’EA = A’VA , since V = E'E .
(2.13) (EA)’Eb = A'E’Eb = A'Vb
+
(2.14) [I, - (B4)'BA] A7 = A7 - (BKL)'BKL LK/, using (1.1)
—-1 —
= A7 - L/(LLY)  (K/E’EK) TK/EEXK 11K’ , using (1.3)

= A’ - LK’ =0, using (1.1) .
(2.18) (EA) Eb = (BKL) Eb

i

L/(1L’) " (K’E’EK) T K/E‘Ep

using (1.1) and (1.3)
-1 -1 + )
= L/(LLY) (K/VK) K'Vb = AV Ib .

>

The theorem follows by replacing 4 andb by EA and Eb respectively in

- Theorem (2.3), followed by the use of (2.12), (2.13), (2.1L) and (2.15).
From Theorem 2.1, it follows that the iterative scheme (2.11) given

above minimizes the V length of the -wesidual ihstead of the Euclidean

length, as is the case if (2.10) is used. Minimizing the V length of

the residual‘is at times desirable due to scaling and round-off cons:

ations.

We will now give an application of 'y to the basic least squares
V., W
3
solution x of linear equations. Rosen [21] defines x as the vector having

at most r 1 :.zero components and for all other x

(2.26) I - &, = o - 47, -
Let P be 2 - :rmutation matrix of order m such that
(2.17) - | AP = (R, D) ,

where R de'. -3 all the linearly independent columns of A and D the de-

pendent ons.. Equation (2.17) implies that for any non-singular matrix

E, of order m,

e e e

paco o

-

S T DA S M A T oo PN T SO %, 2

- o =, —— -

- e wy— 4




(2.18) ' EAP = (ER, ED) ,
and the columns in ER are linearly independernt. Then the basic least

squargs solution of

i

EAP P'x = Ib

according to Rosen [21], is given by

(EapP )#Eb

e’

~
o
il

x .i.,.
[(%ﬁ) J Eb , using (2.18)

-1
- [(R’E’ER) R"E’Eb}

0 7

using (1.3) and th@‘fact that ER is of full column rank. Thus

: , rypYin s p'i'
(2.19) s - P<(R VR)TR Vb> _ p(‘vb> ’
0 0
since R;.w = (R'VR) "R’V is independent of W, we denote it by R; .
, ;
Furthermore, from (2.16), we have

|[Eo - ELPP/A| >

Eb - BAPP'X]
which implies that |
(2.20) o - 4y = o - a1, - |

Therefore x given by (2.19) can be called the V-basic solution of (1.k),
since 1t minimizes the V length of the residual and has at most r non-
Zero elemanﬁs. Such V-basic solution may at times be more desirable
than the usual basic solution when séaling and round-off errors are

taken into consideration.
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3. Tmproving the computation of A+V . ifm = p.
W
If A has renk m, then by letting XK = I and L= A in (1.1), fron (1 6)

we have
‘ + _ 7 ~1 4t
(3.1 AT W) = T (sey),
since the middle expression is independent of V. Also in view of the fact
that A has rank m, the system (1.L) has zero residucl. Therefore, from
Theorem 2.1, it follows that for all x that give zero residual
—m — +
— > - -1 -
(3.2) Il = |l Ptz | x Hw where x = A | b.
It is interesting to notice that condition (3.2) does not hold unless
W is symmetric (and of course, non-singular). However, if N is a non-
singular (not necessarily symmstric) matrix then
(3.3) x=A b+ (T - AT A) v, where AT = NA7(aNA')-2
. N n - N Ys 5] N INEZY s
is a solution of (1.l), where r = m. This can be easily verified by direcl

substitution in (1.)). We will have occasion to use (3.3) in section L.

