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An analysis is presented which considers the influence of finite-wall conductance on the

pressure distribution and load capacity of the magnetohydrodynamic slider bearing.
The analysis is based on general external loading conditions with the open-circuit
condition being a special case. The load capacity is a linear function of the quantity
$ = E,/V B, and the dependence of P on the conductivity and thickness of the walls
is shown in explicit form. Curves showing the variation of ® with wall conductance
are presented. A numerical example is included which indicates a substantial reduction
of load capacity from the case of insulating walls to the case where the wall conductivity is

1 percent of the flutd conductivity.

Introduction

IN recent years, a considerable interest has been
shown in the potentialities of liquid metals as lubricants [1, 2].1
Liquid metals may be utilized under extreme conditions of lubri-
cation at which conventional lubricants would experience unde-
sirable physicochemical changes. The relatively high thermal
conductivity of Jiquid metals means that the heat generated in
the film because of viscous dissipation is readily conducted away
from the source of generation, resulting in a tendency toward uni-
formity of temperature and viscosity within the lubricant film.
Because of the large electrical conductivity of liquid metals, the
possibility of electromagnetic pressurization from the application
of an external magnetic field arises. Within the past two years,
an exploitation of the possibilities of magnetohydrodynamic
(MHD) lubrication has begun [3 to 8]. The work to date has been
analytical with no experimental data reported in the open litera-
ture to the author’s knowledge. The analytical studies have
served to demonstrate theoretically the possibility of increasing
the load capacity of liquid-metal lubricants by means of an applied
magnetic field. The qualitative and quantitative features of
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various geometric and electromagnetic-field configurations have
been investigated to such an extent that MHD lubrication has
become rather firmly established as a research area in hydrody-
namic lubrication.

The present paper represents an attempt to extend the state of
knowledge of MID lubrication by considering one aspect of the
problem which has not been considered before. In this paper, the
influence of the properties of the walls comprising the bearing and
slider surfaces is investigated. In particular, the effect of the
electrical conductivity and thickness of these walls on the pres-
sure distribution is considered. TFor this purpose, the linear, in-
clined slider bearing is used. As shown in reference [G], the load
capacity of the MHD bearing can be improved by applying an
external electric field to augment the electric field induced by the
motion of the conducting fluid through the magnetic field. In
the present analysis, an externally applied electric field is utilized.
The open-circuit and short-circuit conditions then become special
cases of the case of general external loading. In reference [9], the
wall properties were shown to have a significant effect on the
velocity distribution in MHD channel flow, and from this result,
one would anticipate a strong dependence of the load capacity on
the wall properties in MHD lubrication.

The Analysis

Equation of Motion
The slider-bearing geometry is shown in Fig. 1. The proper-
ties of the lower, moving wall are identified by the subscript L

—————Nomenclature
b = wi/wy m = mass flow rate, equation (7) 6 = ashy
B, = applied magnetic field in M = Hartmann number, equation oW
y-direction (4) 4 = viscosity
E, = total electric field in z-direc- P = pressure § = y/We
tion R(Mn) = defined by equation (11a) —(p uwv
F(Mn) = defined by equation (8a) S(Mn) = dei.fined by_equation(l]b) i Wo
G(Mn) = defined by equation (8b) u = fluid velocity ) m = value of 7 at X = 0 and
= lower wall thickness T/IT; - giovullg}ila.tevelcclty X =L
’ ! = film thickness = fluid densit
- P uid density
h; :ptp? el thlcknessi Wy = film thickness at z = 0 o = fluid electrical conductivity
= ote, ct‘lrrent, equation (13) Wi = film thickness at * = L o1 = lower wall electrical conduc-
I* = dlmensl(?nless total current, z, Y, 2 = rectangular coordinates tivity
equat1on('14a) ‘ a = z/W, s = upper wall electrical conduc-
J: = current density, equation (2) v = u/V tivity
L =‘bfearing. length n = W/Ws ® = E,/VBy
£ = dimensionless load, equation b, = ol Pins = value for ® for insulating
(12) oW, walls
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Fig. 1 MHD slider-bearing geometry

and those of the upper, stationary wall by subseript 2. The lower
wall moves with a constant velocity V. The fluid properties will
be assumed constant so that the energy equation is not needed
in the analysis. The bearing is considered infinite in the z-direction
and a uniform magnetic field is applied in the y-direction.

