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ABSTRACT

We develop a simple but novel method for calculatingtransport

coefficients for binary hard-sphere mixtures with one trace

componentJof extreme mass disparity (Lorentzian and Rayleighian

mixtures). The results are exact on the Enskog theory level, within

the framework of the Chapman-Enskog solution. Such mixtures allow

us to expand the solute-solvent collision integral in powers of the

mass ratio and thereby to reduce it to a differential form, from

which we can in principle calculate directly velocity moments of

various orders relevant to the fluxes instead of determining the

distribution function. Here we mainly concern ourselves with

determination of the transport coefficients through the first-order

in the mass ratio. Our results for the transport coefficients are

compared with those obtained from the lowest Sonine polynomial

appro~imation. We find this approximation becomes exact in a

Rayleighian mixture while it is at its worst in the Lorentz limit.

We give a brief comparative analysis of shear viscosity, bulk

viscosity and thermal conductivity in the Lorentz and Rayleigh

limits.
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1. INTRODUCTION

Before Chapman and Enskogl presented a comprehensive trans-

port theory based on the Boltzmann equation in 1916 - 1917, there

had been some attempts to calculate transport coefficients, in

special cases. Among them, the model Lorentz2 considered to

describe the transport of electron in metal provides an exactly

solvable case. Lorentz noted that the problem is similar to that

of a binary mixture in which the molecule of one component has a

negligible mass compared to that of the other. Ignoring the mutual

collisions between the particles of the lighter component, whose

motions are therefore affected only by their collision with that of

the heavy component which are regarded as quasi-stationary, he could

calculate the thermal and electrical conductivity and diffusivity

of the light particle, without having to determine the velocity

distribution function. Since it does not involve any approximations,

his results provide a standard or benchmark to test the approximation

method, i.e. the use of Sonine polynomial approximation.3

An extension of this model to include the effect of

nonnegligible response of the heavy component (gas) was attempted by

Pidduck4 in his study of ions in gases. He made use of Hilbert's

transformationS of the Boltzmann equation, in which the collision

integral is reduced to a form resembling the left-hand side of an

integral equation, and he expanded the resulting collisional term

for a hard-sphere interaction up through the first order in the mass

2
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ratio, which included the Lorentz collision term as the lowest order,

thereby yielding the first-order mass ratio correction to the

Lorentz results for the diffusivity. He also considered the opposite

limiting case, i.e. heavy ions in lighter gas molecules (which we

shall refer as Rayleighian mixtures). In this case he showed that

the Boltzmann equation can be reduced to the Focker-Planck equation,

through which the diffusivity could be evaluated directly. Although

his treatment is limited to the case of a gas in equilibrium and ions

in steady state, his results proved to be identical to the more

rigorous results of Kihara6 and Mason,7 which are based on the

Chapman-Enskog solutionl,8 of the Boltzmann equation.

A more recent extension of the "Almost-Lorentzian" gas made

by Mason et al.9 is based on the Chapman-Enskog solution. To

improve the nature of convergence in the Sonine-polynomial series

expansion for the solution of the Boltzmann equation, which is at

its worst for such mixtures, Mason et al. developed for almost-

Lorentzian mixtures a perturbation scheme which exploits the exact

results available in the Lorentz limit. Since their evaluation of

the transport coefficients is made through the use of the Sonine

polynomial expansion, their results can also be utilized in the

case of a larger region of solute cQmposition. Thus, this work

is different from the work of Pidduck in spirit, but less

straightforward with regard to affecting the mass correction for

the trace-binary mixture in which the lighter solute particle is
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extremely dilute.

The transport coefficients previously considered in the

Lorentzian mixtures have been the diffnsivity (binary and thermal)

and thermal conductivity. For Rayleighian mixture, the binary

diffusivity has been the only transport coefficient that was

calculated exactly.6,7 The method of evaluating the transport

coefficients in the Lorentz limit (well described in the monographs

of Chapman-Cowling8 and Ferzigen-KaperIO) is not capable of

yielding--in its strict sense of a binary mixture--the transport

coefficients such as the shear viscosity and the thermal

conductivity since the treatment is concerned only with the motion

of the light particle deflected by the stationary solvent particle.

Here we present a method of calculating, within the context of

Chapman-Enskog theory, all the transport coefficients of the

Rayleighian and Lorentzian mixtures in which the more massive

solvent particle is also mobile. To consider a wider range of

solvent density we also go beyond the Boltzmann-equation description.

We use as the starting point the revised Enskog equation, II which

is the only simple kinetic theory of dense fluid available that

permits analytic expression for the transport coefficients of dense

fluid. Among other things, the Enskog-theory treatment yields the

bulk viscosity which in the Lorentz limit has an interesting

physical implification. This work was motivated by our study of the

shear and bulk viscosities in dilute suspension (trace binary
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mixture) for the solute particle of arbitrary mass and size;2where

the problem posed is how far the lowest Sonine polynomial approxi-

mations that we used remain reliable. As the result of this work,

we find they are reasonably accurate as long as the mass of the

solute particle is not much smaller than that of the solvent

particle, and in particular they are exact in the limit of large

solute particle mass.

In section II, we present a brief sketch of the standard

materials on which our subsequent developments are based: The

hydrodynamic equations constructed from the kinetic (reviked Enskog)

equation and Chapman-Enskog's hydrodynamic (normal) solution of the

revised Enskog equation. In section III, we develop a theory of

transport in trace-binary mixture of mass disparity by expanding the

solute-solvent collision integral in terms of the mass ratio taken

as a small parameter. We calculate the transport coefficients

without solving the equation for the distribution function by

determining the appropriate (peculiar) velocity moments. Our

results are compared with the results of the lowest Sonine polynomial

approximation used in solving the distribution function. Some

comparative analysis of shear and bulk viscosities and thermal

conductivity in both limits are made. Our conclusions are

summarizedin section IV.
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II. HYDRODYNAMIC SOLUTION OF THE REVISED ENSKOG THEORY OF A BINARY

HARD-SPHERE MIXTURE

0 . .. h . dE k . 11 hur start1ng p01nt 1S t e reV1se ns og equat10n t at

reads

(

",at
+ V.01/

)
f. (r, V . ,t) = I J. .

0 ~ 1 ~ 1 ~~ 1 . 1JJ
(i,j = 1,2) (2-1)

with the collision integral

J.. = a:. r dV . da (a 0 V . .)e (a. V . . )
1J 1J) ~J ~ ~ J1 ~ ~J1

x [g. .(r,r+a. .a)£. (r,V~,t)f.(r+a. .a,V~,t)
1J ~ ~ 1J~ 1 ~ ~1 J ~ 1J~ ~J

- g. .(r,r-a. .a)f. (r,V.,t)f.(r-a. .a,V.,t)]
1J ~ ~ 1J~ 1 ~ ~1 J ~ 1J~ ~J

(2-2)

where f. is one particle distribution function (DF) of the species1

i, a.. is the contact distance between the center of the particle
1J

i and j, V.. = V.-V., the primes in the velocity denotes the post
~J1 ~J-1

collisional values, a is the unit vector along the apse line in

such a direction that the Heaviside step function B(aoV..) imposes
~ ~J1

the condition of the collision. g12 is local equilibrium pair

distribution function at contact which depends functionally on the

local density fields. 11

Our interest here lies mainly in the hydrodynamic transport

properties of binary mixture which are considered as a homogeneous

continuum specified by the local hydrodynamic variables regardless

of any molecular disparity in the constituent molecules.
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The adequate description for this situation is provided by a

contraction of the full kinetic description via (2-1) into the

hydrodynamic description for the lowest first five moments of f. :
1

p(r,t) = I
f
dv.m.f.