Tn case A is such that even AWA is ill-conditioned [27], a simple woy
of improving the computation of A+w" is to replace (3.1) by
- (. KJ'W = WA/(AWA' + e I )7,
It was; proved in [27] that the condition mumber of AF(AF) " + e I, is less
than or equal to that of AF(AF)’, and therefore the computation in (3.L) is,
in most cases, bebter than in (3.1). The following theorem gives an inter-

pretation of the perturbation ¢ I, suggested in (3.4).

Theorem 3.1. The solution of the system

(3.5) Ax = b - ¢ zZ, .
where ‘ j
_(3.6) z = (AWA' + ¢ Im)”lb:

|
|




having the minimum W' length is given by

(3.7) x = A+Wb.

Proof. TFrom (3.5) and (3.6), we have

Ax

I

I

AWA'(AWA” + ¢ Im)“lb.
Therefore, in view of (3.1) and (3.2), the solution of (3.5) with the mini-

mum Wt length is

A+W_AWA’(AWA' +e T)Mb = WAC(AWAY)TAVAY (VAT + ¢ T )b

n

X

+

-1 ~
WA(AWAY + ¢ Im) b =AYb,

which completes the proof of the theorem.
For a given matrix Q let us define

(3.8) HQHEW__1 = Trace (Q’ W* Q).

Now, corresponding to Theorem 3.1, we have
Theorem 3.2. In the matrix equation
(3.9) AX =B - ¢ Z

if X is an n x p matrix, B and Z are both m x p matrices, and

(3.10) Z = (AWA’ + ¢ I) B,
then
(3.11) X = A+WB is the solution that minimizes | X [

Proof: Apply Theorem 3.1 to the successive columﬁs of B.

+ ~
W and A+w.to nonlinear function optimization.

In this section we will‘use the results obtained in the precedirng

Li. Applications of A

section to the solution of nonlinear equations. In particular, we give
alternative derivations of some of the results of Zeleznik [28] and
Pearson [18] and also describe some techniques for meking computational

improvements in them. Some new methods are also suggested. Generalized

b-e (MWA' + e T,)7b = (M8 + ¢ I) - ¢ T J(AWA" + ¢ I)7b

T

b e s R N

e —wrer .

e
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e e e e B
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inverses have already been utilized in non-linear function optimization
by Flecher [8] and Pearson [18]. ILet us consider the problem of finding
the vector x that minimizes the quadratic function

(h.1)  f£(x) =Y x'Ge + b x + o

vhere G is a positive definite symmetric matrix, b is an n element column

vector and ¢ a constant [18]. Let X, denote the i

approximation to the
vector which minimizes (L.1). Then it follows that in (L.1), the gradi-
ent of f(x) at x; is given by

gi:&i_*-b’

which implies that | ' )
(h.2‘) | 84 - 8 = Olx - x).
If we let

pu— ! = - !
(L.3) vy = (gi+1 - gi) and s, (xi+1 Xi)

then (L.2) can be written as
(b 1) y; =85 G. |
We have the following algorithm [18] for the minimization of (L.1).
. . ' _ ’ 7 , - ; 7 ’
Algorithm l;.1. Given T - (yb,...,yi_l) 5> 85 (so,...,s i—l) and

H, which satisfies the equation

(L.5) Y.H; = S, vhere H =R, 2 positive definite matrix. Determine

b from the relation
1+

f§xi+l)v= gln f(xi tog H gi).
i

Compute g, 2and using x,,, update T; and §; and (L.5) as follows:

L.6) v =Y, s =1,
L7 v ® =85 .
_y i+1 41 i+1

-10-
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It is proved in [18] that the above algorithm terminates for
i < n, if the solution of (L.5) is taken as
(h.8)  Hy = (TS 0T, - () (),
where W and W are symmetric non-singular matrices. It should perhaps
~be pointed out here that we have changed the notation in [18] to trans-
posed vectors and matrices,‘in order to be consistent not only with the
results given in section 3 of our paper, but also the current literature
in generalized inverses.

The following theorems will be needed in the sequel.