The governing equation of motion has been discussed in ref-
erence [3] and may be written as

dP D U

— gt I =0 (1)

The electric current is given by the simple form of Ohm's law
(neglecting the Hall effect):
J, = o(E, + uB,) (2)

Tt is convenient to define the following dimensionless parameters:

% w £ y P

= -, = —, =—, a= —r’ = —
TRy TS Wa W vV (3)

I’Vﬂ

In terms of the dimensionless parameters, the equation of motion
becomes

i S N
522—M1'y—da+M<I> (4)

where
ANE
M = WyB, ; = Hartmann number

® = ——- = dimensionless electric field
VB,
Tt is shown in reference [3] that the electric field E, is constant.
Equation (4) may be integrated across the film sillce T is as-
sumed constant across the film. The appropriate nonslip bound-
ary conditions are
YE=0=1 E=1=0 (8)

The solution to equation (4) subject to the boundary conditions
of (5) may be written in the form

1 dr
Y= {MZ T -+ @}
{sinh M7 (cosh M& — 1) — sinh M£ (cosh M7y — 1)
) . sinh My

N <‘lsinh M7 cosh ME — sinh M£ cosh Mn '
sinh M (6)

The velocity solution depends on the two electromagnetic

parameters, M and &, the latter determined by the external elec-
trical loading conditions.

2

The continuity condition is satisfied by the requirement that
the total mass flow across each section be constant, a condition

expressed by
W . :
m = f pudy = pVwy f ydE (7)
0 0

Substituting equation (6) into (7) and performing the integration
gives

1 dm
M( VW) G(Mn) = 1 + {W da T d’} F(Mn)  (8)
where

F(M7)

= 2 — M7y ctnh %ﬂ (8a)

M
G(Mn) = ctnh —3" (8b)

The pressure distribution is determined by solving equation
(8) for dm/da and integrating over the length of the bearing, For
this purpose, it is convenient to express 7 in terms of n by the
transformation

Wy — Wi d

Solving for the pressure gradient from equation (8) gives

Wy — W, dmr 1 m G(Mn)
rrem L A ¢
M2L dn F(Mn) (pVWu) F(Mn) + )
The boundary conditions to be satisfied by 7 are
mn=1)=m wn=5b)=m (10)

Integrating equation (9) subject to the boundary conditions of
(10) and introducing additional notation gives for the pressure
distribution

Vo — W ;
FeZ T — m) = Mi{R(Mn) + ®(1 = 0)S(MD] (1)
where
) f G(Mn)i
" dn f 1 I'(Mn ;
R(Mn) = ~ - )
F(Mn)
f "G
S(Mp) = © 4, F(Mmn) i:g (11b)

b G(Mn) P
1 F(Mn)
The load capacity is obtained by integrating equation (11} over
the bearing length. The dimensionless load then becomes

Wy — W b
e=-2_" 2 ! f (m — m)dn
1

b b
= M: {f R(Mn)dn + $(1 — b)f S(Mn)rlﬂ} (12)
1 1

Ttisinteresting to observe that the pressure distribution and the
load are linear functions of ® for a fixed Hartmann number. It
is clear that for a given value of M the load capacity may be
increased or decreased through @ depending on the direction of
the applied electric field. This result was pointed out by Hughes
[6] for the MHD finite-step slider bearing. The wall properties
will influence the magnitude of @, and the magnitude of the
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effect of the wall properties on @ is determined from the total
current equation which will be presented in. the next section.

The Current Equation

The electromagnetic boundary conditions at the interface be-
tween the fluid and the walls are discussed in Appendix A of
reference [3]. In that reference, only the open-circuit and in-
gulating-wall conditions were used. Both of these conditions will
e relaxed in the present analysis.