~ . ~1 1 1
1

pu(r,t) = I
J
dv.m.v.f.

~ ~ . ~1 1~1 1
1

(2-3a)

(2-3b)

-fn(r,t)k BT(r,t) = I
f
dV. ; m. [V.-u(r,t)]2f.

~ ~ . ~1 1 ~1 ~ ~ 1
1

(2-3c)

Here n, p, u, T are the local number density, fluid mass density,

hydrodynamic velocity, and the temperature of the fluid mixture.

k is the Boltzmann constant. Applying the above definition to the

kinetic equation (2-1), one obtains the hydrodynamic equations for

the change of mass momentum, and energy:

~ + Ile pu = a
at ~

(2-4a)

a

at p~+lle (p~~ +~) = a (2-4b)

1..nk
[

aT + u ellT

)

+ Il e J + P ellu = a
2 at ~ ~T :::: ~- (2-4c)

where the momentum flux and energy flux is shown to consist of

.
d 11

"
1

13
stream1ngpart an co 1S10na part.

p = pS + pC
~ -~ -

pS = 1.

f
f.m. (v.-u) (V.-u)dV.

:::: : 1 1 -1 ~ -1 ~ -1
1

(2-5)
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C \' 1 3

I
'

P = L 20'.. dV.dV.dO'G(O'oV..)(O'oV..)O'(m.V.-m.V.)
~ .. 1J -J -1 - - -J1 - -J1- 1-1 1-11,J

X

1 1dag. .(r-aO'. .O',r+(1-a)O'. .O')f.(r-acr. .O',V.,t)1J - 1J- - 1J- 1- 1J- -10

X f. [r+O'. .0' ( 1- a) V. , t]
J - 1J- -J (2-6)

S C
J =3 +3-T -T -T

J TS = 2.
Jf. ~ m. (V.-u) (v.-u)2dV.- . 1 1 -1 - -1 - -11

J
TV = I ~ O'~. f dV.dV.dO'G(O'oV..)(O'ov..)O'- .. 1J -J -1 - - -J1 - -J1 -1,J

X
{; m.(V~-u)2 - t m. (v.-u)2 }

f1dag.. [r-aO'. .O',r+(l-a)O'. .cr]
1 1 - 1 -1 - Jo 1J - 1J - - 1J-

X f.(r,..-aO'. .O',V"t)f. [r+cr. .O'(l-a),V.,t]1- 1J- -1 J - 1J--J (2-7)

In addition, we are interested in the process of the diffusion of

the one species to the other, which is described by the equation

aPi + VoJ(i) = 0at -M (2-8)

where the mass density and the mass flux are defined by

p. = Jdv.m. f.
1 -1 1 1 (2-9)

(i)
J

c fJ = dV.m.V. . .
-M -1 1-1 1 (2-10)

To give specific expressions for the fluxes, f. generally1

should be solved. On the other hand, in phenomenological theory
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these are given by the linear constitutive relations between the

fluxes and gradients intae hydrodynamic variables, which are

i) Newton's law of friction

P = - PI+ f][Vu + (Vu) + - ~ V.uI] + K(V.uI)~ ~ -- -- - -~ - -~ (2-11)

ii) Fourier law of heat conduction

J = -AVT
-T (2-12)

iii) Fick's law of diffusion

J~l) = -P~12 V(p/p). (2-13)

Here f], K, A, ~12 is the shear viscosity, bulk viscosity, thermal

conductivity and diffusivity and P is the local hydrostatic

pressure. With these relations the hydrodynamic equations (2-4a-c)

are closed. The rigorous kinetic-theoretic foundation for this

contracted description is provided by Chapman-Enskog procedurel

of normal solution for equation (2-1), which we shall sketch

briefly below. This solution yields empirical relations (2-11),

(2-12), (2-13) as well as the expressions for the transport coeffi-

cients in terms of the molecular parameters.

In the time and length scale relevant to hydrodynamic

description (th'~h) which is far larger than the molecular scales

(t , ~ : the mean collision time and length), the molecules undergo anc c

extremely large number of collisions and the state of fluid is
,

brought very close to the local equilibrium. Thus, we look for

the solution
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0 1 0
f. = f. +f. = f. (1+<P.)

1 1 1 1 - 1 (2-14)

where

(

m.

}

3/2

[
m.[V. -u(r t )]

2

]f 0 1 1 ~1 ~ ~,

i = ni 2'ITkT exp - 2kT(r,t) (2-15)

is the lQcal equilibrium distribution function. Substituting

this into the eq. (2-1), we observe that LHS of the equation is

characterized by the scales th' th' over which the hydrodynamic

fields varies. Gn the other hand, the collisional term is

characterized by t , t .c c Hence we find <P. = f~ /f.o is in the
1 1 1

order of the smallness parameter s = tc/th = tc/th « 1, consistent

with our ansatz of local-equilibrium form as the lowest order

approximation. Noting that

t 1/ 'V G(s)c
t a

c at 'V G(s)

and equating the coefficients of the equal powers in s in RHS and

LHS of the eq. (2-1), we obtain to the order sO, sl.

° \' 2
f

JI'. 0' ° 0
s; 0 = L a..Y.. dV.da(aoV..)G(aoV..)(t: f. -f. f.)

. 1J 1J ~J ~ ~ ~J 1 ~ ~J 1 1 J 1 J
J

(2-16)

1
s ;

(a

a
t +V.Ol/

J
f. = L a~.y.. f

dV.daG(aov..)(ao-v..)
~1 ~ 1 . 1J 1J ~J ~ ~ ~J1 ~ ~J 1

J

0' I' I' 0' ° 1 1 °
x [(f. f. + f. f. - f. f. - f. f.)

1J 1J 1J 1J

0' 0' ° °-a..f. aol/f. -a..f.aol/f.
1J 1 ~ ~ J 1J J ~ ~ J

+ f? f~ I
J

dr 0 Ir 0 -r II/no (r, t){H. . 0(I r 0-r. I , Ir 0-r. -a. .0\)
1 J t ~N ~~ ~ N ~ 1J N ~N ~1 ~N ~1 1J ~

- H. .o(lro-r.l, Iro,r.+a. .al)}]
1JN ~N ~1 ~N ~1 1J~

(2-17)
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n ...n n' ,? = f.(r,V.,t),t. = f.(r,V.,t)
1 1 - -1 1 1 - -1

ag. .
I =-=-u

Hij,Q,cIEz-:i!,I:z-:j ) - anZ InZ~n,Q,(:,t)

,Q,is 1 or 2, and Y.. is the equilibrium pair distribution function1J

at contact.

Equation (2-16) is automatically fulfilled by (2-15) due

to conservation of momentum and energy in binary collision. Multi-

plied by the collisional invariants m., m.V., ~.C:, integrated
11111

over the velocity V. and summed over all species indices (i = 1,2) ,-1

(2-17) yields the lowest order hydrodynamic equation (the Euler

equation)

~ + V. pu = 0at - (2-18a)

p
(
ay+ u.vu

)
+ VP = 0at - - (2- 18b )

3

(

aT
J

.