Theorem L4.1. If a non-symmetric matrix N can be found such that

Y, Ny =0, and v; = Ny{/y; Ny{, then

B9) () = T, = vy (G vy

Proof. Since Y,  is of full row rank [1], therefore from (3.3)
i+l .

and (4.6), we have -

1

+ ! . / 1 ' Y.i ! d
Y Ny (Y NY' )T =Ny N(Y., ¥:)
. N . . i? Ji
1+l 1+1\ j+1 i+1 :

I

TiNYS YNy r TN, 0
- 1 ’ ! :NY,:'L+1 / ? yiNyjt = « (say)
R PELRE 1A EREE |
-1
, , (YiNYi) o |\
= @mﬁ} Nyi) ) -1 |2 see [10]
-y NES(Y5NYS) @ o :

. . + -
‘ = [Nth(YiNle_)“l‘ N.Vtij_(Yi)N o, NthO' 1]

+ N
= (In = Viyi)(yi)N > V5| » since v; = Nyi/a,

11—

i .

e e R e TN i L I RS2
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Theorem l;.2. If a symmetric matrix N can be found such that
YiNy£ =0 and vy = Ny{/yiNyi, then

(w10 op =[ay ]

Proof: Since N = N’, therefore yiNYi = YiNyé = 0 and

+
Yi(Yi)N. = yiNYi(YiNY{) = 0, therefore (}.9) pecomes (1..10).

As in [28], let us define

(L.11) H =H +cC .
i+ i i

Then from (L.7), (L.11), (L.6) and (4.5), we get

. V.

(L.12) Y C. =8 -Y H = AN A Hy
i+l it i+ 1 5. 7.
1 i

T> (T s Where fi =85 - yiHi .
S 17;H

In view of (3.3), it is easy to see that
¢ Y @)
i - f.

i
_is a solution of (L.12). 1In case N is symmetric and positive definite,
then from (3.1) and (3.2), it follows that fo£ the C; given by (L.13),
I[CiHN_1 is minimm. If we substitute the value of (¥, )+ fron (L.9)
or (4.10) in (4.13), then in both cases (symmetric or non symmetrlc N)

Ny, (s, - y.H.)
(k) oy = vy, - i1 TRl
7315

The equivalence between (}.1L) and Algorithm L.l can be seen from the

following

-12-
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Theorem l.3. TIf (L.8) with W=Nand % = § is chosen as 2 solu-

/e =
+4ion of (4.5) and YiNyi = YiNyi' = 0, then the correction matrix C; in
(1,.11) is given by either |
_ Nyis, Tyly.H

(Ll--l;) Ci = Visi - VjYiHi = -—~—-—7 - i"ig

¥ Nyg '.‘/il\yi

when N and N are symmetric but not necessarily equal; or by (l.1l}) if
N and N are equal but may be unsymmetric.

Proof: By direct substituticn or from (3.3) it can be easily veri-

fied that (L.8) is a solution of (L.5) and similarly
+

. +
(1,.16 H = (Y S + I - (Y —
kh ) 341 ( i+1)N' i+ [ n ( i+1) N Yi+1]R

is a solution of (L.7) even though N and N may not be symmetric. Using

(L4.10) and (4.6) in the above equation, for symmetric N and N, we get

+ * -
(27 By = (T 85+ vgsy + [T - (T Ty - Wyl R
) =visi~vyR+(Y)—S [I—( NY]R
But R
+ .
(L.18)  Hy = (Yy)y 8 + [T - (1y)x f1lRy

and YiNyi' =0 = yiNYj'_ = 0, §ince N = N’. Therefore
; + i -1 o e m . . - N
yi(yi)N. = yj_mi(YiNYi) and this is 2lso true if N is replaced by N
which, in view of (L.18), implies that-
Using (4.19), (L4.18) and (L.11) in (4.17), we get (L.15).