The boundary conditions require that E, be continuous across
the fluid-wall interface. Since E, is constant in the fluid, it will
have the same constant value in the two walls. The total electric
current flowing in the z-direction is then the sum of the contribu-
tions from the two walls and from the fluid. From Ohm’s law,
the total current expression is

L 0 W
I= f {mf (B, + VB)dy + o f (B, + uB,)dy
0 —ht 0

WAl
+ o2 f E'zdy} dr (13)
i

Introducing the velocity distribution from equation (6) into (13)
and performing the integration gives the following expression for
the dimensionless total current:

o M 1L+5b 9‘,)
Vs + 6 + ‘I’( ) + 0+ 6, (14)
where = GLW,VB, (14a)
0’1]’!4
0 = = (14b)
aohs
80 == —_
” O'I’Vn (14(‘)

The quantity m/pVW, is determined from the integration of
equation (9) subject to the boundary conditions of (10) with the

result
h d"]
— -1
m 1 ﬁ My~ 2D
S = (15)

oV, M b G(Mn)
J: F(Mm) ™"

Equation (14) with m/p VW, given by (15) then gives a single
equation relating I* and ® which involves the parameters M, 6,
0, and b. Either the quantity 7* or ® may be considered as the
independent externally applied electromagnetic parameter in
addition to M and equation (14) then serves to determine the
other parameter. Since ® enters explicitly in the pressure dis-
tribution and load capacity expressions given by equations (11)
and (12), respectively, it is convenient to solve equation (14) ex-
plicitly for ®. The result is

' h
M(I* — 6) fb GMm) f _dn_
b 1 F(Mn) LMD

b
M (01 + 6+ 1;——I’> f GMn) o 1=
1

F(Mn)

Equation (16) shows explicitly the dependence of ® on the wall
properties through the conductance ratios f; and .. For open-
eircuit, conditions, I* = 0 and the open-circuit field value is de-
termined from equation (16) with 7* = 0. The short-circuit
case corresponds to ® = 0, and setting the numerator of equa-
tion (16) equal to zero determines the value of the short-cireuit
current. '
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Results

Pressure-distribution curves are caleulated from equation (11)
and plotted in Figs. 2, 3, 4, and 5. In Fig. 2, pressure distributions
are shown for three values of M for the conditions of open cireuit
and perfectly insulating walls. The quantity @ is not a strong
function of M under these conditions. In particular, ® has the
values —0.444, —0.436, and —0.413 for M-values of 1, 5, and 10,
respectively, for I* = 0 and §; = 0 = f,. Shown also for com-
parison is the M = 0 curve for the classical case in the absence of &
magnuetic field.

Figs. 3, 4, and 5 show pressure distributions for three values of
M with @ as the parameter. The increase in load capacity with
increasing negative values of ® is clearly shown. It can be shown
that for & = 0, corresponding to the short-circuit case, an adverse
affect on pressure distribution is achieved; that is, the load
capacity under short-circuit conditions is less than the classical
load capacity of the slider bearing without a magnetic field.
This result is in agreement with the result obtained by Hughes
[6] for the finite-step slider bearing with transverse magnetic
field. Operating with positive values of ® would correspond to
the accelerating mode which is clearly detrimental from the
point of view of MHD pressurization. It is therefore necessary
to operate at negative values of ® to increase the load capacity.

The influence of the wall properties on the load capacity can be
determined through the dependence of ® on wall properties as
given by equation (16). TFixing M and I'* gives ® as a function
of the wall conductances §; and 6. A reasonable choice for I* can
be determined as follows:

Assuming 8; = 0 = B, corresponding to perfectly insulating
boundaries, gives a relationship between I'* and $. Solving this
equation for I'* and substituting into equation (16) gives an ex-
pression for @ including the effect of finite-conducting walls based
on the same total current for insulating and conducting walls.
The result can be written as

i+b 6 b G(Mn)

L —(1-b
@ M( 2 <I>im>f1 gm0
S = "/ (17)

(bins 1 -|— 1] ) b G(M‘f])
y —dp — (1 — b
M< + 6, fl o 1~ A=)

KN + 0

Since it has been established that favorable MHD pressuriza-
tion results only if @ < 0, the quantity — 61/ ®ins may be written
as + (01/‘@‘.“\). Also a reduction in the value of |<I>| results in
lower pressures and consequently a decrease in Joad capacity.
Therefore for a fixed value of M and I'*, a decrease in load capacity
will oceur owing to conducting walls if the ratio given by equa-
tion (17) is less than one. The eriterion for this to oceur is