~k -- + u.VT + PV.u = 0
2 at - - (2-18c)

where the hydrostatic pressure P is given by

P = kT
(
n + 2

3"IT L a~. n. n. Y. .
)

.
.. 1J 1 J 1J
1J

(2-19)

Using these equations to reduce the time derivatives on the LHS of

(2-17) in terms of the gradients and using

last term in (2-17) is reduced toll,14

the fact that the

0 \' 4"IT 3
f.(r,V.,t)C.[V£.nn.(r,t) -911. +L -3 a.nY.n(a.n)Vnn]

1 - -1 -1 - 1 - 1,Q, 1N 1N 1N N

where 11. is the chemical potential of the species i, we arrive at1
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an integral equation for ~.1

I 1.. (~.+~ .) = L 1.. (~o) + L 1. 0(~.)
J. 1J 1 J . 1J 1 . 1J J

J J

= I o~.Y. .f?
J
dVof?rd08(oev..) (OOV..)

. 1J 1J 1 -J JJ - - -J1 - -J1J

, ,

x H. (1',V. ,t) + ~. (r, V 0' t) - ~. (r, V. ,t) - ~. (r, V. ,t)]
1 - -1 J - -J 1 - -J J - -J

0

(

0 .

(

2?

)
= f. 2~.~. :Vu(l+y.) + _3 r:e7 - 1 Vou(l+B.)

1 - 1 -1 -- 1 . 1 - - 1

{

n VT
(

2 5
) }J

+ C..n
.

d.+-T ~ 0 - -2 (1+Ct. )
-li -1 1 1

= J..
1 (2-20)

I",

Here C. = V.-u is the peculiar velocity, ~. = (m./2kT) 2C., the-1 -1 - - 1 1 -1

circle over the second-order tensor denotes its symmetric, trace-

less component, e.g.

GOO - ( 1 2
)T!).~. = ~'~'-3~' I,- 1 - 1 ~1 - 1 1 ~

.i

d. is the thermodynamic driving force given by-1

- ~iJ 1 mi VT
(

5
J }~i = lll.kT' V]1i - pkT VP + Tl +"8 y i

(2-21)

and

(

87f 3 om.,

)
Ct. = _

15 L o. .Y. .n. ~M
'

1 j 1J 1J J ij
(2-22a)

P 47f \ 3 ~B. = - kT
+ _

3 L o. .Y. .n. M1 n . 1J 1J J .,
J 1J

8 3 ]1. .
y =~LO Y n .:.2:1.
i 15 0 ij iJ' j M..J 1J

(2-22b)

(2-22c)
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Since I.. is a isotropic operator which retains the tensorial1J

character of the argument ~, we may write as a solution of (2-20),

f. = f? + ~+D + f~ + ~
11111 (2-23)

with

~+D = f?~~+D,111

BOB
f.=f.~.,111 If = fO~H

i i i

~~+D = -A. (~~) C. . VT
1 1 1 ~1 T (2-23a)

B 2 0
~. = -B. (~.)~ .~. :Vu
1 1 1 ~ 1 ~1 ~ ~

(2-23b)

H . 2
~. = H. (~.) V.u
1 1 1 ~ ~ (2-23c)

where each component satisfies the integral equations

\' A+D A+D 0
{

n 2 5
}

- A+D
L 1..(~. +~. ) =f.C..- d.+ V£.nT(~. -:1) (l+a.) = J.
. 1J 1 J 1~1 .n. ~1 1 1 1
J 1

(2-24a)

L 1.. (~~ + ~~) = f?
{
2~?~. :VU

}
(l+Y.) == J~

~ 1J 1 J 1 ~ 1 ~ 1 ~- 1 1J

\' H H O
{

z 2
}

- H
L 1.. (~. + ~.) =f. (3~. - l)V.u (l+S.) = J.. 1J 1 J 1 1 ~ ~ 1 1
J

(2-24b)

(2-24c)

Determination of ~. by the above equations should be1

subj ect to the conditions (2-9), (2-3b ), (2-3c).

Being satisfied by f?, the local equilibrium, these conditions1

are reduced to
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f
dCof?<P~ = Ideo (fo-no)= 0~1 1 1 -1 1 1 (25-a)

L Ideof?<p~+Dmoe. = L I
de.fomoeo = 0

0 ~1 1 1 1~1 . ~1 1 1-1
1 1

(25-b)

I
0 tfl 2

I f
l 2 3

)

.

L dC 0 f 0 <P. _2 m.e. = I de 0 f. ~2
0Co - -

2
kT = 0

. ~1 1 1 1-1 . -1 1\ 1 11 1
(2'S-c)
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III. TRANSPORT PROPERTIES OF BINARY MIXTURE WITH ONE TRACE COMPONENT

OF DISPARATE MASS

To identify the linear transport coefficients, the fluxes

should be expressed in terms of the gradients in hydrodynamic and

thermodynan.ic variables. One can show from (2-6) and (2-7) that the

momentum and energy fluxes can be given in the forms13,15

P = L(1+y.)
J
m.c.c.f.dC. + 21 I y. rm.c~f.dC.

::::: : 1 1~1~1 1 ~1 . 1 J 1 1 1 ~11 1

(

6 0

)
- \' 4 4 1/2- _

5 V u+V.uI L -9 cr..Y..n.n.(2/TkT1.1..)
~ ~ ~~::::.. 1J 1J 1 J 1J

1,J
(3-1)

\'

I
I 2 \' 4 4J T = L, (1 +a . ) -=ffi2 ' C.C. f. dC. - kVT 1. -3 a. . Y. .n . n .

~ . 1 1 1~1 1 ~1 .. 1J 1J 1 J
1 1,J

x (2/TkT]..l..) 1/2 -11 J
M. ..

1J
(3-2)

The mass flux was given by (2-10). To calculate the (peculiar)

velocity moments of various tensorial character pertaining to the

fluxes, one generally has to find the solution of f., i.e. ~.,1 1

for the integral equation (2-20) or (2-24).

However, in certain situations, one can avoid the procedure

of solving ~. and proceed directly to a determination of the various1

velocity moments. The binary mixture of extreme mass and concen-

tration disparity that we shall study here serves as such an example.

We consider a situation in which the impurity (solute) particles

(of the species 2) are dispersed in a solvent fluid (species 1) of

arbitrary density (nl) at such low dilution (n2) tha~ we can
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reasonably neglect the collisions among themselves. Being mainly

concerned with finding the effect of the impurity on the transport

III (~l + ~l) + I12 (~l + ~2) = Jl

property through the order ~2/~1 where ~i =

fraction, we start with the integral equation

I2l (~2 + ~l) = J2
(3-3b)

As we shall see, I21(~2) plays a primary role in deter-

mining the diffusivity of the impurity and its contribution to the

transport properties such as the viscosity and thermal conductivity.

Physically this represents a change of distribution of solute

caused by the collision with the solvent particles at local equilibrium.

In its mathematical form, however, it is identical (apart from the

additional factor Y12 in our case) to the collision integral of the

Boltzmann equation for the solute distribution function f2 when the

solvent is at absolute equilibrium. Thus, we shall utilize as

follows the results4,16 of analysis already made on the Boltzmann

equation level for our study involving I21(~2) simply by taking into

consideration the multiplicative factor Y12 in I12(~2).

it should be borne in mind that ~2 appearing in this Boltzmann

In addition,

,

equation expression of I21(~2) should be replaced by ~2' the peculiar

velocity, since we are concerned with the relaxation into local

equilibrium (2-15).