In case N = N, but N is not necessarily symmetric,by using 4.9
and (L.6) in (L4.16), we get

+
+ -
(Tp-viys ) (T) (S5 * Va8 [In'un'viyi)(@ v viyi]R

ne

Ha
1+1

+ + + * ]

: . -(y.) Y IR
visi,-viyi[(yi) Nsi+(1n-(Yi) N)R] + (1) Nsi+[1n (x) R
This

which, in view of (L.8) with W =W = N and (4.11) gives (h.1h).

completes the proof of Theorem L.3 «

-13-
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Various choices for N are possible in (L.1l) and (4.15), for ex-
ample:
Case I. If we let N = Hﬁ, then in view of (L.5) and (L.L)

= . _/= l___ 14 I: .
0 = Y lyi = Y, Hy/ 5,68, = sstj o, k #13,

also (L4.1)) becomes

B.-virs: - v+ Hs
(L,.20) . = i71(51 iti) ,

1

’
yiHiyi

This is given as Algorithm 3 in [187.
Case II. If in Case I we let y{ = Mzi , where M is a positive
definite symmetric matrix, then the condition

sstg =0,k j=sy. =0=s Mzé =0,

K J k

and (14.20) can be written as

/
(h.21) o, = ia(% - ViH)
. 5 ;
, yiHiM“l

which is a general case of the Barnes algorithm [27], [28].

Case III. Taking M = I in Case II, we have the Rosen's [22] modi-
-~ fication. The zj’s are computed from gk's such that skzg =0. This can
be done by using the modified Gram-Schmidt orthogonalization (4. Aa1-

so (L.21) becomes
o H. z7 (85 - ¥4 H-)
i %3 (P4 i
(hf22) Ci = _— iy
i 1

Case IV. Taking N =M, O = YNy = ¥;My{ = 7y =0, k# ]

and (L.1l}) becomes
(s. _ v. H.
(h.23> Ci _ Mwl(sl _ I 1) .
YiMyi

1)~

T S R

ra—— R ——

TR A B D i

S S RS-

o
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e




Since M is chosen to be symmetric, the C; given by (L.23), minimizes

HCiH L This is the second interation given by Broyden [7].
M" .

Case V. Let N = G™. From (h.L) and the definition of ¥; and S;

it follows that

(h.2l) 1 -5, g,

=nd 0 = YilNy! = 7367y = 5;0s] = 508, = 0 k4 J; also (L.1L) and (L.1)
give
. Glyi(s; - y3H;) si¢s. - y.H.

(L. 25) c. = SR L e T (G S e O

;674 i85
amd HCiHG is minimized in this case. This is given as Algorithm 2 in
[18].

Case VI. In (L.15), let N =G™* and N = Hi’ where for the present

we assume that Hi is symmetric. Ve have

0 = Y,Ny/ YiG~1y{ = 8;0s = sstg = Q, k # 3, and

- 7. - !l _ o 7 _ .
0 = Y, Ny, = Y3H;yi = S;0s{ = sxGs; = 0 k #3.

Also (L.15) gives
' G-lyjis, ,H.y.'y.Hi sts.
- Yili R T NG Rk |
(L.26) c; = - -
i

-1_7 /
in S yiHiyi V484

vy
y3Hiy3

Ir H; is symmetric, then C; in (4.26) is also symmetric and from (L.11)

it follows that Hi+1 is also symmetric. But Hb = R is symmetric. There-

fore, by induction all the Hi are symmetric. Eguation (L.26) is the well-

known Fletcher-Powell-Davidon method [9]. It is worth noting that if

(L.26) is written as C; = C; - Cy, then HE&HG and HEiHHTl are minimized.
| i
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o _ ~ -1 o
Case VII. Ir we take N = NG + g Hi in (L.1}), then we get
. -1 ¢ -1 7 ;
= G + BH ) . = T\Y.G y + Y.H ! = 7 =
o =x(m N £ Yy TRy = (s Cs! = 0 ang
ry 11
) (s +8 Hy)

s! + ’
Ttyi'i By ys

However o and B should be chosen such that N is always non-singular. One
choice could be T =1, B = ¢
(s! + eHy))
(L.27) C. = - il (8. - y.H.).
. 1 (y.S'l + ¢ ‘H.y.’) 1 11
' ii i%d