] 6
- — it =< (6 + b
(T)ius <1 1 ,‘I’ins| ( 1 + )
or
1 6,
14+ 18
\(binsi < + 61 ( )

A plat of &/®in, versus wall conductance for equal conductance
of upper and lower walls is shown in Fig. 6 for three values of M.
The eurves are based on the value ®ie = —10. To cover the
range of 8 from 0 to o necessitates the use of a logarithmic scale
on the ahscissa. The values §; = 0 = 8= correspond to insulated
surfaces whereas 6, = = = 0, correspond to perfectly conduct-
ing surfaces which results in the short-circuit operating condi-
tion. Tor fixed values of wall conductances, the reduction in |®|
below the |<I>;m|-value is seen to increase with M.

Referring to the definitions of conductances given by equa~
tions (14b) and (14¢), a reasonable order-of-magnitude estimate
of h/Wywould be h/1Wo = 0(10%). Fora f-value of 1, the ratio of
wall-to-fluid conductivity would then be of the order 1072 Fig.
6 shows that for these conditions, |®| is reduced by about 70 per-
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Fig. 2 Pressure distribution for conditions of open circuit and perfectly
insulating walls
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Fig. 3 Pressure distribution for M = 1
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Fig. 6 Voltage ratio versus wall conductance

cent at M = 1 and by about 85 percent at M = 10. The impli-
cation of this conduction on load capacity will be discussed in a
particular example in the next section.

Numerical Example

Using equation (12), the dimensionless load was determined to
be 18.928 for b = 0.5, M = 10, and & = —10. The integrals in-
volved in the functions B(M%), S(M7), and £ were evaluated

Journal of Basic Engineering

numerically. Considering & = —10 to correspond to insulated
walls, the value of ® for §; = 1 = 6, was determined from Fig. 6
to be —1.52 which gives a dimensionless load of 2.882. A reduc-
tion of load capacity of 84.7 percent thus results when the walls
are changed from perfect insulators to conductors with conduct-
ance ratios of 1. This corresponds to a ratio of wall conductivity
to fluid conductivity of approximately 102 as shown in the pre-
ceding section.

References

1 P. H. McDonald, Lubrication Behavior of Liquid Metals,
NADC Contract No. AF 33(616)-5885 Progress Reports 4 and 5,
1960.

2 W. T. Snyder and L. N. Connor, ‘‘A Journal Bearing Analysis
With Application to Liquid Metal Lubricants,” ASME Paper No.
61—WA-83.

3 W. T. Snyder, ‘“The Magnetohydrodynamic Slider Bearing,”
JOURNAL oF Basic ENGINEERING, TrRANS. ASME, Series D, vol. 84,
1962, p. 197. :

4 W. F. Hughes and R. A. Elco, ‘“Magnetohydrodynamic Lubri-
cation Flow Between Parallel Rotating Disks,” Jowrnal of Fluid
Mechanics, vol. 13, part 1, 1962, p. 21.

5 W. . Hughes and R. A. Elco, ‘“The Magnetohydrodynamic
Journal Bearing,”’ Journal of American Rocket Soctely, vol. 32, 1962,
p. 776.

6 W. F. Hughes, ‘ The Magnetohydrodynamic Finite-Step Slider
Bearing,”’ JournaL or Basic ExciNEErING, TRANS. ASME, Series
D, vol. 85, 1963, pp. 129-136.

7 D. C. Kuzma, *'The Magnetohydrodynamic Journal Bearing,”
ASME Paper No. 63—Lub-16 to be published.

8 W. Fucks and J. Uhlenbusch, *“ Magnetohydrodynamic Theory
of Lubrication,”” The Physics of Fluids, vol. 5, 1962, p. 498.

9 C. C. Chang and J. T. Yen, ‘‘Magnetohydrodynamic Channel
Flow as Influenced hy Wall Conductance,” Zettschrift fiir angewandte
Mathematik und Phystk, vol. 13, 1962, p. 2606.

Printed in U. 8. A,

e e e L