In the case in which the solute particle is much more

massive than the solvent particle (ml « m2) the velocity of a

1T 3
is the volume

6-ni()ii

in the form

(3-3a)
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heavier solute particle undergoes a very small change during its

encounter with a solvent particle. In this process, the small

change, ~;-~2 can be regarded as a natural smallness parameter

which enables us to expand ~;-~2 as

, a~2' ) 1 a a~2 , I

~2-~2 = aC2 '(~2-~2 +2" aC2 aC2 : (~2-~2) (~2-~2) + ...
(3-4)

According to the calculation done by Uhlenbeck and Wang-Chang16

on the Boltzmann-level equation, the above expression up through

the second order leads to the form for 121 (~2) :

R 2 O

f

°
f

'

I21(~2) = 012Y12f2 d~lfl)d~(~'~12)e(~e~12)(~2-~2)
~

= ~(ml
)
n.

[

2'ITkT

)

2o2 Y fO
(
- C . a~2 + kT ~.a~2

)3lm2 1 ml 12 12 I -2 a~2 m2 a~2 a~2

~R 3

(

kT a

)= m2 3~2 '~2 + m2 a~2 £2

= ~ (1)

- m2 R2 £2 (3-5)

_8 !.z2
~R - 3 nl (2'ITmlkT) 012Y12

(3-6)

where
~

R (1) = ~ n
(

2'ITkT!2o2 Y -L.
(

c + kT ~
)2 3 1 ml J 12 12 3£2 -2 m2 3~2

(3-7)

We find (3-5) takes the form of Pocker-Planck collision term with the

friction coefficient ~R' which describes the Brownian motion of

the particle in the bath of the lighter fluid particles. This

case of a binary mixture has been studied by a good many

7 16 17 18 19. .
authors,' , , and shall be referred as Reylelghlanfor a
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historical reason; specifically for the situation described by the

equation (3-5) we denote by Rl since it corresponds to the

expansion in terms of ml/mZ up through the first order.

order expansion will result in introducing RZ' R3' etc.

Higher

Though

the calculations of RZ' R3 are apparently straightforward and not

difficult, we shall here confine ourselves to Rl only.

Multiplying (3-5) by ~Z' ~~~Z' c;, and c;~z, respectively, and

integrating over ~2' we are led to

J

R ~R
JIZI (~Z)~Zd~Z = - m2 fZ~Zd~Z

J

R a Z~R

J

a

121 (~Z) ~Z~Zd~Z = -""iii;- (~Z~Z) fZd~Z

J

R Z 2~R
J[

Z 3kT
)IZI (~Z)CZd~Z =- ""iii;- Cz - m;- fZd~Z

J

R Z ~R
J

.

(

lZkT Z
1121(~Z)CZ~Zd~Z = m2 ---m;- ~Z - 3CZ~Z. fZd~Z

(3-8a)

(3-8b)

(3-8c)

(3-8d)

The case opposite that of a Rayleighian mixture is the

Lorentzian mixture, in which the mass of the impurity particle is

negligibly light compared to the solvent particle. The smallness

parameter that exists in this situation is ~Z (C;Z - C;) (the change

of the kinetic energy induced by collision with the heavier particle)

or the mass ratio mZ/ml. The limit mZ/ml ~ a corresponds to the

so-called Lorentz limit in which a light particle is elastically

scattered by a quasi-stationary solvent particle with its kinetic

energy preserved. .In considering the case of small but nonvanishing

'Z Z
/

. ,.

Cz - Cz or mZ ml' one may seek the expanslon of ~Z-~Z In terms of
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C;2_C; in a manner analogous to that which we have done for the case

of Rayleighian mixture. However, it appears that such a procedure

is not so straightforward here except when ~2 is an isotropic

function of ~2' i.e. ~2(~ ) = ~2(CZ). Thus, it turns out to be

more tractable to start with Hilbert's versionS of the Boltzmann

collision term, in which ~;-~2 is already integrated out over the

angle cr and the collision term appears in a form resembling the

left-hand side of an integral equation. According to Pidduck's

generalization4 of Hilbert's form to the case of binary mixture,

121 (~Z) reads

J

' "

121(~2) = K(~2'~2)fZ(~2)d~2 - k(C2)f2(~2) (3-9)

.i

J

k 2

K(C C') =

(

~ 2 cr12n1Y12
(

- ~
~2'~2 2TIkT 8112R exp,..1 -

22 2 24

){4Q III+ 411l(211l-l)QR + (211l-l) R }

{

k
1z 2 kT ml 2

2TI nl cr12 ml C2 "tj!(zkT) C2}

(3-10)

k(CZ) = (3-11)

where

2 2 (X 2

"tj!(x)= x e-x + (2x + 1) Jo e-y dy

R = 1~;-~21,

,

Q = ~2.(~2-~2)'

ml
111 = ml+m2

Pidduck proceeded to an expansion of 121(~Z) up through linear order

in mZ/ml' yielding
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L 2

[

1
r

A" m1f 1
J

A

121 (<P2) = TIn1012Y12C2 4TIJ<P2d!2-<P2+lli;l4TI d!2

{

A A

( A 3 ~2 a<pz 1 aZ~21
} ]2<P2+ (1 - !2 . !2) -2<P2+ (2~z - T) a'€z +2 ~~ J

(3-12 )

where the superscript A denotes the quantity that the particle 2

assumes after elastic collision (i.e. at Lorentz limit) which

rotates ~2 = C2~2 into ~2 = C2I2' e.g. ~2 = <P2(~2)' d! is element

of the solid angle in the direction of the unit vector ~2'

Defining a projection operator P2; P; = P2' by

-I
f

A A I
fP2[ ] = 4TI d~2[ ] = 4TI d~2[ ] (3-13)

(which projects [ ] onto its isot!opic component, e.g. P2<P2 = <P~)

and inserting f2 = f~(l + <P2)' we find our version of eq. (3-12):

L
121 (<P2) = L2f2

L = L(0) +
[

m2

)
L(1)

2 2 m1 2
(3-14)

L(O) - ~-lC (P -1)2 - 21 2 2

L(l) = Q,-lC
(
2P + (P -1 .'P 1 )221 2 2 2 -2 2-2

(3-l4a)

{ 2 + (~2 + 2~J ~2 +; :;d J
(3-l4b)

where

- 2 -1
Q,21 = (TIn1012Y12) (3-15)

is the mean free path of the impurity particle in collision with

the surrounding solvent particles. Here L~O) is identified as the

collision operator corresponding to the Lorentz limit m2/ml + o.
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L~l) reflects the nonvanishing response of the solvent particle to

the impact of the solute because of its finite mass. Derivation

of higher order collision operator from (3-9) is straightforward,

but we shall not pursue further here. Decomposition of f2 onto its

varlous components yields

rL (~A+D) = -t-IC
{
1+lm2(V -2)

}
:t+D

21 2 21 2 3 ml 2 2 (3-l6a)

L B -1 B
I21(~2) = -t21C2f2

L H -1

(

m2

)

.B

r21(~2) = t21 ill; C2V2Ii

C3-16b)

(3-l6c)

where the differential operators V2 is defined by

(

3
)

a 1 a2

v 2 = 4 + ~2 + 2~2 a~2 + 2" ~ .