We shall need the following theorems in Qrdef to make use of Theorem
3.2 in order to make improvements in the computation of Ci'
Theorem L.L. If a non-gymmetric matrix N can be found for which
YiNyi' =0andw, = Ny:{/ (yiNyji + ¢), then
+

(h~28) ({f}j_'l-l )N = [(In - lel)(Y].); P Wi].

Proof. As in the proof of Theorem L.l, from (3.L) and (L,.6), we get

/ ; -1
> * ! e ? —1_ ' YiNYZ{ toe Ii 0 =y ! o+
(Yi+1)N=NYi+1<Yi+1 NYi—i—l Toe Ii+1) - NYi‘*‘l( yNY! a s o Tyl * e
: : 171

: (T.NYS + ¢ 1) -0
- ’ ’ ivTi i/
(NYi: Nyi) . . . -1
-yiNYi'(YiNYi’ + € I.l) a .«

+

= U1, -y ()

. 7 -—
W, since w. = Ny. /@& -
i n’ . 1]3 i it

Theorem L.5. If a symmetric matrix N can be found such that
TNy, =0 and wy = NyJ/(y;¥y; + €), then
A~ + ~ +
(L.29) , A ) vyl
Proof.
. . , y ez 0
N=N'=yN =0= ¥5 (Y3 = ¥ NES (T WY+ e Iy

and (L.QB) becomes (L.29).
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We can now use Theorem 3.2 in the following
Theorem l.6. For the matrix equation
[0\ 0 0

(L.30) - Y,0. = fi}-— p : =@ e,

i
where p = ¢ /(y Ny' + ¢) and £, = s, -~y H ; one of the solutions is given by
ivi i i ii

O »
(L.31) C; —Nyifi/‘(yiNyiJre) .

If N is symmetric then for all the other solutions Ci of (1.30)
oyl 2 16,
Proof: In view of (3.3), if N is not symmetric, and in Theorem 3.2
if we take W = N, then, X =.A;B is still 2 solution of (3.9) but it does not
ninimize HXHN-l. Keeping this fact in view according to (3.11) a solution
of (4.30), whether N is symmetric or not is given by'.

~ +10
C (Y. ) .
f

i in’y
i

=W f;; using (L4.28) or (L.29).
= Nyif }(yiNyg + ¢), which is (4.31).
If N is symmetric then from (3.11) it follow that HGi”N-—l > Héi][N-:L.
The above Theorem shows that a small perturbation in the right hand side
of (4.12) leads to a corresponding small change in the value of C, -
However, as we mentioned in Section 3, (§i+1)§ is in genergl better conditioned
than (Yi+1>; and therefore the value of C; computed from (ﬁ.Bl) should
generally give better results and keep the numerator yiNyg from getting
too small and in some cases negative due to round-off errors. This, to
some extent also justifies (L.27). The use of (?;l+ ) )

1°N 1N

- will be especially advantageous, if in order to improve the computational

‘in place of (Yi+

aceuracy, at periodic intervals H ,, is computed directly by the formula (4.18)

-17-

i ’.‘
b

e

P ——

et e

B e
T e rs———

i

iy i




+

with (Yi); and (Yi)ﬁ ) replaced by (ﬁi);l and (gi);\.}m respectively. Such
periodic techniques for improvement are"being used advantageously in other
computa’ﬂional algorithms e.g.., the periodic reinversion of the bagis in
_product form of inverse linear programming codes [IL]. McCormick tl’?] has
noted that such periodic impr ovement techniques improved the performance
of the Fletcher-Powell-Davidon algorith [9]. Barnes [1] suggests periocdic

rescaling of S5 and reinitialization of H:L to improve the computations.
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