(3-17)

The differential equation (3-l6c) is identical to the result of

Andersen and Schuler20 who considered the distribution function as

a function of the scalar variable (~;) only. To find the velocity

moments in this case analogous to (3-Sa,b,c,d), we multiply !2'

~~~2' C2' and c;~ and integrate over ~2.
We obtain

f r~1 (~2 )!2 ~C2 =-Q,;~ (1 - ; :~) J~2f2d~2

J

L 0 -I

f

0
121(~2)~2!2d~2= -221 ~2~2f2d~2

f

L
(

ml
)

-I

f (

2 3kT
)L2l (~2)C2d~2 = - m2 221 C2 - m2 f2d~2

I

L 2 -l

{
r

4 m21
r

2 ,

L21 (~2) ~2~2d~2 = -221 II -"3 mlJ JC2~2f2d~2

+ SkT
(

mz
)J
c f dC

}3m2 ml -2 2 -2 .

(3-lSa)

(3-lSb)

(3-lSc)

(3-lSd)
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Before proceeding to the problem of calculating transport

coefficients, we investigate the im~lications that the conditions

(2-25a-c) have for possible simplification in our development.

(3-l9a)

(3-l9b)

. A+D H A+D H
WhlCh allow us to neglect <PI and <PIcompared to <P2 and <P2as

long as we deal with the extreme disparity in concentration. The

equation (3-3b) for the particle 2 corresponding to these components

are now put as

I (<pA+D)= JA+D21 2 2 (3-20a)

121 (<P2H) = }!2' (3-20b)

We shall find this simplification along with (2-25b) and (2-25c)

enables us to evaluate the exact mass and thermal diffusivity, and

bulk viscosity up to the level Rl and Ll' For the shear viscosity

and thermal conductivity, where such simplifying conditions are

not fully feasible, the exact results are to be obtained only

through the level LO and Rl wi~hin the context of our neglect of the

collisionterms other than 121 (<P2) and III (<PI+ <PI). ,

We note that these conditions imply

<pA+D/<pA+D= O(n2)1 2 nl

and

<pH/<pH = 0 [n2)1 2 nl
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1) Binary Diffusion and Thermal Diffusion

There are several definitions21 for the coefficient of mass

diffusion depending upon the experimental situation. The diffusivity

of concern to us here is not the so-called "center of mas~ mutual

diffusion" defined by eq. (2-13) but binary diffusion given by

n2
V
l
-V

z = - -(D IZ
d
l
+ DTV-tnT)- - nln2 - -

(3-21)

which also defines DT' the thermal diffusivity.

velocity difference can be expressed as

The diffusion

~l-~Z = ~l-~Z
(3- Z 2)

1

J

_A+D 1

J

-A+D

= ~ d~lti- ~l - n2 d~Zt2- ~2

= - 1-
(

1 + n2m21

J
dC :t+DC

n2 nlmlJ -Z Z -2

where the condition for ~+D (2-25b) is utilized.

(A) ml » m2 (Lorentzian, LO + Ll)

From (3-20a), (3-l8a) and (Z-24a), we find

-i;i [1 - ; :~) J ~2fZd~Z = fd~zf~~zE2 .{~ ~2

+ (1+a2) [~ - %)v-tnT}
~

1
[

ZkT

)

2

= _
3 --- [Zn1dZ-nZ(1+aZ)V-tnT].

7fm2 - (3-23)

By virtue of the re1atiQns (3-21) and (3-ZZ), we readily identify,

by noting that ~1 = -~2'
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1.,;

DL =~£-1
[

2kT
)

2

[

1+ ~m2
)12 3 21 TIm2 3 ml

(

~

(

2 2kT 2 1 12m2
= 3TI TImJ n l0i 2Y 12 + 3" rn;]

(3-24)

L 1 n2 L L
DT = In;(1+a2)D12.

(3-25)

(B) m1 « m2 (Ray1eighian, R1)

From (3-20a), (3-8a) and (2-24a), we find

!;R

J

-A+D

J

0

{

n rl (("-2 5

]

I

- m2 d~2t2- ~2 = d~2f2f2f2. n2 ::2+ (1+a2) ~ - 2" 'il.tnTJ

kT= - - nr1
m2 ::1 .

(3-26)

In a similar manner, (3-21) and (3-22) leads us to

DR = kT = ~
[

2TIkT

)

!z 1:

12 !;R 8 ml
(3-27)

R
DT = 0 .

(3-28)

In the low-solvent, density limit (Boltzmann limit) in which

Y12 = 1, the diffusivity (3-24) and (3-27) are reduced to the

results of Pidduck.4 Kihara6 and Mason's7 results are also identical

with Y12 = 1 to (3-27).

2) Bulk Viscosity

The bulk viscosity is to be identified from the constitutive

relation

0
E = P! - 2Tl~ ~- K~ .~~

(2-11)



25

and (3-1). We find

-KV.U = 2.

{
-
3l(1+Y.) +_Zl y.

}f
m.C~:f:IdC.

. 1 1 1 1 1 -1
1

4 4 !z

-V'U I -9 CJ..Y..n.n.(Z'lTkTll..) ,
- -.. 1J 1J 1 J 1J1,J

(3-Z9)

I

which is simplified a great deal by the condition (Z-Z5c) to

= ~(Y2-Yl)fm2c~~d~2

4 4 !z
-V'u 2. -9 CJ..Y..n.n.(2'ITkT1l..)
- -. '. 1J 1J 1 J 1J

1,J

where fmzCz~d~2 emerges as the only quantity to be evaluated.

-KV.U

(3-30)

(A)
ml » m~ (Lorentzian, Ll)'

The relations (3-Z0b), (3-l8c) and (Z-24c) allow us to

write

(

m2
)

-I

f

Z.B

- .m; ,Q,Zl C2Yid~z = (1+6z) Jf~(~ ~-1)C2d~z

[ )

!<
2 2kT 2

= -(1+6) - n V.u. ,3 Z 'lTm2 2- - .1
(3-31)

Here the contribution from the lowest order (La, Lorentzian limit)

collision term to LHS is found to be nill; the leading contribution

is in the order O(mZ/ml)' Contribution of (3-31) to K is
!<

L 5 L L L

[

ZkT

J

2

KZl = 9 nZ (YZ-Yl)ml,Q,21 (1+62) TIrn2

( J

!«

J

!<

8'IT 1 3 3 2 1 m1 2 Zm1kT 2

= Sf nlnZ Y12(CJnYn - 2CJ12YIZ) G2m2 'IT .
12

(3-32)

The total bulk viscosity is wriLten by taking only the terms up

through linear in n2:
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k
L 4 4 2 ~ 8 4 [mzl 2 ~

K = 9CY11YUnl('ITkTml) +9CY12Y12nln2 ~J (2'ITkTml)

(
k

[
k

8'IT 1 3 3 2 m1 2 2m1kT 2

+8fnln2 Y1Z(CY11Yl1- 2CY12Y12) mz) 'IT). (3-33)

Introducing nl = ;6[m~kT]~afl (the shear viscosity of the low

density solvent calculated by the lowest Sonine polynomial approxi-

mation from the Boltzmann equation) as the appropriate unit of

viscosities, (3-33) is expressed as

L
K = [256 ?:2y +?: [3212 -~ -1

(1+ ) 4?: Y
5'IT "'1 11 "'2 5'IT P q q "'1 12

204812 k 5 -2 1
( 1 -3 3 )

2

)]
'"

+ -- p2q (l+q) ~l Y1Z [Y11 -"4 q (l+q) Y12] 111

where

q = CYll/CY22' p = mr/m2 .

(3- 34 )

(B) ml « m2 (Rayleighian,RO+ Rl)

From (3-20b), .(3-8c) and (2-24c), we find

(3-35)

R = ~( R- R)
nzmzkT

( l+QR)K2l 6 Y2 Yl ~ ~2R
2 k

'IT
(

3 3 m1) (mIl (27TmlkT) 2

= 36 nln2 CY11Y11- 2CY12Y12mz mzl CYtZY1Z . (3- 36)

We find the total bulk viscosity

2Rfc211dc = .(1+f32)Jf[; -1)C;d2mz 2 2 -

= V.u2nzkT(1+f3 )- - mz 2

which enable us to calculate the bulk viscosity
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R 44 2 ~84 ~
K = 9 crllYllnl (7TkTml) +9 crI2Y12nln2(27TkTml)

[ J

2

[ )

k
7T cr3 Y 2

3
Y ml m2 (27TmlkT) 2+- n n - cr --

36 1 2 11 11 11 12 m2 ml cri2Y12

r256 2
[
32 -1 4 64/2 -1 5 -2

= LSTI ~l Y11 + ~2 57Tq (l+q) ~l Y12 +-s p q (l+q)

1 f ; -3 3
}

2

J]
v

x ~l Y;"";l Yll - 4" q (1+q) p nl'
(3-37)

3) Shear Viscosity

Shear viscosity is identified from the traceless component

of (3-1) and (2-11):

-2nVou = L(l+y.)
f
m.c.c.f~dC.

: 1 1-1-1 1 -1
1

8 0 \' 4 ~- -
15 V u L cr. .Y. .n. n . (27TkT].l..) .- -. . 1J 1J 1 J 1J1,J

(3-38)

Since ~~ or f~ lack such simplifying conditions as (2-2Sb), (2-2Sc),1 1

we have to include collision integrals left out of the foregoing

analysis.
Among these, 1~2(~1) is simply obtained from 121(~2) by

exchanging the species indices. To avoid the complexities involved

in calculating 112 (~2) and 121 C~l) in detail, we shall concern

ourselves with only LO (the Lorentz limit m2/ml + 0) in the Lorentzian

mixture (m2/ml « 1). Also we note that in contemplating such a

mixture as Rayleighian in which the solute particle is much more

massive than the solvent particle it is natural to regard the solute

particle as also much larger than the solvent particle for any

realizable solute suspended in a solvent. Such limit as LO and our
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where the exact value of the Boltzmann shear viscosity is known from

the Sonine-polynomial expansion:

B v

III = 1.0161ll. (3-43)

On the other hand, for the distribution of particle 2, we

find

L B (0) B -1 B B
121 (<P2) = L2 f2 = -£2IC2f2 = J2' (3-44)

in which we have neglected 121 (<PI) by observing the fact that

<P~-<Plis expanded in powers of ~;-~2' which is of the order
1..:

(m2/ml)2. From (3-44) the following is derived via (3-l8b) and

(2-24b)

-I

f

B 0

J

° ° 0

-£21 d~2f2~2~2 = 2(1+Y2) d~2f2~2~2~2~2:~~

4 °

J

03
= I5(1+Y2)~ ~ f2~2d~2

1..:

= .!..§.(1+y )
f

2kT
)

2V'°U.
15 2 Trm2 -- (3-45)

When inserted into (3-38), this j.sfound to contribute to the

shear viscosity the term

1lL = 812 E1- ...L(1 +y ) 2
[

m2kT
)

!z ...L
21 l5TIn1 Y12 2 TI 0212

(3-46)

whose low density limit (nl ~ 0; Y2 ~ 0, Y12 ~ 1) is identical to

the result given in Chapman and Cowling.8

The total viscosity is written as
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L
1l = I L 2 B 4 f 3 2 !z

Y11 (1 +y1) III + ISf II YII nl (TIkTml)

h 1

}
3 m2 2 >:2

+ 2O'12Y12nln2(m) (2TIkTml)

+ ~(l+yL)2 8/2 !!2.(ill2)!z
[

mlkT
J

!z ~
Y12 2 l5TI nl ml" TI 0'212

(3-47)

However, self-consistency in neglecting the terms I~2(~~)' I~2(~~)

requires us to retain only

L 1
(

8
)

2 768 2~,
1l = {1.016 Y1l l+SSlYll + 25TI SlYll}lll.

(3-48)

This is in a form apparently identical to the Enskog shear viscosity

for a single-component fluid. It should be noted, however, that

Yll and Sl in the presence of the solute are different from those

quantities in the pure solvent and therefore (3-48) is different from

the viscosity of pure solvent. This difference could not have been

obtained from the Boltzmann equation, where the shear viscosity of a

single component fluid is density-independent. The lack of appreciable

direct contribution from the impurity particles as expressed in

(3-48) supports the obvious observation that the light impurity

particles give a negligible contribution with regards to shearing

momentum transport.

(B) m/m2 « L'O'll/cr22 <-< 1 (Rayleighian, RO + Rl)

We first estimate the order of magnitude for some collisional
,

terms

IR (~B)'\;L(O)fB= -R.-lfB'\;o
[
n2O'~2

)
« 1

21 1 1 1 21 1 nlO'll
(3-49)
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IR (cpB) = a
[n2G~ 2 (m2)cq « 1

12 2 nlGll ml ) (3-50)

2

Equation (3-49) is due to the fact that nlG~2 = ;2 q is negligibly
nlGll '?l

small if we consider only the nonnegligible term linear in S2.

Thus, we may write

R B B B
III (CPl+ CPl) = ~l (3-51)

which leads us to the expression similar to (3-42):

J
B 1 R B 0
flml~l~ld~l= - Yll (1+Yl)21ll ? ~.

For the component 2, we retain the form

R B B B
I 21 (cp2) + I 21 (cp1) = J 2 (3-52)

with I~l (CP~) = :~ R?)f~. The calculation of I~l(CP~)through the

order (ml/m2) comparable to I~l(CP~)is a formidable task. Rather

than embarking on the exact calculation based on Hilbert's transfor-

mation, we can employ the lowest Sonine polynomial approximation

cP~, which is presumably good enough (possibly exact) to give an1

accurate order-of-magnitude estimate. Inserting

. - (1) (0) .-.2 -1). - (1).n .
CPl- bO S5/2(~)~~1.?~ - bO ~l~l.~~ (3-53)

to I~l (CPl)' multiplying by ~~l and performing integration over ~l

we find

(1) 5 2 -~ 2 -1
bO = S(l+Yl) ml ('rrmlkT) (GllYllnl) . (3-54)

Performing a similar procedure for (3-52) by using this, i.e.



32 33

I {
ml (1) B (1). ~ -

I
B

d~2 m2 1<2 f2 + I21 (-bO !l!l. ~~) j'~2!2 - J2~2~2d~2
(3-55)

we are led to the identity by using (3-8b):

I
dC m cOe fB = - !!1.

(
mlkT

)

~

[
312(m2)~(1+Y )-2 2-2-2 2 nl iT 16 ml Y12 2

1 1 1 1

)
x- + - -(l+y )- 'ilu

crf2 4 Y11 1 crf1 -- (3-56)

Via (3-38), this brings us to the expression of the viscosity

contributed directly by the solute particle as

R 612 ~2 5 -1
( 1 )

-2 1
(1 R)

2v
1121=5 ~ q p +q Y12 +y2 111 (3-57)

where the second term in the bracket in (3-56) (originated from

I21 (~~) which we calculated with the lowest Sonine polynomial) is

neglected on the basis of the conditions (3-49) and (3-50).

Summing up all the contributions, we find

R -
l{

x 1 r 8
)

2. 768 2

}11 =,1.016 Ylle+S ~IYl1 +"25iT ~IYll

[

4 1 (
8

)
3

+ ~2 S Y11 1 + S ~l Y11 (1 +q) Y12

-1 612 -1 5 -2
{

2 -3 2

}

2

+ ~1 5 p q (1 +q) 1 + S ~1pq (1 +q) Y12

9612 -1 4
)J

"-./

+ 25iT ~lq (l+q) Yl2 111"
(3-58)

Among the various terms in the order of ~2,the first term is from

the motion of the solvent particle caused by the solute particle,

and the second is from the Brownian motion of the solute

particle, the last being from the mutual collisional transfer
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-l
J

2 _A+D

[

m218kT

f
~+D

-£21 C2~2fi d~2 + m;J3m2 ~2fi d~2

= Jd~2S+DC2~2~2.{:2 ~2 + (l+a2)~; - ~)2:tnT}.
(3-62)

.1

Since thermal conductivity is defined in the situation devoid of mass
- 0

diffusion, i.e. C2
= 0 or d

l
=

DT VtnT (from 3-21), (3-62) is- - 12
reduced to

If 2 -A+D
2" m2C2~2t-i d~2

=-~
[

2kT

)

3/2

3 'TTm2

n DT 1

}n~ + 2"(l+a2) VtnT

2

[

2kT

)

3/2

= -3" 'TTm2 n,a¥~Y,~ (1+a2)VtnT. (3-63)

The last equality is due to the result (3-25). The contribution to

thermal conductivity found from (3-2) is

[ )

k

(

3 k

AL = ~ n2 ~ 2 2k T 2 1 (l+aL) 2
21 3'TT nl m2 TIml J 0~nY,~ 2'

(3 - 64)

.1

which is identical to the result in Chapman and Cowling8 in the low

density limit.

The total thermal conductivity is

[

3

)

k

AL = ~(l +aL) 21..B + ~ 04 Y n 2 1rk T 2
Yll 1 1 3 11 11 1 ml

!z 3

)

!z
+ ~ n2 ~ 2k T 1 (1 +a ) 2

3'TTnl [mJ [TIml ai2 Y12 2

-
[

x ~ ( + 11. ) 2+ 512 2
- 1.025 Yll 1 5 ~lYll' 25'TT;lYll

~2Jl024 /;:;" 5 -2!z 1 (
2 -3 3

)}j

"

+Q.225'TT 112 q (l+q) P Yl2 1+5 ;lq (l+q) Y12 AI'

(3-65)
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(B) m/m2 « 1, °11/°22 « 1 (Ray1eighian, RO+ Rl)
. R A+D R A+D

For the partlcle 1, 112(<1>1 ) and 112(<1>2 ) are neglected on

ground identical to those in the case of shear viscosity and thus

we find

)

!,;
R 1 R 2 B 2 4 2 TIk3T 2

Al = Yll (l+al) Al + 3 0llYllnl[~ .

(3-66)

For the particle 2, we find
1

AR = 5/2 n2
[

k3T

)
Yz 1 (l +aR) 2

21 4 nl TI1I1l 0i2Y12 2
(3-67)

by using the argument also similar to the case of the shear viscosity.

The total thermal conductivity is found to be
!,;

R 1 R 2 B 2 4 2
[

TIk3T

)

2 .

A = Yll (l+al) Al +3 011Y11n1 -m;-

8 4 !z -1
+ 3 0l2Y12n1n2(2TIkTm1) m2

3

)

!z R 2+ 5/2 n2
[k T 2 1 (l+a2)4 nl TIm1 0l2Y12

- [ X .-.L ( + 12 ) 2+ 512 2
- 1.025 Yll 1 5 t;lYll 25TI t;lY11

108/2 -1 4 64/2 5 -2-
+ t;2 25TI t;lq (l+q) p+~ t;lq (l+q) Y12

2 3 3
}

21~<

x (1 +5 t;lPq- (l+q)) JAl'
(3-68)
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Comparison of Our Results with the Lowest Sonine Polynomial Approxi-

mation.

Since exact solution of the integral equations (2-20) is

not generally feasible, an approximation method must be used--the

method of series expansion being the most obvious choice. Among

the various possibilities, the expansion in terms of Sonine poly-

nomials is often found to be the most convenient method. The

lowest order terms of these expansions yield the exact solutions

for the case of Maxwellian molecules in which the intermolecular

potential is ~(r) = Kr-4; expansions with a few terms have been

found to be surprisingly good approximations for the hard-sphere

fluid. In fact, in regards to the transport coefficients of a

single component hard-sphere fluid, the use of the lowest sonine

polynomials is good enough to produce remarkably accurate results.

Here we compare, for the case of the binary mixtures we

consider herein, the results of diffusion coefficient, bulk

viscosity and shear viscosity obtained from the lowest Sonine

polynomial approximations, with the exact results we obtained.

The lowest Sonine polynomials appropriate to D., B., H.,111
. 23 24

respectlvely,are'

D = d(i)S
O 2

) = d(i)
i ° 3/2l~i 0

Bi = b~i) S~/2 (~~) = b~i)

Bi = h?) sD S (~i) = hi i) (!z+ 1 - ~) .

(3-68a)

(3-68b)

(3-68c)
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With these expressions inserted into the equations (2-24) and (2-25)

we find the condition for the coefficients d~~)" b~i), and hii) ,

from which these are to be determined. The results of our calcu-

lations for the coefficient of binary diffusion, bulk and shear

viscosity are

[

k
3 1 kT 2

D 12 = 8" n 1cri 2 Y 1 2 27T111 J

[ )

k
256 2 32 211122 -1 4

K = [57T 1;1YU + 1;2{57TSiT q (l+q) I;lY12

6412

[

1112

)

3/2 -1 5
(1 )

-2
y-l(y

1 -3
(1 )

3 ].112
)
2I

J

"'/

+- - P q +q . --q +q p-
f

11

5 ill1 12 11 4 m 1

(3-71)

(3-70)
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{
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-15-1
(

2 2-3 1112~y
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2 3 -3 1112
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"

x (1+S(1+q) q p ~ I;lY12' 111'
(3-72)

The diffusivity (3-70) corresponds to ;; = 88% of the exac~

result (3-24) in the Lorentz limit while it proves to be exact

[identical to (3-27)] in the Rayleighian limit. For bulk viscosity
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we find in the case of the Lorentzian mixture,

which

L r256 2
{
32 12 -1z -1 4

K = L5IT SlY11+ S2 SIT 2 P q (1+q) SlY12

6412 1:5 - 2 -1 1 -3 3 2

]

"
+-s- p2q (1+q) Y12(Y11-4"q (1+q)) 111' (3-73)

only differs from(3-34) -in K;l (the last term) that corres-

to ~; = 88% (the ratio identical to the case of diffusivity).ponds

On the other hand, the expression (3-71) for the Ray1eighian regime

is identical to (3-37). The Lorentz limit of the shear. viscosity is

reduced to

[

1
(

8
)

2 768 2
l

v

Y11 1+5" SlY11 + 25IT SlY11.111'
(3-74)

which differs from (3-48) only slightly and implies that the

approximation given by the lowest Sonine polynomial for the shear

viscosity is very good for the case of the single component. As was

briefly mentioned below Eq. (3-48), this should not be regarded

as the viscosity of the pure solvent, however. If one focuses

only on 11~1' the direct contribution of the solute, which was

neglected in (3-74) in comparison with solvent viscosity) as the

treatments Chapman-Cowling and the Ferzigen-Kaper do on the

Boltzmann level, one finds the term in (3-72) pertaining to 11~1is

just ~~~ = 92% of the exact (3-46). In the opposite case, p « 1,

q « 1, the result (3-72) is seen to be exact [identical to (3-58)].

Thus, we have found here that the lowest Sonine polynomial approxi-

mation yields the exact results for the Rayleighian mixture for all trans-

port coefficients, although not in the Lorentz limit. Since (3-70), (3-73),
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(3-72) are reduced to the expression of the single component at q = 1,

p = 1, which is accurate, we can conclude that the lowest Sonine

polynomial approximation generally gives reliable results in the

region as long as the solute particle is not much lighter than the

solvent particle.

Comparison of the Contribution of the Solute to K, n, A in the

Lorentzian Mixture.

The effect of the solute on the transport in the whole fluid

system is multiple as we have seen. One aspect is the relaxation of

the solute particles toward local equilibrium by a streaming motion

that involves collision with the solvent particles; another is the

mutual collisional transfer between the solute and solvent particles

at local equilibrium. The additional indirect effects via the

change of the structure and thermodynamic properties of the solvent

will not be discussed here.

In the Lorentzian limit the contribution of the solute in

relaxation toward local equilibrium is predominant over the local equilibrium

contribution. As is obvious from the observation that the lighter

particle is more effective in transporting energy but less efficient

in transporting momentum, it is found that A~l is larger than n~l by

a factor of p. Accordingly, in the Rayleighian mixture the opposite

result is found, i.e. n~l is larger than A~l by a factor of p-l.

However, our result for bulk viscosity seems to defy such a simple
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explanation. We discover here that the light solute particle in

the Lorentzian mixture is as effective in its contribution to the

bulk viscosity (K~1) as in its contribution to the thermal conductivity!

The possible reason for this is as follows: Through its time-

correlation function25 expression the bulk viscosity is rel~ted to

the fluctuation of the pressure of total fluid system. (This is

also reflected through the pressure term B. (2-2lb) in our~

kinetic theory), In contrast to the thermal conductivity

or the shear viscosity of the light particles scattered by the heavy

stationary object envisioned by Lorentz, one cannot focus on the

relaxation of the light particles without considering simultaneously

the response of the heavy solvent particles which also contribute to

the pressure. Thus, the mechanism of the momentum transport here is

entirely different; it is implemented purely by the collisional

transfer instead of via the streaming motion of the light particle.
.1

Rl and RO Limit

The direct contributions to the bulk and shear viscosity due

to the Brownian motion of the solute particles which are much heavier

than the surrounding fluid particles are given by the expressions for

R
d

R. E
K21 an 1121~n qs. (3-32) and (3-57).

We note that the effect of

Brownian motion is pronounced as long as the mass ratio p and size

ratio q are related by p = qa with a larger than 5. That is,

Brownian motion of solute particles with mass density far larger
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than that of the surrounding solvent particle is more effective in

the transport of momentum as the limit p + 0, q + 0 is approached.

Conversely, in the case p = qa with 1 < a < 5, these

effect of the solute particle on the viscosity tends to vanish as

p + 0, q + O. In this limit, the heavy solute particle does not

undergo-Brownian motion (diffusion) but drifts with the local

hydrodynamic velocity ~ (i.e. ~2 = 0). This is the situation

with whi~h the usual hydrodynamic treatments26 of suspension

are concerned and is described by the limiting level of

approximation denoted as RO by us. In the RO limit, we find

[

256 2
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32 -1
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v

K = 5TI E,;lYll +E,;2 51T q E,;lY12 111

-

f{

x~
(

+ ~
)
2 + 768 2

}11 - - 1.016 Yll 1 5 E,;lYll 251T E,;lYll

[

4 1
(

8 .

))

96/2 -1

l
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+ E,;25 Yll 1 +5 E,;lYll Y12 + 251T E,;lq Y12- 111

(3-75)

(3-76)

[

Xl
(

12 "\2 512 2
)

"
A = 1.025 Yll 1 +5 E,;lYll.1 + 251T E,;lYllAl

(3-77)

,
where the local equilibrium contribution of solute to A is absent

since as long as p = qa, 1 < a < 5, the heavy particle is

ineffective in conducting energy.
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IV. CONCLUSION AND COMMENTS

By using the solute-solvent collision integrals expanded

in terms of mass ratio (through linear order), we have developed

a simple method of calculating the transport coefficients of trace-

!

binary mixtures with extreme mass disparity on the Enskog-theory

level. Our results have been compared with the results obtained

from the lowest Sonine polynomial approximation. In the Lorentz

limit, these show the largest (but still reasonably small)

deviation from our exact results while in the opposite limit

(Rayleighian) they are found to be exact (i.e. identical to ours),

which supports some earlier comparisons made of the Boltzmann-

equation level. Our method presumably can be extended for low

density application to various other models of intermolecular

potentials with which the Boltzmann equation can cope. More

detailed analysis including higher-order expansion of the collision

integral is also straightforward and is capable of yielding

expressions for the transport coefficients under more general

conditions.

Throughout this work, we have not given explicit expressions

for the indirect effect that the solute may have on the transport

coefficients as the result of the thermodynamic change of the

solvent; e.g. Yll and ~l in the presence of solute are different

from those in the pure solvent. One has to specify the mixing

condition if one wants to compare these two. Thus, the terms in

our expressions of K, 11,A corresponding to the order l;2 do not

'"
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fully represent the effect of the solute. This feature could not

have been obtained in the Boltzmann-theory description.

come back to this problem in the next paper.lZ

We shall

Although the resulting transport coefficients in the limit

a22/all + 00, m2/ml + 00 are exact within the framework of the Enskog

theory, we note that they lead to singular physical behaviors in

comparison with the hydrodynamic results that are exact in this limit;

the results of D12' K, n in (3-27), (3-77) and (3-78) manifest a

singularity that goes like aZ2/all in contrast to the hydrodynamic

results (obtained using slip boundary condition), such as

D12;:: kT/2'1TnaZ2'
lim n-nlO
~2+0 ~2nl 0 =1

(nlO is pure solvent viscosity). These anomalous results of Enskog

theory are due to its assumption of velocity chaos (i.e. the lack

of velocity correlation between two particles about to collide)

which breaks down in this limit. These problems of modifying the

Enskog theory by including the collective effects will be the topics

f b . .. 27
0 our su sequent InvestIgatIons.
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